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1 Introduction

For a given family of convex lower-semicontinuous functions (f t)t∈[0,T ], defined on a sepa-
rable real Hilbert space X with range in R∪ {∞}, and a family of multivalued operators
(B(t, .))t∈[0,T ] on X, we shall prove an existence theorem for evolution equations of type:

u′(t) + ∂f t(u(t)) +B(t, u(t)) 3 0 , t ∈ [0, T ]. (1)

For each t, ∂f t denotes the ordinary subdifferential of convex analysis. The operator
B(t, .) : X →

→X is a multivalued perturbation of ∂f t, dependent on the time t.

When the perturbation B(t, .) is single valued and monotone, many existence, unique-
ness and regularity results have been established, see Brezis [3] (if f t is independent of
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t), Attouch-Damlamian [2] and Yamada [18]. The study of case B(t, .) nonmonotone and
upper-semicontinuous with convex closed values has been developed under some assump-
tions of compactness on dom f t = {x ∈ X | f t(x) < ∞} the effective domain of f t. For
example, Attouch-Damlamian [1] have studied the case f independent of time. Otani [15]
has extended this result with more general assumptions (the convex function f t depends
on time). He has also studied the case where −B(t, .) is the subdifferential of a lower
semicontinuous convex function, see [14].
In this article, the operator B(t, .) will be assumed upper-semicontinuous with compact
values which are not necessary convex, and it is not assumed be a contraction map. Never-
theless, −B(t, .) will be assumed cyclically monotone. Cellina and Staicu [7] have studied
this type of inclusion when f t and B(t, .) are not dependent on t.

This paper is organized as follows. In Section 2 we recall some definitions and results
on time-dependent subdifferential evolution inclusions and upper-semicontinuity of oper-
ators which will be used in the sequel. We also introduce the assumptions of our main
result. In Section 3 we obtain existence of approximate solutions for the problem (1)
and give properties of these solutions. In Section 4 we establish existence theorem for
the problem (1). We particularly study two cases where the family (f t)t satisfies more
restricted assumptions. Examples illustrate our results in Section 5.

2 Perturbed problem

Assume that X is a real separable Hilbert space. We denote by ‖.‖ the norm associated
with the inner product 〈., .〉 and the topological dual space is identified with the Hilbert
space. Let T > 0 and (f t)t∈[0,T ] be a family of convex lower-semicontinuous (lsc, in short)
proper functions on X. We will denote by ∂f t the ordinary subdifferential of convex
analysis.

Definition 2.1 A function u : [0, T ] → X is said strong solution of

u′ + ∂f t(u) +B(t, u) 3 0

if 1: (i) there exists β ∈ L2(0, T ;X) such that β(t) ∈ B(t, u(t)) for a.e. t ∈ [0, T ],

(ii) u is a solution of

{

u′(t) + ∂f t(u(t)) + β(t) 3 0 for a.e. t ∈ [0, T ]
u(t) ∈ dom f t for any t ∈ [0, T ].

The aim result of this article is, for each u0 ∈ dom f 0, the existence of a local strong
solution u of u′ + ∂f t(u) + B(t, u) 3 0 with u(0) = u0, when the values of the upper-
semicontinuous multiapplication B(t, .) are not convex.

We shall consider the following assumption on (f t)t∈[0,T ], see Kenmochi [10, 11]:

1As usual, Lr(0, T ;X) (T ∈]0,∞]) denotes the space of X-valued measurable functions on [0, T ) which
are rth power integrable (if r = ∞, then essentially bounded). For r = 2, L2(0, T ;X) is a Hilbert space,
in which ‖.‖L2(0,T ;X) and 〈., .〉L2(0,T ;X) are the norm and the scalar product.
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(H0): for each r > 0, there are absolutely continuous real-valued functions hr and kr on
[0, T ] such that:

(i) h′r ∈ L2(0, T ) and k′r ∈ L1(0, T ),
(ii) for each s, t ∈ [0, T ] with s 6 t and each xs ∈ dom f s with ‖xs‖ 6 r there
exists xt ∈ dom f t satisfying

{

‖xt − xs‖ 6 |hr(t) − hr(s)|(1 + |f s(xs)|1/2)
f t(xt) 6 f s(xs) + |kr(t) − kr(s)|(1 + |f s(xs)|).

or the slightly stronger assumption, see Yamada [18], denoted by (H), when (ii) holds for
any s, t in [0, T ].

The following existence theorem have been proved in [19]:

Theorem 2.1 Let T > 0 and β ∈ L2(0, T ;X). Let u0 ∈ dom f 0. If (H0) holds, then the
problem







u′(t) + ∂f t(u(t)) + β(t) 3 0 , a.e. t ∈ [0, T ]
u(t) ∈ dom f t , t ∈ [0, T ]
u(0) = u0

has a unique solution u : [0, T ] → X which is absolutely continuous.

Furthermore, we have the following type of energy inequality, see [11, Chapter 1]: if
‖u(t)‖ < r for t ∈ [0, T ], then

f t(u(t)) − f s(u(s)) +
1

2

∫ t

s

‖u′(τ)‖2 dτ 6
1

2

∫ t

s

‖β(τ)‖2 dτ +

∫ t

s

cr(τ) [ 1 + |f τ(u(τ))| ] dτ

(2)
for any s 6 t in [0, T ], where cr : τ 7→ 4|h′r(τ)|2 + |k′r(τ)| is an element of L1(0, T ).

Let us add a compactness assumption on each f t by using the following definition:

Definition 2.2 A function f : X → R ∪ {+∞} is said of compact type if the set {x ∈
X | |f(x)| + ‖x‖2 ≤ c} is compact at each level c.

Denote by L2
w(0, T ;X) the space L2(0, T ;X) endowed with the weak topology. Under this

compactness assumption on each f t, the map

p :

(

L2
w(0, T ;X) → C([0, T ];X)

β 7→ u

)

is continuous and maps bounded set into relatively compact sets following [9, proposition
3.3], β and u being defined in Theorem 2.1.

Recall the definition of upper-semicontinuity of operators.
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Definition 2.3 Let E1 and E2 be two Hausdorff topological sets. A multivalued operator
B : E1

→
→E2 is said upper-semicontinuous (usc in short) at x ∈ DomB if for all neigh-

borhood V2 of the subset Bx of E2, there exists a neighborhood V1 of x in E1 such that
B(V1) ⊂ V2.

