Electronic Journal of Qualitative Theory of Differential Equations 2013, No. 30, 1-11; http://www.math.u-szeged.hu/ejqtde/

Existence of positive solution for a third-order three-point BVP with sign-changing Green's function*

Xing-Long Li, Jian-Ping Sun, Fang-Di Kong

Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, People's Republic of China

Abstract

By using the Guo-Krasnoselskii fixed point theorem, we investigate the following thirdorder three-point boundary value problem

$$\begin{cases} u'''(t) = f(t, u(t)), \ t \in [0, 1], \\ u'(0) = u(1) = 0, \ u''(\eta) + \alpha u(0) = 0, \end{cases}$$

where $\alpha \in [0, 2)$ and $\eta \in [\frac{\sqrt{121+24\alpha}-5}{3(4+\alpha)}, 1)$. The emphasis is mainly that although the corresponding Green's function is sign-changing, the solution obtained is still positive.

Keywords: Third-order three-point boundary value problem; Sign-changing Green's function; Positive solution; Existence; Fixed point

2010 AMS Subject Classification: 34B10, 34B18

^{*}Supported by the Natural Science Foundation of Gansu Province of China (1208RJZA240).

[†]Corresponding author. E-mail: jpsun@lut.cn

1 Introduction

Third-order differential equations arise from a variety of different areas of applied mathematics and physics, e.g., in the deflection of a curved beam having a constant or varying cross section, a three-layer beam, electromagnetic waves or gravity driven flows and so on [3].

Recently, the existence of single or multiple positive solutions to some third-order three-point boundary value problems (BVPs for short) has received much attention from many authors, see [1, 2, 5, 12, 15, 16] and the references therein.

However, all the above-mentioned papers are achieved when the corresponding Green's functions are positive, which is a very important condition. A natural question is that whether we can obtain the existence of positive solutions to some third-order three-point BVPs when the corresponding Green's functions are sign-changing.

In 2008, Palamides and Smyrlis [11] studied the existence of at least one positive solution to the singular third-order three-point BVP with an indefinitely signed Green's function

$$\begin{cases} u'''(t) = a(t)f(t, u(t)), \ t \in (0, 1), \\ u(0) = u(1) = u''(\eta) = 0, \end{cases}$$

where $\eta \in \left(\frac{17}{24}, 1\right)$. Their technique was a combination of the Guo-Krasnoselskii fixed point theorem and properties of the corresponding vector field.

In 2012, by using the Guo-Krasnoselskii and Leggett-Williams fixed point theorems, Sun and Zhao [13,14] discussed the third-order three-point BVP with sign-changing Green's function

$$\begin{cases} u'''(t) = f(t, u(t)), \ t \in [0, 1], \\ u'(0) = u(1) = u''(\eta) = 0, \end{cases}$$
 (1.1)

where $\eta \in (\frac{1}{2}, 1)$. They obtained the existence of single or multiple positive solutions to the BVP (1.1) and proved that the obtained solutions were concave on $[0, \eta]$ and convex on $[\eta, 1]$.

It is worth mentioning that there are other type of works on sign-changing Green's functions which prove the existence of sign-changing solutions, positive in some cases, see Infante and Webb's papers [6–8].

In this paper we study the following third-order three-point BVP

$$\begin{cases} u'''(t) = f(t, u(t)), \ t \in [0, 1], \\ u'(0) = u(1) = 0, \ u''(\eta) + \alpha u(0) = 0. \end{cases}$$
 (1.2)

Throughout this paper, we always assume that $\alpha \in [0,2)$ and $\eta \in [\frac{\sqrt{121+24\alpha}-5}{3(4+\alpha)},1)$. Obviously, the BVP (1.1) is a special case of the BVP (1.2). However, it is necessary to point out that this paper is not a simple extension of [13]. In fact, if we let $\alpha = 0$, then $\eta \in [\frac{1}{2},1)$, which is different from the restriction in [13]. On the other hand, compared with [13], we can only prove that the obtained solution is concave on $[0,\eta]$.

