Eigenvalue Characterization for a Class of Boundary Value Problems

Chuan Jen Chyan
Department of Mathematics
Tamkang University
Taipei, Taiwan, 251
email: chuanjen@mail.tku.edu.tw
Johnny Henderson
Department of Mathematics
Auburn University
Auburn, Alabama 36849-5310 USA
email: hendej2@mail.auburn.edu

Abstract

We consider the $n t h$ order ordinary differential equation $(-1)^{n-k} y^{(n)}=\lambda a(t) f(y), \quad t \in$ $[0,1], n \geq 3$ together with boundary condition $y^{(i)}(0)=0,0 \leq i \leq k-1$, and $y^{(l)}(1)=0$, $j \leq l \leq j+n-k-1$, for $1 \leq j \leq k-1$ fixed. Values of λ are characterized so that the boundary value problem has a positive solution.

1 Introduction

Let $n \geq 3,2 \leq k \leq n-1$, and $1 \leq j \leq k-1$ be given. In this paper we shall consider the nth order differential equation

$$
\begin{equation*}
(-1)^{n-k} y^{(n)}=\lambda a(t) f(y), \quad t \in[0,1], \tag{1}
\end{equation*}
$$

satisfying the boundary conditions

$$
\begin{align*}
y^{(i)}(0)=0, & 0 \leq i \leq k-1, \tag{2}\\
y^{(l)}(1)=0, & j \leq l \leq j+n-k-1 .
\end{align*}
$$

Throughout, we assume the following hypotheses :
$\left(H_{1}\right) a(t)$ is a continuous nonnegative function on $[0,1]$ and is not identically equal to zero on any subinterval of $[0,1]$.
$\left(H_{2}\right) f: R \rightarrow[0, \infty)$ is continuous and nonnegative.
$\left(H_{3}\right)$ The limits $f_{0}=\lim _{u \rightarrow 0^{+}} \frac{f(u)}{u}$ and $f_{\infty}=\lim _{u \rightarrow \infty} \frac{f(u)}{u}$ exist in $[0, \infty)$.
We shall determine values of λ for which the boundary value problem (1), (2) has a positive solution. By a positive solution y of (1), (2), we mean $y \in C^{(n)}[0,1]$ satisfies (1) on $[0,1]$ and fulfills (2), and y is nonnegative and is not identically zero on $[0,1]$. We let

$$
S p(a)=\{\lambda>0 \mid(1),(2) \text { has a postive solution }\} .
$$

The motivation for the present work originates from many recent investigations. In the case $n=2$ the boundary value problem (1), (2) describes a vast spectrum of scientific phenomena; we refer the reader to $[1,3,5,6,14,16]$. It is noted that only positive solutions are meaningful in those models. Our results complement the work of many authors, see, e.g. $[2,4,8,9,10,11,12,13,17,18,19]$. In Section 2, we provide some definitions and background results, and state a fixed point theorem due to Krasnosel'skii [15]. Also, we present some properties of certain Green's function where needed. By defining an appropriate Banach space and cone, in Section 3, we characterize the set $S p(a)$.

2 Background Notation and Definitions

We first present the definition of a cone in a Banach space and the Krasnosel'skii Fixed Point Theorem. Definition 2.1. Let \mathcal{B} be a Banach space over R. A nonempty closed convex set $\mathcal{P} \subset \mathcal{B}$ is said to be a cone provided the following are satisfied:
(a) If $y \in \mathcal{P}$ and $\alpha \geq 0$, then $\alpha y \in \mathcal{P}$;
(b) If $y \in \mathcal{P}$ and $-y \in \mathcal{P}$, then $y=0$.