Furthermore, if E1 and E2 are two Hausdorff topological spaces with E2 compact and
B : E1

→
→E2 is a multivalued map with Bx closed for any x ∈ E1, then B is usc if and

only if the graph of B is closed in E1 × E2. We introduce following conditions on the
multifunction B : [0, T ] ×X −→

−→X:

(Bo) : (i) Dom(∂f t) ⊂ DomB(t, .) for any t ∈ [0, T ],
(ii) there exist nonnegative constants ρ,M such that ‖x − u0‖ 6 ρ implies
B(t, x) ⊂MBX for any t ∈ [0, T ] and x ∈ Dom ∂f t.

(B) :
(i) Dom(∂f t) ⊂ DomB(t, .) and the set B(t, x) is compact for any t ∈ [0, T ] and

x ∈ Dom(∂f t),
(ii) there exist a nonnegative real ρ and a convex lsc function ϕ : X → R such that

‖x− u0‖ 6 ρ implies B(t, x) ⊂ −∂ϕ(x) for any t ∈ [0, T ] and x ∈ Dom(∂f t),
(iii) for a.e. t ∈ [0, T ], the restriction of B(t, .) to Dom(∂f t) is usc,
(iv) for each r > 0, there is a nonnegative real-valued function gr on [0, T ]2 such

that
(a) limt→s

−

gr(t, s) = 0,
(b) for each s, t ∈ [0, T ] with t 6 s and each xs ∈ Dom ∂f s and βs ∈ B(s, xs)

with ‖xs‖ ∨ ‖βs‖ 6 r there exists xt ∈ DomB(t, .) and βt ∈ B(t, xt) satisfying

‖xt − xs‖ ∨ ‖βt − βs‖ 6 gr(t, s).

By convexity, the function ϕ of (B)(ii) is M -Lipschitz continuous on some closed ball
u0 + ρBX and the inclusion ∂ϕ(x) ⊂MBX holds for any x ∈ u0 + ρBX . In fact, we could
take ϕ with extended real values and u0 in the interior of the effective domain of ϕ. Thus,
(B)(ii) implies (Bo)(ii).
The condition (B)(ii) means that −B(t, .) is cyclically monotone uniformly in t. An
example is the multiapplication B(t, .) : R

n →
→ R

n defined by

β = (β1, . . . , βn) ∈ B(t, x) ⇐⇒ β1 ∈







{1} if x1 < 0
{−1, 1} if x1 = 0
{−1} if x1 > 0

and β2 = · · · = βn = 0

for any x = (x1, . . . , xn) ∈ R
n. When B(t, .) = −∂ψt with ψt : X → R ∪ {+∞} a lsc

proper function, then ψt is convex if this operator is monotone and (B)(ii) is equivalent
to the existence of a real constant αt with ψt = ϕ + αt. In this case we deals with the
problem u′ + ∂f t(u) − ∂ϕ(u) 3 0, see Otani [14] when f t is not dependent on t. This
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condition (ii) could be extended to a function ϕt which depends on the time t, and also
with a nonconvex function: for example, a convex composite function, see [8].

The condition (B)(iii) is always satisfied if B(t, .) or −B(t, .) is a maximal monotone
operator of X, and more generally if they are φ-monotone of order 2.

The condition (B)(iv) is always satisfied if B(t, .) = B : X →
→X is not depending on the

time t. It can also be written for any t 6 s in [0, T ]:

lim
t→s

−

e(gphB(t, .) ∩ rBX2 , gphB(s, .)) = 0,

e standing for the excess between two sets. When B(t, .) or −B(t, .) is the subdiffferential
of a convex lsc function ψt which satisfies (H0), the condition (iv) is satisfied.

3 Existence of approximate solutions

For any real λ > 0 and t ∈ [0, T ], the function f t
λ shall denote the Moreau-Yosida proximal

function of index λ of f t, and we set

J t
λ = (I + λ∂f t)−1 , Df t

λ = λ−1(I − J t
λ).

We first prove the approximate result of existence :

Theorem 3.1 Let (f t)t∈[0,T ] be a family of proper convex lsc functions on X with each
f t of compact type. Assume that (H) and (Bo) are satisfied. For each u0 ∈ dom f 0, there
exists T0 ∈]0, T ] such that u′ + ∂f t(u) + B(t, u) 3 0 has at least an approximate solution
x : [0, T0] → X with x(0) = u0 in the following sense: there exist sequences (xn)n of
absolutely continuous functions from [0, T0] to X, (un)n and (βn)n of piecewise constant
functions from [0, T0] to X which satisfy:

1. for a.e. t ∈ [0, T0]

{

x′n(t) + ∂f t(xn(t)) + βn(t) 3 0
xn(0) = u0

and βn(t) ∈ B(θn(t), un(t))

where 0 6 t− θn(t) 6 2−nT ,

2. there exists N ∈ N such that for any n > N :

∀t ∈ [0, T ] ‖xn(t) − u0‖ 6 ρ and ‖βn(t)‖ 6 M,

3. (xn)n and (un)n converge uniformly to x on [0, T0], (βn)n converges weakly to β in
L2(0, T0;X), (x′n)n converges weakly to x′ in L2(0, T0;X) and x is the solution of
x′(t) + ∂f t(x(t)) + β(t) 3 0, x(0) = u0 on [0, T0].
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3.1 Proof of Theorem 3.1

Lemma 3.1 We can find a set {zt : t ∈ [0, T ]} and ρ0 > 0 such that zt ∈ ρ0B, f t(zt) ≤ ρ0

for every t ∈ [0, T ].

Proof. Let z0 ∈ dom f 0 and r > 0 such that r > ‖z0‖ ∨ |f 0(z0)|. For all t ∈ [0, T ], there
exists zt ∈ dom f t satisfying

{

‖zt − z0‖ 6 |hr(t) − hr(0)|(1 + |f 0(z0)|1/2)
f t(zt) 6 f 0(z0) + |kr(t) − kr(0)|(1 + |f 0(z0)|).

The lemma holds with ρ0 = ( r + ‖h′r‖L1(1 + r1/2) ) ∨ ( r + ‖k′r‖L1(1 + r) ). �

Lemma 3.2 [18, Proposition 3.1]. Let x ∈ X and λ > 0. The map t 7→ J t
λx is continuous

on [0, T ].