Our main tool is the following well-known Guo-Krasnoselskii fixed point theorem [4,9]:

Theorem 1.1 Let E be a Banach space and K be a cone in E. Assume that Ω_1 and Ω_2 are bounded open subsets of E such that $0 \in \Omega_1$, $\overline{\Omega}_1 \subset \Omega_2$, and let $T : K \cap (\overline{\Omega}_2 \backslash \Omega_1) \to K$ be a completely continuous operator such that either

- (1) $||Tu|| \le ||u||$ for $u \in K \cap \partial \Omega_1$ and $||Tu|| \ge ||u||$ for $u \in K \cap \partial \Omega_2$, or
- (2) $||Tu|| \ge ||u||$ for $u \in K \cap \partial \Omega_1$ and $||Tu|| \le ||u||$ for $u \in K \cap \partial \Omega_2$.

Then T has a fixed point in $K \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

2 Preliminaries

For the BVP

$$\begin{cases} u'''(t) = 0, \ t \in [0, 1], \\ u'(0) = u(1) = 0, \ u''(\eta) + \alpha u(0) = 0, \end{cases}$$
 (2.1)

we have the following lemma.

Lemma 2.1 The BVP (2.1) has only trivial solution.

Proof. It is simple to check.

In the remainder of this paper, we always assume that Banach space C[0,1] is equipped with the norm $||u|| = \max_{t \in [0,1]} |u(t)|$.

EJQTDE, 2013 No. 30, p. 3

Now, for any $y \in C[0,1]$, we consider the BVP

$$\begin{cases} u'''(t) = y(t), \ t \in [0, 1], \\ u'(0) = u(1) = 0, \ u''(\eta) + \alpha u(0) = 0. \end{cases}$$
 (2.2)

After a direct computation, one may obtain the expression of Green's function G(t, s) of the BVP (2.2) as follows:

$$G(t,s) = g_1(t,s) + g_2(t,s) + g_3(\eta,t,s),$$

where

$$g_1(t,s) = -\frac{(2-\alpha t^2)(1-s)^2}{2(2-\alpha)}, \ (t,s) \in [0,1] \times [0,1],$$
$$g_2(t,s) = \begin{cases} 0, & 0 \le t \le s \le 1, \\ \frac{(t-s)^2}{2}, & 0 \le s \le t \le 1 \end{cases}$$

and

$$g_3(\eta, t, s) = \begin{cases} 0, & s \ge \eta, \\ \frac{1 - t^2}{2 - \alpha}, & s < \eta. \end{cases}$$

It is not difficult to verify that the G(t,s) has the following properties:

$$G(t,s) > 0$$
 for $0 < s < \eta$ and $G(t,s) < 0$ for $\eta < s < 1$.

Moreover, for $s \geq \eta$,

$$\max\{G(t,s): t \in [0,1]\} = G(1,s) = 0,$$

$$\min\{G(t,s): t \in [0,1]\} = G(0,s) = -\frac{(1-s)^2}{2-\alpha}$$

and for $s < \eta$,

$$\max\{G(t,s): t \in [0,1]\} = G(0,s) = \frac{2s - s^2}{2 - \alpha},$$
$$\min\{G(t,s): t \in [0,1]\} = G(1,s) = 0.$$

Let

$$K_{0}=\left\{ y\in C\left[0,1\right] :y(t)\text{ is nonnegative and decreasing on }\left[0,1\right] \right\} .$$

Then K_0 is a cone in C[0,1].

Lemma 2.2 Let $y \in K_0$ and $u(t) = \int_0^1 G(t, s)y(s)ds$, $t \in [0, 1]$. Then u is the unique solution of the BVP (2.2) and $u \in K_0$. Moreover, u(t) is concave on $[0, \eta]$.