Theorem 2.1 Let \mathcal{B} be a Banach space, and let $\mathcal{P} \subset \mathcal{B}$ be a cone in \mathcal{B}. Assume Ω_{1}, Ω_{2} are open subsets of \mathcal{B} with $0 \in \Omega_{1}, \overline{\Omega_{1}} \subset \Omega_{2}$, and let

$$
T: \mathcal{P} \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right) \rightarrow \mathcal{P}
$$

be a completely continuous operator such that, either
(i) $\|T u\| \leq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{1}$, and $\|T u\| \geq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{2}$;
(ii) $\|T u\| \geq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{1}$, and $\|T u\| \leq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{2}$.

Then T has a fixed point in $\mathcal{P} \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right)$.

To obtain a solution for (1) and (2), we require a mapping whose kernel $G(t, s)$ is the Green's function of the boundary value problem

$$
\begin{gather*}
(-1)^{n-k} y^{(n)}=0, \tag{3}\\
y^{(i)}(0)=0, \quad 0 \leq i \leq k-1, \\
y^{(l)}(1)=0, \quad j \leq l \leq j+n-k-1 .
\end{gather*}
$$

Wong and Agarwal [20] have found that if y satisfies

$$
\begin{gather*}
(-1)^{n-p} y^{(n)} \geq 0, \tag{4}\\
y^{(i)}(0)=0, \quad 0 \leq i \leq p-1, \tag{5}\\
y^{(l)}(1)=0, \quad 0 \leq l \leq n-p-1,
\end{gather*}
$$

then, for $\delta \in\left(0, \frac{1}{2}\right)$ and $t \in[\delta, 1-\delta]$,

$$
\begin{equation*}
y(t) \geq \min \{b(p) \min \{c(p), c(n-p-1)\}, \quad b(p-1) \min \{c(p-1), c(n-p)\}\}\|y\| \tag{6}
\end{equation*}
$$

where the functions b and c are defined as

$$
b(x)=\frac{(n-1)^{n-1}}{x^{x}(n-x-1)^{n-x-1}}, \quad c(x)=\delta^{x}(1-\delta)^{n-x-1} .
$$

Aided by this, we have the following lemma.
Lemma 2.2 Let $n \geq 3$. Assume $u \in C^{(n)}[0,1],(-1)^{n-k} u^{(n)}(t) \geq 0, \quad 0 \leq t \leq 1$ and u satifies (2). Then for $0 \leq t \leq 1$,

$$
u^{(j)}(t) \geq 0
$$

and for $t \in[\delta, 1-\delta]$

$$
u^{(j)}(t) \geq \sigma_{1}\left|u^{(j)}\right|_{\infty}
$$

where

$$
\sigma_{1}=\min \{b(k-j) \min \{c(k-j), c(n-k-1)\}, \quad b(k-j-1) \min \{c(k-j-1), c(n-k)\}\} .
$$

Proof: First, $u^{(j)} \in C^{(n-j)}[0,1]$. Also $u^{(j)}$ satisfies

$$
(-1)^{n-k} y^{(n-j)}(t) \geq 0 .
$$

Let the boundary condition (2) be partitioned into two parts:

$$
\begin{align*}
& y^{(i)}(0)=0, \quad j \leq i \leq k-1 \\
& y^{(l)}(1)=0, \quad j \leq l \leq j+n-k-1 \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
y^{(i)}(1)=0, \quad 0 \leq i \leq j-1 . \tag{8}
\end{equation*}
$$

Now u satisfies (7), so $u^{(j)}$ satisfies $(k-j, n-k)$ homogeneous conjugate boundary conditions. The conclusion then follows from inequality (6).