Proof. ¿From Kenmochi [11, Chapter 1, Section 1.5, Theorem 1.5.1], there is a nonneg-
ative constant α such that f t(x) > −α(‖x‖ + 1) for all x ∈ X and t ∈ [0, T ]. Thus,

f t
λ(x) −

1

2λ
‖x− J t

λx‖2 = f t(J t
λx) > −α(1 + ‖J t

λx‖),

which implies
‖x− J t

λx‖2 6 2λα(1 + ‖J t
λx− x‖ + ‖x‖) + 2λf t

λ(x). (3)

Since 2λf t
λ(x) 6 2λf t(zt)+‖zt−x‖2 6 2λρ0 +(ρ0 +‖x‖)2 by Lemma 3.1, we can conclude:

sup{‖J t
λx‖ | t ∈ [0, T ] , λ ∈]0, 1] , x ∈ rB} <∞
sup{|f t(J t

λx)| | t ∈ [0, T ] , x ∈ rB} <∞
for any r > 0.

Let t ∈ [0, T ] and r > ‖J t
λx‖. By assumption (H0), for each s ∈ [0, T ] with s > t there

exists xs ∈ dom f s satisfying
{

‖J t
λx− xs‖ 6 |hr(t) − hr(s)|(1 + |f t(J t

λx)|1/2)
f s(xs) 6 f t(J t

λx) + |kr(t) − kr(s)|(1 + |f t(J t
λx)|).

Since λ−1(x− Js
λx) ∈ ∂f s(Js

λx), we have

f s(Js
λx) +

1

λ
〈x− Js

λx, xs − Js
λx〉 6 f s(xs) 6 f t(J t

λx) + |kr(t) − kr(s)|(1 + |f t(J t
λx)|).

Hence, for any s > t, we have

1

λ
〈x− Js

λx, J
t
λx− Js

λx〉

6
1

λ
〈x− Js

λx, J
t
λx− xs〉 + f t(J t

λx) − f s(Js
λx) + |kr(t) − kr(s)|(1 + |f t(J t

λx)|)
6 ‖Df s

λ(x)‖|hr(t) − hr(s)|(1 + |f t(J t
λx)|1/2) + f t(J t

λx) − f s(Js
λx)

+|kr(t) − kr(s)|(1 + |f t(J t
λx)|).
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By symmetry it is true for any s ∈ [0, T ]. In the same way for t, s in [0, T ], we have

1

λ
〈x− J t

λx, J
s
λx− J t

λx〉 6 ‖Df t
λ(x)‖|hr(t) − hr(s)|(1 + |f s(Js

λx)|1/2) + f s(Js
λx) − f t(J t

λx)

+|kr(t) − kr(s)|(1 + |f s(Js
λx)|).

Adding these two inequalities we obtain

1

λ
‖Js

λx− J t
λx‖2 6 [ ‖Df t

λ(x)‖ ∨ ‖Df s
λ(x)‖ ] |hr(t) − hr(s)|(1 + |f s(Js

λx)|1/2 ∨ |f t(J t
λx)|1/2)

+|kr(t) − kr(s)|(1 + |f s(Js
λx)| ∨ |f t(J t

λx)|).

Since both ‖Df t
λ(x)‖ and |f t(J t

λx)| are bounded, t 7→ J t
λx is continuous on [0, T ]. �

By [11, Lemma 1.5.3], for r > ‖u0‖ + 1, M1 > |f 0(u0)| + αr + α + 1 and T1 ∈]0, T [
such that

[

1 +M1 exp

∫ T

0

|k′r|
]

∫ T1

0

|h′r| 6 1,

there exists an absolutely continuous function v on [0, T1] satisfying:

* v(0) = u0 and lim supt→0+
f t(v(t)) 6 f 0(u0)

* ‖v(t)‖ 6 r for any t ∈ [0, T1]

* for any t ∈ [0, T1], |f t(v(t))| 6 M1 +M1 exp
∫ T

0
|k′r|

∫ t

0
|h′r|

* for almost any t ∈ [0, T1], ‖v′(t)‖ 6

[

1 +M1 exp
∫ T

0
|k′r|

]

|h′r(t)|.

For r > ‖u0‖ + ρ, let us choose T2 > 0 such that

(

|f 0(u0)| +
M2

2
T2 +

∫ T2

0

cr(τ) dτ

) (

1 + T2 exp

∫ T2

0

cr(τ) dτ

)

6 |f 0(u0)| + ρ.

Let r > (‖u0‖ ∨ |f 0(u0)|) + ρ+ 1 be fixed. Let us choose T0 > 0 small enough in order to
have

(1 + r1/2)2T0

∫ T0

0

|h′r| 6
ρ2

32
, T0 6 T1 ∧ T2 and

MT

√

T0 + [M + α]T0 +

[

1 +M1 exp(

∫ T

0

|k′r|)
]

∫ T0

0

|h′r(s)| ds 6
ρ

4

where MT = 2
[

M1 +M1

(

exp
∫ T

0
|k′r|

)

∫ T

0
|h′r(s)| ds+ αr + α

]1/2

.

Lemma 3.3 Let β : [0, T ] → X be a measurable function with ‖β(t)‖ 6 M for a.e.
t ∈ [0, T ]. Then,

∀t ∈ [0, T0] ‖p(β)(t) − u0‖ 6
ρ

2
,

the map p being defined in Section 2.
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Proof. The curve u = p(β) exists on [0, T ] following Theorem 2.1. We have for a.e.
t ∈ [0, T0]:

d

dt

1

2
‖u(t) − v(t)‖2 6 f t(v(t)) − f t(u(t)) + [M + ‖v′(t)‖] ‖u(t) − v(t)‖

6
1

2
M2

T + [M + ‖v′(t)‖ + α] ‖u(t) − v(t)‖.

We thus obtain for any t ∈ [0, T0]

1

2
‖u(t) − v(t)‖2

6
1

2
M2

TT0 +

∫ t

0

[M + ‖v′(s)‖ + α] ‖u(s) − v(s)‖ ds.

Gronwall’s lemma yields for any t ∈ [0, T0]

‖u(t) − v(t)‖ 6 MT

√

T0 +

∫ t

0

[M + ‖v′(s)‖ + α] ds

6 MT

√

T0 + [M + α]T0 +

[

1 +M1 exp

∫ T

0

|k′r|
]

∫ T0

0

|h′r(s)| ds 6
ρ

4
.