Proof. For $0 \le t \le \eta$, we have

$$u(t) = \int_0^t \left[g_1(t,s) + \frac{(t-s)^2}{2} + \frac{1-t^2}{2-\alpha} \right] y(s)ds + \int_t^{\eta} \left[g_1(t,s) + \frac{1-t^2}{2-\alpha} \right] y(s)ds + \int_{\eta}^1 g_1(t,s)y(s)ds.$$

Since $\eta \geq \frac{\sqrt{121+24\alpha}-5}{3(4+\alpha)}$ implies that $\eta \geq \frac{2\alpha}{3\alpha+6}$, we get

$$u'(t) = -\frac{\alpha t}{2 - \alpha} \int_0^{\eta} (2s - s^2) y(s) ds - \int_0^t sy(s) ds - t \int_t^{\eta} y(s) ds + \frac{\alpha t}{2 - \alpha} \int_{\eta}^1 (1 - s)^2 y(s) ds$$

$$\leq y(\eta) \left[-\frac{\alpha t}{2 - \alpha} \int_0^{\eta} (2s - s^2) ds - \int_0^t s ds - t \int_t^{\eta} ds + \frac{\alpha t}{2 - \alpha} \int_{\eta}^1 (1 - s)^2 ds \right]$$

$$= ty(\eta) \left[\frac{\alpha (1 - 3\eta)}{3(2 - \alpha)} - \eta + \frac{t}{2} \right]$$

$$\leq ty(\eta) \left[\frac{\alpha (1 - 3\eta)}{3(2 - \alpha)} - \frac{\eta}{2} \right]$$

$$\leq 0.$$

At the same time, $\eta \ge \frac{\sqrt{121+24\alpha}-5}{3(4+\alpha)} > \frac{1}{3}$ shows that

$$\begin{split} u''(t) &= -\frac{\alpha}{2-\alpha} \int_0^{\eta} (2s-s^2)y(s)ds - \int_t^{\eta} y(s)ds + \frac{\alpha}{2-\alpha} \int_{\eta}^1 (1-s)^2 y(s)ds \\ &\leq -\frac{\alpha y(\eta)}{2-\alpha} \int_0^{\eta} (2s-s^2)ds - y(\eta) \int_t^{\eta} ds + \frac{\alpha y(\eta)}{2-\alpha} \int_{\eta}^1 (1-s)^2 ds \\ &\leq \frac{\alpha y(\eta)(1-3\eta)}{3(2-\alpha)} \\ &< 0. \end{split}$$

For $\eta < t \le 1$, we have

$$u(t) = \int_0^{\eta} \left[g_1(t,s) + \frac{(t-s)^2}{2} + \frac{1-t^2}{2-\alpha} \right] y(s) ds + \int_{\eta}^{t} \left[g_1(t,s) + \frac{(t-s)^2}{2} \right] y(s) ds + \int_{t}^{1} g_1(t,s) y(s) ds.$$

EJQTDE, 2013 No. 30, p. 5

Since $\eta \geq \frac{\sqrt{121+24\alpha}-5}{3(4+\alpha)}$ implies that $\eta \geq \frac{6-\alpha}{12}$, we get

$$\begin{split} u'(t) &= -\frac{\alpha t}{2 - \alpha} \int_0^{\eta} (2s - s^2) y(s) ds + \int_{\eta}^t (t - s) y(s) ds - \int_0^{\eta} s y(s) ds + \frac{\alpha t}{2 - \alpha} \int_{\eta}^1 (1 - s)^2 y(s) ds \\ &\leq -\frac{\alpha t y(\eta)}{2 - \alpha} \int_0^{\eta} (2s - s^2) ds + \frac{y(\eta)(\eta - t)^2}{2} - y(\eta) \int_0^{\eta} s ds + \frac{\alpha t y(\eta)(1 - \eta)^3}{3(2 - \alpha)} \\ &= t y(\eta) \left[\frac{\alpha (1 - 3\eta)}{3(2 - \alpha)} + \frac{t - 2\eta}{2} \right] \\ &\leq 0. \end{split}$$