Lemma 2.3 Let $n \geq 3$. Assume $u \in C^{(n)}[0,1],(-1)^{n-k} y^{(n)}(t) \geq 0, \quad 0 \leq t \leq 1$, and u satifies (2). Then for $0 \leq t \leq 1$,

$$
u(t) \geq 0
$$

and for $t \in\left[\frac{1}{2}, 1-\delta\right]$,

$$
u(t) \geq \sigma_{2}\left|u^{(j)}\right|_{\infty}
$$

where $\sigma_{2}=\frac{\sigma_{1}\left(\frac{1}{2}-\delta\right)^{j}}{j!}$ and $\left|u^{(j)}\right|_{\infty}=\max _{t \in[0,1]}\left|u^{(j)}(t)\right|$.
Proof: Since u satisfies (2), u satisfies (8) as well. Thus for $0 \leq t \leq 1$,

$$
u(t)=\int_{0}^{t} \frac{(t-s)^{j-1}}{(j-1)!} u^{(j)}(s) d s
$$

Aided by Lemma 2.2

$$
\begin{aligned}
u(t) & =\int_{\delta}^{t} \frac{(t-s)^{j-1}}{(j-1)!} u^{(j)}(s) d s+\int_{0}^{\delta} \frac{(t-s)^{j-1}}{(j-1)!} u^{(j)}(s) d s \\
& \geq \int_{\delta}^{t} \frac{(t-s)^{j-1}}{(j-1)!} u^{(j)}(s) d s \\
& \geq \frac{\sigma_{1}(t-\delta)^{j}}{j!}\left|u^{(j)}\right|_{\infty} .
\end{aligned}
$$

Consequently, for $t \in\left[\frac{1}{2}, 1-\delta\right]$,

$$
u(t) \geq \frac{\sigma_{1}\left(\frac{1}{2}-\delta\right)^{j}}{j!}\left|u^{(j)}\right|_{\infty}
$$

The nonnegativity of u follows.
It is noted that Eloe [7] proved that $G^{(j)}(t, s)=\frac{\partial^{j}}{\partial t^{j}} G(t, s)$ is the Green's function of $y^{(n-j)}=0$ subject to the boundary conditions

$$
\begin{align*}
& y^{(i)}(0)=0, \quad 0 \leq i \leq k-j-1, \\
& y^{(l)}(1)=0, \quad 0 \leq l \leq n-k-1 . \tag{9}
\end{align*}
$$

The proof follows from the four properties of the Green's function. Consequently we have the following result, whose conclusion follows from Lemma 2.2.

Lemma 2.4 For each $s \in(0,1)$, and $t \in[\delta, 1-\delta]$

$$
(-1)^{n-k} G^{(j)}(t, s) \geq \sigma_{1}\left|G^{(j)}(\cdot, s)\right|_{\infty}
$$

where $\left|G^{(j)}(\cdot, s)\right|_{\infty}=\max _{0 \leq t \leq 1}\left|G^{(j)}(t, s)\right|$.

3 Main Results

We are now in a position to give some chacterization of $S p(a)$. Define a Banach space, \mathcal{B}, by

$$
\mathcal{B}=\left\{u \in C^{(j)}[0,1] \mid u \text { satisfies (8) }\right\}
$$

with norm $\|u\|=\max _{0 \leq t \leq 1}\left|u^{(j)}(t)\right|$.
Let $\sigma=\sigma_{2}=\frac{\sigma_{1}\left(\frac{1}{2}-\delta\right)^{j}}{j!}$. Define a cone, $\mathcal{P}_{\sigma} \subset \mathcal{B}$, by

$$
\mathcal{P}_{\sigma}=\left\{u \in \mathcal{B} \mid u^{(j)}(t) \geq 0 \text { on }[0,1], \quad \text { and } \min _{t \in[\delta, 1-\delta]} u(t) \geq \sigma\|u\|\right\} .
$$

Let

$$
T u(t)=(-1)^{n-k} \int_{0}^{1} G(t, s) a(s) f(u(s)) d s, 0 \leq t \leq 1, \quad u \in \mathcal{B} .
$$

To obtain a solution of (1), (2), we shall seek a fixed point of the operator λT in the cone \mathcal{P}_{σ}. In order to apply the Krasnosel'skii Fixed Point Theorem, for $\lambda>0$, we need the following.