Furthermore,

‖v(t) − u0‖ 6

∫ t

0

‖v′(s)‖ ds 6

[

1 +M1 exp

∫ T

0

|k′r|
]

∫ T0

0

|h′r(s)| ds 6
ρ

4
.

By choice of T0 > 0, we obtain ‖u(t) − u0‖ 6 ρ/2 for any t ∈ [0, T0]. �

For simplicity of notation, we now write T instead of T0. We also assume that f t(x) > 0
for any x ∈ X with ‖x− u0‖ 6 ρ, since we have f t(x) > −α(‖u0‖ + ρ+ 1).

Let n ∈ N
? such that :

α22−6n + 2−3n+1

[

r + (1 + r)(

∫ T

0

|k′r| + α)

]

6
ρ2

32
.

Let us set f t
n = f t

2−3n and J t
n = J t

2−3n . Let P be a partition of [0, T ]:

P = {0 = tn0 < tn1 < · · · < tn2n = T}

where tnk = k2−nT for k = 0, . . . , 2n.

Let us set un
0 = J

tn
0

n u0. By assumption (Bo)(i), B(tn0 , u
n
0) is non empty and contains

an element βn
0 . Let t ∈ [0, T ]. Under the assumption (H0), there exists un,t ∈ dom f t

satisfying
{

‖un,t − u0‖ 6 |hr(t) − hr(0)|(1 + r1/2)
f t(un,t) 6 r + |kr(t) − kr(0)|(1 + r).
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Using the definition of the Moreau-Yosida approximate, we obtain

23n

2
‖J t

nu0 − u0‖2 = f t
n(u0) − f t(J t

nu0)

6 f t(un,t) +
23n

2
‖un,t − u0‖2 + α‖J t

nu0 − u0‖ + α(1 + ‖u0‖)

6 r + (1 + r)

∫ t

0

|k′r| +
23n

2
(1 + r1/2)2t

∫ t

0

|h′r|2 + α‖J t
nu0 − u0‖ + α(1 + r).

Thus, by choice of r, T and n we obtain

‖J t
nu0 − u0‖

6 α2−3n +

√

α22−6n + 2r2−3n + 2(1 + r)2−3n(

∫ T

0

|k′r| + α) + (1 +
√
r)2T

∫ T

0

|h′r|2

6
ρ

2
.

In particular, ‖un
0−u0‖ 6 ρ/2. Under (Bo)(ii) it follows ‖βn

0 ‖ 6 M . Let us set xn
0 = p(βn

0 ).
By Lemma 3.3,

∀t ∈ [0, T ] ‖xn
0 (t) − u0‖ 6

ρ

2
.

Let us set un
1 = J

tn
1

n xn
0 (tn1 ) and take βn

1 ∈ B(tn1 , u
n
1). Since J

tn
1

n is 1-Lipschitz continuous,
we have

‖un
1 − u0‖ 6 ‖xn

0 (tn1 ) − u0‖ + ‖J tn1
n u0 − u0‖ 6 ρ.

Next, (Bo)(ii) implies ‖βn
1 ‖ 6 M . We then set

βn
1 (t) =

{

βn
0 if t ∈ [tn0 , t

n
1 [

βn
1 if t ∈ [tn1 , T ]

Let us set xn
1 = p(βn

1 ). By unicity and continuity of the curve it follows xn
1 (t) = xn

0 (t) if
t ∈ [tn0 , t

n
1 ]. Furthermore, ‖βn

1 (t)‖ 6 M for any t ∈ [0, T ]. By Lemma 3.3,

∀t ∈ [0, T ] ‖xn
1 (t) − u0‖ 6

ρ

2
.

Let k ∈ N
?. Assume that there exists a map βn

k−1 : [0, T ] → X which is constant on
each [tnk−1, t

n
k [ with ‖βn

k−1(t)‖ 6 M for any t ∈ [0, T ]. Set xn
k−1 = p(βn

k−1). Then,

∀t ∈ [0, T ] ‖xn
k−1(t) − u0‖ 6

ρ

2
.

Let us set un
k = J

tn
k

n xn
k−1(t

n
k) and take βn

k ∈ B(tnk , u
n
k). Since

‖un
k − u0‖ 6 ‖xn

k−1(t
n
k) − u0‖ + ‖J tn

k

n u0 − u0‖ 6 ρ
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we have ‖βn
k ‖ 6 M . We then set

βn
k (t) =

{

βn
k−1(t) if t ∈ [tn0 , t

n
k [

βn
k if t ∈ [tnk , T ]

Let us set xn
k = p(βn

k ). By unicity it follows xn
k(t) = xn

k−1(t) if t ∈ [0, tnk ]. Furthermore,
‖βn

k (t)‖ 6 M for any t ∈ [0, T ]. By Lemma 3.3,

∀t ∈ [0, T ] ‖xn
k(t) − u0‖ 6

ρ

2
.

We then set

xn := xn
2n−1 =

2n

∑

k=0

xn
k χ[tn

k
,tn

k+1
[ and βn := βn

2n−1 =

2n

∑

k=0

βn
k χ[tn

k
,tn

k+1
[,

where χ[tn
k
,tn

k+1
[(t) = 1 if t ∈ [tnk , t

n
k+1[ , and = 0 otherwise. For all t ∈ [0, T [, there exists

0 6 k 6 2n with t ∈ [tnk , t
n
k+1[ and we set

θn(t) = tnk and θn(T ) = T.

So, xn : [0, T ] → X is an absolutely continuous function and βn : [0, T ] → X is a
measurable map which satisfy for a.e. t ∈ [0, T ]

{

x′n(t) + ∂f t(xn(t)) + βn(t) 3 0
xn(0) = u0

and βn(t) ∈ B(θn(t), un(t))

where we set un(t) = J
θn(t)
n xn(θn(t)). By construct, there exists N ∈ N such that for any

n > N :
∀t ∈ [0, T ] ‖xn(t) − u0‖ 6 ρ and ‖βn(t)‖ 6 M.