Obviously, u'''(t) = y(t) for $t \in [0,1]$, u'(0) = u(1) = 0 and $u''(\eta) + \alpha u(0) = 0$. This shows that u is a solution of the BVP (2.2). The uniqueness follows immediately from Lemma 2.1. Since $u'(t) \leq 0$ for $t \in [0,1]$ and u(1) = 0, we have $u(t) \geq 0$ for $t \in [0,1]$. So, $u \in K_0$. In view of $u''(t) \leq 0$ for $t \in [0,\eta]$, we know that u(t) is concave on $[0,\eta]$.

Lemma 2.3 Let $y \in K_0$. Then the unique solution u of the BVP (2.2) satisfies

$$\min_{t \in [0,\theta]} u(t) \ge \theta^* \|u\|,$$

where $\theta \in (0, \frac{1}{3}]$ and $\theta^* = \frac{\eta - \theta}{\eta}$.

Proof. By Lemma 2.2, we know that u(t) is concave on $[0, \eta]$, thus for $t \in [0, \eta]$,

$$u(t) \ge (1 - \frac{t}{\eta})u(0) + \frac{t}{\eta}u(\eta).$$
 (2.3)

In view of $u \in K_0$, we know that ||u|| = u(0), which together with (2.3) implies that

$$u(t) \ge \frac{\eta - t}{\eta} \|u\|, \ 0 \le t \le \eta.$$

Consequently,

$$\min_{t \in [0,\theta]} u(t) = u(\theta) \ge \frac{\eta - \theta}{\eta} \|u\| = \theta^* \|u\|.$$

3 Main results

For convenience, we denote

$$A = \int_0^{\eta} G(0, s) ds$$
 and $B = \int_0^{\theta} G(\eta, s) ds$.

Then it is obvious that 0 < B < A.

Theorem 3.1 Assume that $f:[0,1]\times[0,+\infty)\to[0,+\infty)$ is continuous and satisfies the following conditions:

- (H1) For each $u \in [0, +\infty)$, the mapping $t \mapsto f(t, u)$ is decreasing;
- (H2) For each $t \in [0,1]$, the mapping $u \mapsto f(t,u)$ is increasing;
- (H3) There exist two positive constants r and R with $r \neq R$ such that

$$f(0,r) \le \frac{r}{A} \text{ and } f(\theta, \theta^* R) \ge \frac{R}{B}.$$

Then the BVP (1.2) has a positive and decreasing solution u satisfying $\min\{r, R\} \leq ||u|| \leq \max\{r, R\}$. Moreover, the obtained solution u(t) is concave on $[0, \eta]$.

Proof. Let

$$K = \left\{ u \in K_0 : \min_{t \in [0,\theta]} u(t) \ge \theta^* \|u\| \right\}.$$

Then it is easy to see that K is a cone in C[0,1]. Now, we define an operator T on K by

$$(Tu)(t) = \int_0^1 G(t,s)f(s,u(s))ds, \ t \in [0,1].$$

Obviously, if u is a fixed point of T in K, then u is a nonnegative and decreasing solution of the BVP (1.2). In what follows, we will seek a fixed point of T in K by using Theorem 1.1.

First, by Lemma 2.2 and Lemma 2.3, we know that $T: K \to K$. Furthermore, although G(t,s) is not continuous, it follows from known textbook results, for example see [10], that $T: K \to K$ is completely continuous.