Lemma 3.1 For $\lambda>0, \lambda T: \mathcal{P}_{\sigma} \rightarrow \mathcal{P}_{\sigma}$ and is a completely continuous operator.

Proof: Let $u \in \mathcal{P}_{\sigma}$. It sufffices to verify this lemma when $\lambda=1$. By properties of $(-1)^{n-k} G^{(j)}(t, s)$, it is clear that $(T u)^{(j)}(t) \geq 0$ and $(T u)^{(j)}(t)$ is continuous on [0, 1].

Furthermore, for any $0 \leq \tau \leq 1$

$$
\begin{aligned}
\min _{t \in[\delta, 1-\delta]}(T u)^{(j)}(t) & \geq \int_{0}^{1} \min _{t \in[\delta, 1-\delta]}(-1)^{n-k} G^{(j)}(t, s) a(s) f(u(s)) d s \\
& \geq \sigma \int_{0}^{1}(-1)^{n-k} G^{(j)}(\tau, s) a(s) f(u(s)) d s \\
& \geq \sigma \int_{0}^{1}\left|G^{(j)}(\cdot, s)\right|_{\infty} a(s) f(u(s)) d s \\
& \geq \sigma\|T u\|
\end{aligned}
$$

Also, the standard arguments yield that λT is completely continuous.

Theorem 3.2 Assume $\left(H_{1}\right),\left(H_{2}\right)$, and $\left(H_{3}\right)$ with $f_{0}<f_{\infty}<\infty$. Assume there exists a value of λ such that

$$
\begin{equation*}
\lambda f_{0} \int_{0}^{1}\|G(\cdot, s)\| a(s) d s<1 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda \sigma^{2} f_{\infty} \int_{\frac{1}{2}}^{1-\delta}\|G(\cdot, s)\| a(s) d s>1 \tag{11}
\end{equation*}
$$

Then the BVP (1),(2) has a positive solution in the cone \mathcal{P}_{σ}.

Proof: For each $\lambda>0$ satisfying both of the conditions (10) and (11), let $\epsilon(\lambda)>0$ be sufficiently small such that

$$
\begin{equation*}
\lambda\left(f_{0}+\epsilon\right) \int_{0}^{1}\|G(\cdot, s)\| a(s) d s \leq 1 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda \sigma^{2}\left(f_{\infty}-\epsilon\right) \int_{\frac{1}{2}}^{1-\delta}\|G(\cdot, s)\| a(s) d s \geq 1 \tag{13}
\end{equation*}
$$

Consider f_{0} first. There exists $H_{1}(\epsilon)>0$ such that $f(u) \leq\left(f_{0}+\epsilon\right) u$, for all $0<u \leq H_{1}$. Let

$$
\Omega_{1}=\left\{u \in \mathcal{B} \mid\|u\|<H_{1}\right\} .
$$

For all $u \in \partial \Omega_{1} \cap \mathcal{P}_{\sigma}, \quad 0 \leq u(s) \leq\|u\|$, and

$$
\begin{aligned}
\|\lambda T u\| & \leq \lambda \int_{0}^{1}\|G(\cdot, s)\| a(s) f(u(s)) d s \\
& \leq \lambda \int_{0}^{1}\|G(\cdot, s)\| a(s)\left(f_{0}+\epsilon\right) u(s) d s \\
& \leq \lambda\left(f_{0}+\epsilon\right) \int_{0}^{1}\|G(\cdot, s)\| a(s) d s \cdot\|u\| .
\end{aligned}
$$

Hence, (12) implies that

$$
\|\lambda T u\| \leq\|u\| .
$$

On the other hand, consider f_{∞}. There exists $\bar{H}_{2}(\epsilon)>0$ such that $f(u) \geq\left(f_{\infty}-\epsilon\right) u$, for all $u \geq \bar{H}_{2}$. Let

$$
\begin{gathered}
H_{2}=\max \left\{2 H_{1}, \quad \frac{1}{\sigma} \bar{H}_{2}\right\}, \\
\Omega_{2}=\left\{u \in \mathcal{B} \mid\|u\|<H_{2}\right\} .
\end{gathered}
$$