A subsequence of (βn)n, again denoted by (βn)n, converges weakly to β in L2(0, T ;X). By
continuity of the map p, the sequence xn = p(βn) converges uniformly to a curve x = p(β)
on [0, T ] and a subsequence of (x′n)n converges weakly to x′ in L2(0, T ;X).
In other words, the curve x is the solution of x′(t) + ∂f t(x(t)) + β(t) 3 0, x(0) = u0 on
[0, T ].

Let n ∈ N
? and t ∈ [0, T ]. We have

‖un(t) − x(t)‖ 6 ‖xn(θn(t)) − x(θn(t))‖ + ‖x(θn(t)) − x(t)‖ + ‖Jθn(t)
n x(t) − x(t)‖. (4)

Under the assumption (H0), there exists un,t ∈ dom f θn(t) satisfying

{

‖un,t − x(t)‖ 6 |hr(θn(t)) − hr(t)|(1 + r1/2)
f θn(t)(un,t) 6 r + |kr(θn(t)) − kr(t)|(1 + r).
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Using the definition of the Moreau-Yosida approximate, we obtain

23n

2
‖Jθn(t)

n x(t) − x(t)‖2 = f θn(t)
n (x(t)) − f t(Jθn(t)

n x(t))

6 f θn(t)(un,t) +
23n

2
‖un,t − x(t)‖2 + α‖Jθn(t)

n x(t) − x(t)‖ + α(1 + r)

6 r + (1 + r)

∫ t

θn(t)

|k′r| +
23n

2
(1 + r1/2)2(t− θn(t))

∫ t

θn(t)

|h′r|2

+α‖Jθn(t)
n x(t) − x(t)‖ + α(1 + r).

Thus,

‖Jθn(t)
n x(t) − x(t)‖ 6

α2−3n +

√

α22−6n + 2r2−3n + 2(1 + r)2−3n(

∫ T

0

|k′r| + α) + (1 + r1/2)22−n

∫ T

0

|h′r|2

and (J
θn(.)
n x)n converges uniformly to x on [0, T ]. Since (xn)n converges uniformly to x

on [0, T ] and x is continuous on [0, T ], (4) assures the uniform convergence of (un)n to x
on [0, T ].
�

3.2 Properties of approximate solutions

Lemma 3.4 We have ‖x(t)‖ ∨ |f t(x(t))| 6 r for all t ∈ [0, T ]. Under the assumption
(B)(ii), the element β(t) belongs to −∂ϕ(x(t)) for a.e. t ∈ [0, T ].

Proof. By inequality (2), we have for any s 6 t in [0, T ]

f t(x(t)) − f s(x(s)) +
1

2

∫ t

s

‖x′(τ)‖2 dτ 6
1

2
M2T +

∫ t

s

cr(τ) [ 1 + |f τ (x(τ))| ] dτ.

Since ‖x(t)−u0‖ 6 ρ, we have assumed for simplicity that f t(x(t)) > 0 for any t ∈ [0, T ].
Gronwall’s lemma yields for any t ∈ [0, T ]

f t(x(t)) 6

(

f 0(u0) +
M2

2
T +

∫ T

0

cr(τ) dτ

) (

1 + T exp

∫ T

0

cr(τ) dτ

)

6 |f 0(u0)|+ρ. (5)

by assumption on T .

Next, βn(t) belongs to −∂ϕ(un(t)) with the uniform convergence of (un)n to x on
[0, T ].

Let us define ϕ̃ : L2(0, T ;X) → R ∪ {+∞} by ϕ̃(u) =
∫ T

0
ϕ(u(t)) dt. It is known that ϕ̃

is proper lsc convex and

α ∈ ∂ϕ̃(u) ⇐⇒ α(t) ∈ ∂ϕ(u(t)) for a.e. t ∈ [0, T ].

Thus, −βn ∈ ∂ϕ̃(un). Passing to the limit we obtain −β ∈ ∂ϕ̃(x). Hence, β(t) belongs to
−∂ϕ(x(t)) for a.e. t ∈ [0, T ]. �
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Lemma 3.5 For almost any t ∈ [0, T ] we have f t(x(t)) = lim inf
n→+∞

f t(xn(t)). Furthermore,

lim
n→+∞

∫ T

0

f t(xn(t)) dt =

∫ T

0

f t(x(t)) dt and lim
n→+∞

∫ T

0

(f t)?(yn(t)) dt =

∫ T

0

(f t)?(y(t)) dt,

where we set yn(t) = −x′n(t) − βn(t) and y(t) = −x′(t) − β(t) for a.e. t in [0, T ].

Proof. By lower semicontinuity of f t, the inequality

f t(x(t)) 6 lim inf
n→+∞

f t(xn(t))

holds for any t ∈ [0, T ]. The maps v 7→
∫ T

0
f t(v(t)) dt and w 7→

∫ T

0
(f t)?(w(t)) dt are

proper lsc convex on L2(0, T ;X). So,

lim inf
n→+∞

∫ T

0

f t(xn(t)) dt >

∫ T

0

f t(x(t)) dt and lim inf
n→+∞

∫ T

0

(f t)?(yn(t)) dt >

∫ T

0

(f t)?(y(t)) dt.

But, f t(xn(t)) + (f t)?(yn(t)) = 〈yn(t), xn(t)〉 for any t ∈ [0, T ], with

lim
n→+∞

∫ T

0

〈yn(t), xn(t)〉 dt =

∫ T

0

〈y(t), x(t)〉 dt.

�

Lemma 3.6 We have the inequality

∫ T

0

〈β(s), x′(s)〉 ds 6 lim inf
n→+∞

∫ T

0

〈βn(s), x′n(s)〉 ds. (6)

Proof. Let n ∈ N
?. The maps xn, βn and un are constant on [tnk , t

n
k+1[, k = 0, . . . , 2n − 1.

Hence,

∫ T

0

〈βn(s), x′n(s)〉 ds =
2n−1
∑

k=0

∫ tn
k+1

tn
k

〈βn
k , (x

n
k)′(s)〉 ds =

2n−1
∑

k=0

〈βn
k , x

n
k(tnk+1) − xn

k(tnk)〉.