Next, for any $u \in K$, we claim that

$$\int_{\theta}^{\eta} G(\eta, s) f(s, u(s)) ds + \int_{\eta}^{1} G(\eta, s) f(s, u(s)) ds \ge 0.$$
 (3.1)

EJQTDE, 2013 No. 30, p. 7

In fact, if $u \in K$, recall that $G(t,s) \ge 0$ for $0 \le s \le \eta$ and $G(t,s) \le 0$ for $\eta \le s \le 1$, then it follows from $\eta \ge \frac{\sqrt{121+24\alpha}-5}{3(4+\alpha)}$ that

$$\int_{\theta}^{\eta} G(\eta, s) f(s, u(s)) ds + \int_{\eta}^{1} G(\eta, s) f(s, u(s)) ds$$

$$\geq f(\eta, u(\eta)) \left[\int_{\theta}^{\eta} G(\eta, s) ds + \int_{\eta}^{1} G(\eta, s) ds \right]$$

$$= f(\eta, u(\eta)) \left[\int_{\theta}^{\eta} \left(g_{1}(\eta, s) + \frac{(\eta - s)^{2}}{2} + \frac{1 - \eta^{2}}{2 - \alpha} \right) ds + \int_{\eta}^{1} g_{1}(\eta, s) ds \right]$$

$$= \frac{(1 - \eta) f(\eta, u(\eta))}{6(2 - \alpha)} \left[(4 + \alpha) \eta^{2} + (4 + \alpha \theta^{3} - 3\alpha \theta^{2}) \eta - 6\theta^{2} + \alpha \theta^{3} - 2 \right]$$

$$\geq \frac{(1 - \eta) f(\eta, u(\eta))}{6(2 - \alpha)} \left[(4 + \alpha) \eta^{2} + \frac{10}{3} \eta - \frac{8}{3} \right]$$

$$\geq 0.$$

Now, without loss of generality, we assume that r < R. Let

$$\Omega_1 = \{ u \in C[0,1] : ||u|| < r \} \text{ and } \Omega_2 = \{ u \in C[0,1] : ||u|| < R \}.$$

For any $u \in K \cap \partial \Omega_1$, we get $0 \le u(s) \le r$ for $s \in [0, 1]$, which together with (H3) implies that

$$0 \leq (Tu)(t) \leq \int_{0}^{\eta} \max_{t \in [0,1]} G(t,s) f(s,u(s)) ds + \int_{\eta}^{1} \max_{t \in [0,1]} G(t,s) f(s,u(s)) ds$$

$$= \int_{0}^{\eta} G(0,s) f(s,u(s)) ds$$

$$\leq \int_{0}^{\eta} G(0,s) f(0,r) ds$$

$$\leq r = ||u||, \ t \in [0,1].$$

This shows that

$$||Tu|| \le ||u|| \text{ for } u \in K \cap \partial\Omega_1.$$
 (3.2)

For any $u \in K \cap \partial\Omega_2$, we get $\theta^*R \leq u(s) \leq R$ for $s \in [0, \theta]$, which together with (3.1) and EJQTDE, 2013 No. 30, p. 8

(H3) implies that

$$\begin{split} Tu(\eta) &= \int_0^1 G(\eta,s) f(s,u(s)) ds \\ &= \int_0^\theta G(\eta,s) f(s,u(s)) ds + \int_\theta^\eta G(\eta,s) f(s,u(s)) ds + \int_\eta^1 G(\eta,s) f(s,u(s)) ds \\ &\geq \int_0^\theta G(\eta,s) f(s,u(s)) ds \\ &\geq \int_0^\theta G(\eta,s) f(\theta,\theta^*R) ds \\ &\geq R = \|u\|\,, \end{split}$$

This indicates that

$$||Tu|| \ge ||u|| \text{ for } u \in K \cap \partial\Omega_2.$$
 (3.3)

Therefore, it follows from Theorem 1.1, (3.2) and (3.3) that the operator T has a fixed point $u \in K \cap (\overline{\Omega}_2 \setminus \Omega_1)$, which is a desired positive and decreasing solution of the BVP (1.2) with $r \leq ||u|| \leq R$. Moreover, similar to the proof of Lemma 2.2, we can prove that the obtained solution u(t) is concave on $[0, \eta]$.