For all $u \in \partial \Omega_{2} \cap \mathcal{P}_{\sigma}, \quad u(s) \geq \sigma\|u\|, \frac{1}{2} \leq s \leq 1-\delta$, and

$$
\begin{aligned}
\|\lambda T u\| & \geq \min _{t \in[\delta, 1-\delta]} \lambda T u(t) \\
& \geq \int_{0}^{1} \min _{t \in[\delta, 1-\delta]}(-1)^{n-k} G(t, s) a(s) f(u(s)) d s \\
& \geq \lambda \int_{0}^{1} \sigma\|G(\cdot, s)\| a(s) f(u(s)) d s \\
& \geq \lambda \sigma \int_{\frac{1}{2}}^{1-\delta}\|G(\cdot, s)\| a(s) f(u(s)) d s \\
& \geq \lambda \sigma \int_{\frac{1}{2}}^{1-\delta}\|G(\cdot, s)\| a(s)\left(f_{\infty}-\epsilon\right) u(s) d s \\
& \geq \lambda \sigma \int_{\frac{1}{2}}^{1-\delta}\|G(\cdot, s)\| a(s)\left(f_{\infty}-\epsilon\right) \sigma\|u\| d s \\
& \geq \lambda \sigma^{2}\left(f_{\infty}-\epsilon\right) \int_{\frac{1}{2}}^{1-\delta}\|G(\cdot, s)\| a(s) d s\|u\|
\end{aligned}
$$

Hence, (13) implies that

$$
\|\lambda T u\| \geq\|u\| .
$$

Finally, we apply part (i) of Krasnosel'skii's Fixed Point Theorem and obtain a fixed point u_{1} of λT in $\mathcal{P}_{\sigma} \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right)$. Note that for $\frac{1}{2} \leq t \leq 1-\delta$,

$$
u_{1}(t) \geq \sigma\left\|u_{1}\right\| \geq \sigma H_{1}>0 .
$$

Hence, u_{1} is a nontrivial solution of (1),(2). Successive applications of Rolle's theorem imply that u_{1} does not vanish on $(0,1)$ and so u_{1} is a positive solution.

This completes the proof.

Corollary 3.3 Assume all the conditions for Theorem 3.2 hold. Then
(i) For $f_{0}=0$ and $f_{\infty}=\infty \quad$ (superlinear), $S p(a)=(0, \infty)$.
(ii) For $f_{0}=0$ and $f_{\infty}<\infty, \quad\left(\left(\sigma^{2} f_{\infty} \int_{\frac{1}{2}}^{1-\delta}\|G(\cdot, s)\| a(s) d s\right)^{-1}, \infty\right) \subseteq \operatorname{Sp}(a)$.
(iii) For $f_{0}>0$ and $f_{\infty}=\infty, \quad\left(0,\left(f_{0} \int_{0}^{1}\|G(\cdot, s)\| a(s) d s\right)^{-1}\right) \subseteq \operatorname{Sp}(a)$.
(iv) For $0<f_{0}<f_{\infty}<\infty$,

$$
\left(\left(\sigma^{2} f_{\infty} \int_{\frac{1}{2}}^{1-\delta}\|G(\cdot, s)\| a(s) d s\right)^{-1},\left(f_{0} \int_{0}^{1}\|G(\cdot, s)\| a(s) d s\right)^{-1}\right) \quad \subseteq S p(a)
$$

Theorem 3.4 Assume $\left(H_{1}\right),\left(H_{2}\right)$, and $\left(H_{3}\right)$ with $f_{\infty}<f_{0}<\infty$. Assume there exists a value of λ such that

$$
\begin{equation*}
\lambda \sigma^{2} f_{0} \int_{\frac{1}{2}}^{1-\delta}\|G(\cdot, s)\| a(s) d s>1 \tag{14}
\end{equation*}
$$

In addition, if f is not bounded, assume also that

$$
\begin{equation*}
\lambda f_{\infty} \int_{0}^{1}\|G(\cdot, s)\| a(s) d s<1 \tag{15}
\end{equation*}
$$

Then the BVP (1),(2) has a positive solution in the cone \mathcal{P}_{σ}.