Since βn
k ∈ −∂ϕ(un

k) for any k = 0, . . . , 2n − 1, we obtain:

∫ T

0

〈βn(s), x′n(s)〉 ds >

2n−1
∑

k=0

ϕ(un
k) − ϕ(xn

k(tnk+1)) −M‖un
k − xn

k(tnk)‖

= ϕ(un
0) − ϕ(xn

2n−1(t
n
2n)) +

2n−1
∑

k=1

ϕ(un
k) − ϕ(xn

k(tnk)) −M‖un
k − xn

k(tnk)‖

> ϕ(J0
nu0) − ϕ(xn(T )) − 2M

2n−1
∑

k=1

‖un
k − xn

k(tnk)‖.
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Since ‖un
k − u0‖ 6 ‖un(tnk) − xn(tnk)‖ + ρ/2 6 ρ for n large enough, we have f tn

k (un
k) > 0.

Furthermore, inequality (5) assures that f tn
k (xn

k(tnk)) 6 f 0(u0)+ρ 6 r. Using the definition
of the Moreau-Yosida approximate, we obtain

23n

2
‖un

k − xn
k(tnk)‖2 = f

tn
k

n (xn
k(tnk)) − f tn

k (un
k) 6 r.

Thus, ‖un
k − xn

k(tnk)‖ 6
√
r2−3n+1 and

2n−1
∑

k=1

‖un
k − xn

k(tnk)‖ 6
√
r2−n+1.

Consequently,

lim
n→+∞

2n−1
∑

k=1

‖un
k − xn

k(tnk)‖ = 0.

By continuity of ϕ and convergence of (xn)n to x, we obtain

lim inf
n→+∞

∫ T

0

〈βn(s), x′n(s)〉 ds > ϕ(u0) − ϕ(x(T )).

Since β(s) ∈ −∂ϕ(x(s)) almost everywhere, 〈β(s), x′(s)〉 = −(ϕ ◦ x)′(s) holds for a.e. s
and we obtain the inequality (6) . �

4 Existence of strong solutions

We now prove the existence of strong solutions.

4.1 General case

Let us set

Φ(x, y) =

∫ T

0

〈y(t), x′(t)〉 dt− fT (x(T )) + f 0(u0)

for any absolutely continuous function x : [0, T ] → X with x′ ∈ L2(0, T ;X) and any
fonction y ∈ L2(0, T ;X).

Theorem 4.1 Let (f t)t∈[0,T ] be a family of proper convex lsc functions on X with each f t

of compact type which satifies the assumption (H). Assume that for any sequence (xn)n in
H1(0, T ;X) which converges uniformly to the absolutely continuous function x with the
weak convergence of (x′n)n to x′ in L2, and for any (yn)n which converges weakly to y in
L2 with yn(t) ∈ ∂f t(xn(t)) for almost all t, there exists nk → +∞ such that

lim inf
k→+∞

Φ(xnk
, ynk

) > Φ(x, y).

Then, for each u0 ∈ dom f 0, there exists T0 ∈]0, T ] such that u′ +∂f t(u)+B(t, u) 3 0 has
at least a strong solution u : [0, T0] → X with u(0) = u0.
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Proof. Consider x an approximate solution. We prove x′(t) + ∂f t(x(t)) +B(t, x(t)) 3 0
for a.e. t in [0, T ]. So, we begin by prove that (x′n)n converges strongly to x′ in L2(0, T ;X).
Step 1. - Let us set yn(t) = −x′n(t)− βn(t) and y(t) = −x′(t)− β(t) for a.e. t in [0, T ]. It
is easy to see that for any n ∈ N and almost any t ∈ [0, T ]:

‖x′n(t)‖2+〈yn(t), x
′
n(t)〉+〈βn(t), x′n(t)〉 = 0 and ‖x′(t)‖2+〈y(t), x′(t)〉+〈β(t), x′(t)〉 = 0.

The sequence (x′n)n converges weakly to x′ in L2(0, T ;X). The strong convergence of
(x′n)n to x′ in L2(0, T ;X) is equivalent to

lim sup
n→+∞

∫ T

0

‖x′n(t)‖2 dt 6

∫ T

0

‖x′(t)‖2 dt.

¿From Lemma 3.6 it follows:

lim sup
n→+∞

∫ T

0

‖x′n(t)‖2 dt 6 − lim inf
n→+∞

∫ T

0

〈yn(t), x
′
n(t)〉 dt− lim inf

n→+∞

∫ T

0

〈βn(t), x′n(t)〉 dt

6 − lim inf
n→+∞

∫ T

0

〈yn(t), x
′
n(t)〉 dt−

∫ T

0

〈β(t), x′(t)〉 dt.

Since
∫ T

0
〈β(t), x′(t)〉 dt = −

∫ T

0
‖x′(t)‖2 dt+

∫ T

0
〈y(t), x′(t)〉 dt, it suffices to show that

∫ T

0

〈y(t), x′(t)〉 dt 6 lim inf
n→+∞

∫ T

0

〈yn(t), x′n(t)〉 dt. (7)

Step 2. - Under the assumption on Φ, it follows by lower semicontinuity of f T :

lim inf
k→+∞

∫ T

0

〈ynk
(t), x′nk

(t)〉 dt > fT (x(T ))−f 0(u0)+lim inf
k→+∞

Φ(xnk
, ynk

) >

∫ T

0

〈y(t), x′(t)〉 dt.

Step 3. - Let N be the negligeable subset of [0, T ] such that, for any t ∈ [0, T ]\N , we
have x′n(t) + ∂f t(xn(t)) + βn(t) 3 0, βn(t) ∈ B(θn(t), un(t)) and (x′n(t))n converges to
x′(t). Since each f t are of compact type, the sets X(t) := cl{xn(t) | n ∈ N

?} and
U(t) := cl{un(t) | n ∈ N

?} are compact in Dom(∂f t). Let r > M ∨ (ρ + ‖u0‖). Under
the assumption (B)(iv), for each n > N and t ∈ [0, T ] with t 6= θn(t), there exists
zt

n ∈ DomB(t, .) and αt
n ∈ B(t, zt

n) satisfying

‖zt
n − un(t)‖ ∨ ‖αt

n − βn(t)‖ 6 gr(θn(t), t).

When t = θn(t), we simply take zt
n = un(t) and αt

n = βn(t). Then, (zt
n)n converges to x(t)

and Z(t) := cl{zt
n | n ∈ N

?} is compact in Dom(∂f t).