Example 3.2 We consider the BVP

$$\begin{cases} u'''(t) = \frac{u^2(t)}{4} + \frac{9(1-t^2)}{2}, \ t \in [0,1], \\ u'(0) = u(1) = 0, \ u''(\frac{1}{2}) + u(0) = 0. \end{cases}$$
(3.4)

Since $\alpha = 1$ and $\eta = \frac{1}{2}$, if we choose $\theta = \frac{1}{3}$, then a simple calculation shows that

$$\theta^* = \frac{1}{3}$$
, $A = \frac{5}{24}$ and $B = \frac{7}{108}$.

Let $f(t, u) = \frac{u^2}{4} + \frac{9(1-t^2)}{2}$, $(t, u) \in [0, 1] \times [0, +\infty)$. Then (H1) and (H2) are satisfied. Moreover, it is easy to verify that

$$f(\theta, \frac{\theta^*}{4}) \ge \frac{1}{4B}, \ f(0, 1) \le \frac{1}{A}$$

and

$$f(0,18) \le \frac{18}{A}, \ f(\theta, 556\theta^*) \ge \frac{556}{B}.$$

EJQTDE, 2013 No. 30, p. 9

Therefore, it follows from Theorem 3.1 that the BVP (3.4) has positive and decreasing solutions u_1 and u_2 satisfying

$$\frac{1}{4} \le ||u_1|| \le 1 < 18 \le ||u_2|| \le 556.$$

References

- [1] D. Anderson, Green's function for a third-order generalized right focal problem, J. Math. Anal. Appl. 288 (2003), no. 1, 1-14.
- [2] Z. Bai, X. Fei, Existence of triple positive solutions for a third order generalized right focal problem, Math. Inequal. Appl. 9 (2006), no. 3, 437-444.
- [3] M. Gregus, Third Order Linear Differential Equations, Reidel, Dordrecht, 1987.
- [4] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
- [5] L.-J. Guo, J.-P. Sun, Y.-H. Zhao, Existence of positive solution for nonlinear third-order three-point boundary value problem, Nonlinear Anal. 68 (2008), no. 10, 3151-3158.
- [6] G. Infante, J. R. L. Webb, Nonzero solutions of Hammerstein integral equations with discontinuous kernels, J. Math. Anal. Appl. 272 (2002), no. 1, 30-42.
- [7] G. Infante, J. R. L. Webb, Three-point boundary value problems with solutions that change sign, J. Integral Equations Appl. 15 (2003), no. 1, 37-57.
- [8] G. Infante, J. R. L. Webb, Loss of positivity in a nonlinear scalar heat equation. NoDEA Nonlinear Differential Equations Appl. 13 (2006), no. 2, 249-261.
- [9] M. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
- [10] R. H. Martin, Nonlinear Operators & Differential Equations in Banach Spaces, Wiley, New York, 1976.

- [11] Alex P. Palamides, George Smyrlis, Positive solutions to a singular third-order three-point boundary value problem with indefinitely signed Green's function, Nonlinear Anal. 68 (2008), no. 7, 2104-2118.
- [12] Alex P. Palamides, Nikolaos M. Stavrakakis, Existence and uniqueness of a positive solution for a third-order three-point boundary-value problem, Electron. J. Differential Equations 2010 (2010), no. 155, 1-12.
- [13] J.-P. Sun, J. Zhao, Positive solution for a third-order three-point boundary value problem with sign-changing Green's function, Commun. Appl. Anal. 16 (2012), no. 2, 219-228.
- [14] J.-P. Sun, J. Zhao, Multiple positive solutions for a third-order three-point BVP with sign-changing Green's function, Electron. J. Differential Equations 2012 (2012), no. 118, 1-7.
- [15] Y. Sun, Positive solutions of singular third-order three-point boundary value problem, J. Math. Anal. Appl. 306 (2005), no. 2, 589-603.
- [16] Q. Yao, The existence and multiplicity of positive solutions for a third-order three-point boundary value problem, Acta Math. Appl. Sin. Engl. Ser. 19 (2003), no. 1, 117-122.

(Received February 3, 2013)