Proof: For each $\lambda>0$ satisfying the condition (14), let $\epsilon(\lambda)>0$ be sufficiently small such that

$$
\begin{equation*}
\lambda \sigma^{2}\left(f_{0}-\epsilon\right) \int_{\frac{1}{2}}^{1-\delta} 1\|G(\cdot, s)\| a(s) d s \geq 1 \tag{16}
\end{equation*}
$$

Consider $f_{0} \in \mathcal{R}^{+}$first. There exists $H_{1}(\epsilon)>0$ such that $f(u) \geq\left(f_{0}-\epsilon\right) u, \quad$ for $0<u \leq H_{1}$. Let

$$
\Omega_{1}=\left\{u \in \mathcal{B} \mid\|u\|<H_{1}\right\} .
$$

For all $u \in \partial \Omega_{1} \cap \mathcal{P}_{\sigma}, \quad u(s) \geq \sigma\|u\|, \frac{1}{2} \leq s \leq 1-\delta$, and so

$$
\begin{aligned}
\|\lambda T u\| & \geq \min _{t \in[\delta, 1-\delta]} \lambda T u(t) \\
& \geq \lambda \int_{0}^{1} \min _{t \in[\delta, 1-\delta]}(-1)^{n-k} G(t, s) a(s) f(u(s)) d s \\
& \geq \lambda \int_{0}^{1} \sigma\|G(\cdot, s)\| a(s) f(u(s)) d s \\
& \geq \lambda \sigma \int_{0}^{1}\|G(\cdot, s)\| a(s)\left(f_{0}-\epsilon\right) u(s) d s \\
& \geq \lambda \sigma\left(f_{0}-\epsilon\right) \int_{\frac{1}{2}}^{1-\delta}\|G(\cdot, s)\| a(s) u(s) d s \\
& \geq \lambda \sigma\left(f_{0}-\epsilon\right) \int_{\frac{1}{2}}^{1-\delta}\|G(\cdot, s)\| a(s) \sigma\|u\| d s \\
& \geq \lambda \sigma^{2}\left(f_{0}-\epsilon\right) \int_{\frac{1}{2}}^{1-\delta}\|G(\cdot, s)\| a(s) d s\|u\| .
\end{aligned}
$$

Hence, (16) implies that

$$
\|\lambda T u\| \geq\|u\| .
$$

On the other hand, consider $f_{\infty} \in \mathcal{R}^{+}$. Given $f_{0}>f_{\infty}$, there are two subcases for us to consider:
Case 1: f is bounded. Let $\lambda>0$ satisfying condition (14) be given throughout this case. Let $N>0$ be large enough so that

$$
f(u) \leq N, \quad \text { for all } u \geq 0
$$

and

$$
\lambda N \int_{0}^{1}\|G(\cdot, s)\| a(s) d s>H_{1} .
$$

Let

$$
H_{2}=\lambda N \int_{0}^{1}\|G(\cdot, s)\| a(s) d s
$$

and

$$
\Omega_{2}=\left\{u \in \mathcal{B} \mid\|u\|<H_{2}\right\} .
$$

Then, for all $u \in \partial \Omega_{2} \cap \mathcal{P}_{\sigma}$,

$$
\begin{aligned}
\|\lambda T u\| & \leq \lambda \int_{0}^{1}\|G(\cdot, s)\| a(s) f(u(s)) d s \\
& \leq \lambda N \int_{0}^{1}\|G(\cdot, s)\| a(s) d s \\
& =\|u\| .
\end{aligned}
$$

Coupled with condition (14), we apply part (ii) of Krasnosel'skii's Fixed Point Theorem and obtain a fixed point of λT in $\mathcal{P}_{\sigma} \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right)$.