The restriction of B(t, .) to Dom(∂f t) being usc, the set {B(t, z)|z ∈ Z(t)} is compact
in X. Hence, Γ(t) := cl{αt

n | n ∈ N
?}, and thus cl{βn(t) | n ∈ N

?}, are compact. So,
Y (t) := cl{yn(t) | n ∈ N

?} is compact in X.
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Let us set F t(x) = ∂f t(x) ∩ Y (t) and Gt(x) = B(t, x) ∩ Γ(t) for any x ∈ Dom(∂f t)
and t ∈ [0, T ]. The multimaps F t and Gt are upper semicontinuous on Dom(∂f t) with
compact values in X. Let us denote by e the excess between two sets. We have:

d(−x′n(t), F t(x(t)) +Gt(x(t))) 6 d(yn(t), F
t(x(t))) + d(βn(t), G

t(x(t)))

6 e(F t(xn(t)), F t(x(t))) + ‖βn(t) − αt
n‖ + d(αt

n, G
t(x(t)))

6 e(F t(xn(t)), F t(x(t))) + gr(θn(t), t) + e(Gt(zt
n), Gt(x(t))).

The upper-semicontinuity of F t and Gt assures that

lim
n→+∞

d(−x′n(t), F t(x(t)) +Gt(x(t))) = 0.

Since (x′n)n converges to x′ a.e. on [0, T ], the equality d(−x′(t), F t(x(t)) +Gt(x(t))) = 0
holds for a.e. t ∈ [0, T ] and we obtain by closedness of F t(x(t)) +Gt(x(t)):

−x′(t) ∈ F t(x(t)) +Gt(x(t)) for a.e. t ∈ [0, T ].

Consequently, x is a local solution to x′ + ∂f t(x) +B(t, x) 3 0 with x(0) = u0. �

4.2 Two particular cases

We consider two particular cases for which we can apply Theorem 4.1. These cases
contains those of f t not depending on t.
First,

Corollary 4.1 Let (f t)t∈[0,T ] be a family of proper convex lsc functions on X with each
f t of compact type. Let u0 ∈ dom f 0. Assume that f t = g ◦F t where g is a proper convex
lsc function on a Hilbert space Y and (F t)t∈[0,T ] is a family of differentiable maps from X
to Y such that (DF t)t is equilipschitz continuous on a neighborhood of u0 and such that:

1. for each r > 0, there is absolutely continuous real-valued function br on [0, T ] such
that:

(a) b′r ∈ L2(0, T ),

(b) for each s, t ∈ [0, T ], sup‖x‖
�

r ‖F t(x) − F s(x)‖ 6 |br(t) − br(s)|,

2. the qualification condition R+[dom g − F 0(u0)] −DF 0(u0)X = Y holds,

3. for each r > 0, there exists a negligible subset N of [0, T ] such that the mapping
t 7→ F t(x) admits a derivative ∆t(x) on [0, T ]\N for any x ∈ rBX and ∆t is
continuous on rBX for any t ∈ [0, T ]\N ,

4. the mapping (t, x) 7→ DF t(x) is bounded on [0, T ] × rBX for each r > 0 and it is
continuous at t for each x.
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Assume that (H) and (B) are satisfied. Then, there exists T0 ∈]0, T ] such that u′+∂f t(u)+
B(t, u) 3 0 has at least a strong solution u : [0, T0] → X with u(0) = u0.

Remark under assumption 1., the mapping t 7→ F t(x) is absolutely continuous and ad-
mits a derivative at a.e. t ∈ [0, T ] for each x. With the uniformly inequality 1.(b), we
can hope that the almost derivability of t 7→ F t(x) at t is uniform in x ∈ rBX thanks
to the regularity of F t at x. Illustrate the importance of differentiability of F t by the
following example : F (t, x) = h(t − x) where X = Y = R and the real function h is
convex, Lipschitz continuous and non differentiable on [0, T ].

Proof of Corollary 4.1. Consider x : [0, T ] → X an approximate solution. Let us set
yn(t) = −x′n(t) − βn(t) and y(t) = −x′(t) − β(t) for a.e. t in [0, T ], zn(t) = F t(xn(t)) and
z(t) = F t(x(t)) for a.e. t ∈ [0, T ]. Then, zn and z are absolutely continuous on [0, T ],
thus are derivable at a.e. t ∈ [0, T ] and

z′n(t) = ∆t(xn(t)) +DF t(xn(t))x′n(t) , z′(t) = ∆t(x(t)) +DF t(x(t))x′(t).

Under the qualification condition, we have for any x ∈ X

∂f t(x) = DF t(x)?∂g(F t(x)).

Let us write yn(t) = DF t(xn(t))?wn(t) and y(t) = DF t(x(t))?w(t) where wn(t) ∈ ∂g(zn(t))
and w(t) ∈ ∂g(z(t)) for almost all t ∈ [0, T ]. Hence, g ◦ zn and g ◦ z are absolutely
continuous with 〈wn(t), z

′
n(t)〉 = (g ◦ zn)′(t) for almost all t ∈ [0, T ]. So,

〈yn(t), x
′
n(t)〉 =

d

dt
(f t ◦ xn)(t) − 〈wn(t),∆

t(xn(t)).

and Φ(xn, yn) = −
∫ T

0
〈wn(t),∆

t(xn(t))〉 dt.
Let r > ‖xn(t)‖ ∨ ‖x(t)‖ for any n ∈ N and t ∈ [0, T ]. By continuity of ∆t on rBX ,
(∆t(xn(t)))n converges to ∆t(x(t)) for a.e t ∈ [0, T ]. Next, for a.e. t and any x ∈ rBX ,
we have ‖∆t(x)‖ 6 |b′r(t)|. By Lebesgue’s theorem ∆.(xn(.)) converges to ∆.x(.)) in
L2(0, T, Y ). Since a subsequence of (wn)n converges weakly to w, we can apply Theo-
rem 4.1. �

For example, if F t is the affine mapping x 7→ A(t)x + b(t) where A(t) : X → Y is linear
continuous and b(t) ∈ Y , the assumption of Corollary 4.1 becomes :

1. b is absolutely continuous on [0, T ] and there is absolutely continuous real-valued
function a on [0, T ] such that:

(a) a′ ∈ L2(0, T ),

(b) for each s, t ∈ [0, T ], ‖A(t) − A(s)‖ 6 |a(t) − a(s)|.

2. the qualification condition R+ dom g − A(0)X = Y holds.
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3. for each r > 0, there exists a negligible subset N of [0, T ] such that A′(t) is contin-
uous on rBX for any t ∈ [0, T ]\N .