Case 2: $\quad f$ is not bounded. Assume now that $\lambda>0$ also satisfies the condition (15). Without loss of generality, we let the preceding ϵ also satisfy

$$
\begin{equation*}
\lambda\left(f_{\infty}+\epsilon\right) \int_{0}^{1}\|G(\cdot, s)\| a(s) d s \leq 1 \tag{17}
\end{equation*}
$$

There exists $\bar{H}_{2}>0$ such that for all $u \geq \bar{H}_{2}, \quad f(u) \leq\left(f_{\infty}+\epsilon\right) u$. Since f is continuous at $u=0$, it is unbounded on $(0, \infty)$ as u approaches $+\infty$. Let

$$
H_{2}>\max \left\{2 H_{1}, \bar{H}_{2}\right\}
$$

be such that

$$
f(u) \leq f\left(H_{2}\right)
$$

for all $0 \leq u \leq H_{2}$. Let

$$
\Omega_{2}=\left\{u \in \mathcal{B} \mid\|u\|<H_{2}\right\}
$$

For all $u \in \partial \Omega_{2} \cap \mathcal{P}_{\sigma}, \quad 0 \leq s \leq 1$,

$$
\begin{aligned}
f(u(s)) & \leq f\left(H_{2}\right) \\
& \leq\left(f_{\infty}+\epsilon\right) H_{2},
\end{aligned}
$$

and so,

$$
\begin{aligned}
\|\lambda T u\| & \leq \lambda \int_{0}^{1}\|G(\cdot, s)\| a(s) f(u(s)) d s \\
& \leq \lambda \int_{0}^{1}\|G(\cdot, s)\| a(s)\left(f_{\infty}+\epsilon\right) H_{2} d s \\
& \leq \lambda\left(f_{\infty}+\epsilon\right) \int_{0}^{1}\|G(\cdot, s)\| a(s) d s \cdot\|u\|
\end{aligned}
$$

Hence,(17) implies that

$$
\|\lambda T u\| \leq\|u\|
$$

Finally, we apply part (ii) of Krasnosel'skii's Fixed Point Theorem and obtain a fixed point u_{1} of λT in $\mathcal{P}_{\sigma} \cap \overline{\Omega_{2}} \backslash \Omega_{1}$.

By an argument similar to that in the proof of Theorem 3.2 there is a positive solution, u_{1}, of (1), (2).

Corollary 3.5 (Case 1) Assume all the conditions for Theorem 3.4 hold and in addition that f is bounded. Then
(i) For $f_{0}=0, \quad S p(a)=(0, \infty)$.
(ii) For $f_{0}<\infty, \quad\left(\left(\sigma^{2} f_{0} \int_{\frac{1}{2}}^{1-\delta}\|G(\cdot, s)\| a(s) d s\right)^{-1}, \infty\right) \subseteq S p(a)$.

Corollary 3.6 (Case 2) Assume all the conditions for Theorem 3.4 hold. Then
(i) For $f_{0}=\infty$ and $f_{\infty}=0 \quad$ (Sublinear), $\quad S p(a)=(0, \infty)$.
(ii) For $f_{0}=\infty$ and $f_{\infty}>0,\left(0,\left(f_{\infty} \int_{0}^{1}\|G(\cdot, s)\| a(s) d s\right)^{-1}\right) \subseteq S p(a)$.
(iii) For $0<f_{0}<\infty$ and $f_{\infty}=0,\left(\left(\sigma^{2} f_{0} \int_{\frac{1}{2}}^{1-\delta}\|G(\cdot, s)\| a(s) d s\right)^{-1}, \infty\right) \subseteq S p(a)$.
(iv) For $0<f_{\infty}<f_{0}<\infty$,

$$
\left(\left(\sigma^{2} f_{0} \int_{\frac{1}{2}}^{1-\delta}\|G(\cdot, s)\| a(s) d s\right)^{-1},\left(f_{\infty} \int_{0}^{1}\|G(\cdot, s)\| a(s) d s\right)^{-1}\right) \quad \subseteq S p(a)
$$

References

[1] D. Aronson, M. G. Crandall and L. A. Peletier, Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Analysis 6(1982), 1001-1002.
[2] N. P. Cac, A. M. Fink and J. A. Gatica, Nonnegative solutions of quasilinear elliptic boundary value problems with nonnegative coefficients, J. Math. Anal. Appl. 206(1997), 1-9.
[3] Y. S. Choi and G. S. Ludford, An unexpected stablility result of near-extinction diffusion flame for non-unity Lewis numbers, . J. Mech. Appl. Math. 42, part 1(1989), 143-158.
[4] C. J. Chyan and J. Henderson, Positive solutions for singular higher order nonlinear equations, Diff. Eqs. Dyn. Sys. 2(1994), 153-160.
[5] D. S. Cohen, Multiple stable solutions of nonlinear boundary value problems arising in chemical reactor theory, SIAM J. Appl. Math. 20(1971), 1-13.
[6] E. N. Dancer, On the structure of solutions of an equation in catalysis theory when a parameter is large, J. Differential Equations 37(1980), 404-437.
[7] P. W. Eloe, Sign properties of Green's functions for two classes of boundary value problems, Canad. Math. Bull. 30(1987), 28-35.
[8] P. W. Eloe and J. Henderson, Positive solutions for higher order ordinary differential equations, Electronic J. Differential Equations 3(1995), 1-8.
[9] P. W. Eloe and J. Henderson, Positive solutions for (n-1, 1) boundary value problems, Nonlinear Analysis 28(1997), 1669-1680.
[10] P. W. Eloe, J. Henderson and P. J. Y. Wong, Positive solutions for two-point boundary value problems, In Dynamic Systems and Applications, Vol.2, (eds. G. S. Ladde and M. Sambandham), 135-144, Dynamic, Atlanta, GA, 1996.
[11] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120(1994), 743-748.
[12] A. M. Fink, J. A. Gatica and G. E. Hernandez, Eigenvalues of generalized Gel'fand models, Nonlinear Analysis 20(1993), 1453-1468.
[13] A. M. Fink and J. A. Gatica, Positive solutions of second order systems of boundary value problems, J. Math. Anal. Appl. 180(1993), 93-108.
[14] I. M. Gel'fand, Some problems in the theory of quasilinear equations, Uspehi Mat. Nauka 14(1959), 87-158.; English translation, Translations Amer. Math. Soc. 29(1963), 295-381.
[15] M. A. Krasnosel'skii, Positive Solutions of Operator Equations, Nordhoff, Groningen, 1964.
[16] S. Parter, Solutions of differential equations arising in chemical reactor processes, SIAM J. Appl. Math. 26(1974), 687-716.
[17] P. J. Y. Wong and R. P. Agarwal, On the existence of positive solutions of higher order difference equations, Topol. Methods Nonlinear Anal. 10(1997), 339-351.
[18] P. J. Y. Wong and R. P. Agarwal, On the eigenvalues of boundary value problems for higher order difference equations, Rocky Mountain J. Math. 28(1998), 767-791.
[19] P. J. Y. Wong and R. P. Agarwal, Eigenvalues of boundary value problems for higher order differential equations, Mathematical Problems in Engineering 2(1996), 401-434.
[20] P. J. Y. Wong and R. P. Agarwal, Extension of continuous and discrete inequalities due to Eloe and Henderson, Nonlinear Anal. 34(1998), 479-487.