Second, we use the conjugate of f t.

Lemma 4.1 Let (f t)t∈[0,T ] be a family of proper convex lsc functions on X satisfying (H).
Assume that :

for each r > 0, there exists a negligible subset N of [0, T ] such that for any
t ∈ [0, T ]\N , the mapping s 7→ (f s)?(y) admits a derivative γ̇(t, y) at t for any
y ∈ Dom ∂(f t)?.

Let x : [0, T ] → X be an absolutely continuous function and y : [0, T ] → Y be such that
y(t) ∈ ∂f t(x(t)) for a.e. t ∈ [0, T ]. For almost all t ∈ [0, T ], we have

γ̇(t, y(t)) +
d

dt
f t(x(t)) = 〈y(t), x′(t)〉. (8)

Proof. Let s and t be in [0, T ]\N where N is a suitable negligible subset of [0, T ]. We
have :

(f s)?(y(s)) − (f t)?(y(s)) 6 (f s)?(y(s)) − (f t)?(y(t)) − 〈y(s) − y(t), x(t)〉

since x(t) ∈ ∂(f t)?(y(t)). From f t(x(t)) + (f t)?(y(t)) = 〈y(t), x(t)〉, we deduce

(f s)?(y(s)) − (f t)?(y(s)) 6 f t(x(t)) − f s(x(s)) + 〈y(s), x(s) − x(t)〉.

In the same way, for almost every t, s in [0, T ] we have

(f s)?(y(s)) − (f t)?(y(s)) 6 f t(x(t)) − f s(x(s)) + 〈y(s), x(s) − x(t)〉.

Changing the role of s and t, we also have:

(f t)?(y(t)) − (f s)?(y(t)) 6 f s(x(s)) − f t(x(t)) + 〈y(t), x(t) − x(s)〉
6 (f t)?(y(s)) − (f s)?(y(s)) + 〈y(t) − y(s), x(t) − x(s)〉.

The function t 7→ f t(x(t)) being absolutely continuous on [0, T ], see [11, Chapter 1], we
obtain (8). �

The existence of γ̇ implies some regularity on the domain of (f t)?. For example, consider
(f t)?(y) = h(t − y) where X = Y = R and the real function h is convex, Lipschitz
continuous and non differentiable on [0, T ]. Then, we can not apply above lemma. The
domain of (f t)? changes with t. But, we can apply Corollary 4.1 since f t(x) = tx+h?(−x).
However, we have the absolutely continuity of s 7→ (f s)?(y) in the following sense :

Proposition 4.1 Let t ∈ [0, T ], y ∈ Y , η > 0 and r > 0 such that if |t− s| 6 η, the set
∂(f s)?(y)∩rBX is nonempty. Then, s 7→ (f s)?(y) is absolutely continuous on ]t−η, t+η[.
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Proof. 1) Lemma 3.1 with β = ρo assures that (f t)?(y) > 〈y, zt〉 − f t(zt) > −‖y‖β − β
for any t ∈ [0, T ] and y ∈ X. For y ∈ ∂f t(x), it follows

−α(‖x‖ + 1) 6 f t(x) = 〈y, x〉 − (f t)?(y) 6 ‖y‖[ ‖x‖ + β ] + β.

So, there is a nonnegative constant β such that (f t)?(y) > −β(‖y‖+ 1) for all y ∈ X and
t ∈ [0, T ].
Furthermore, for each r > 0, there is a nonnegative constant c such that |f t(x)| 6

c(‖y‖ + 1) for all x ∈ rBX , t ∈ [0, T ] and y ∈ ∂f t(x).

2) Let t be fixed in [0, T ] and y ∈ ∂f t(x). Let r > ‖x‖ and s ∈ [t, T ]. Under the
assumption (H0), there exists xs ∈ dom f s satisfying

{

‖x− xs‖ 6 |hr(t) − hr(s)|(1 + |f t(x)|1/2)
f s(xs) 6 f t(x) + |kr(t) − kr(s)|(1 + |f t(x)|).

By definition of conjugate of a convex function, it follows

(f t)?(y) − (f s)?(y) 6 〈y, x− xs〉 + f s(xs) − f t(x)

6 ‖y‖|hr(t) − hr(s)|(1 + |f t(x)|1/2) + |kr(t) − kr(s)|(1 + |f t(x)|).

We conclude thanks to 1):

(f t)?(y) − (f s)?(y) 6 ‖y‖|hr(t) − hr(s)|(1 + |f t(x)|1/2) + |kr(t) − kr(s)|(1 + |f t(x)|)
6 ‖y‖|hr(t) − hr(s)|(1 +

√
c+

√

c‖y‖) + |kr(t) − kr(s)|(1 + c+ c‖y‖)

3) Let y ∈ Y , r > 0 and s, t ∈ [0, T ]. If the intersections of ∂(f t)?(y) and ∂(f s)?(y)
with rBX are non empty, let xs ∈ ∂(f s)?(y) and xt ∈ ∂(f t)?(y) with r > ‖xs‖ ∨ ‖xt‖.
Step 2) implies

|(f s)?(y) − (f t)?(y)| 6

‖y‖|hr(t) − hr(s)|(1 + |f s(xs)|1/2 ∨ |f t(xt)|1/2) + |kr(t) − kr(s)|(1 + |f s(xs)| ∨ |f t(xt)|).

By 1) we conlude:

|(f s)?(y)−(f t)?(y)| 6 ‖y‖|hr(t)−hr(s)|(1+c1/2 +(c‖y‖)1/2)+ |kr(t)−kr(s)|(1+c+c‖y‖).

�

Corollary 4.2 Let (f t)t∈[0,T ] be a family of proper convex lsc functions on X with each
f t of compact type. Assume that (H) and (B) are satisfied and that:

1. for each r > 0, there exists a negligible subset N of [0, T ] such that for any t
in [0, T ]\N , the mapping s 7→ (f s)?(y) admits a derivative γ̇(t, y) at t for any
y ∈ Dom ∂(f t)?.
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2. for any (yn)n which converges weakly to y in L2(0, T ;X) with yn(t) ∈ ∂f t(xn(t))
where (xn)n converges uniformly, there exists nk → +∞ such that

lim inf
k→+∞

∫ T

0

γ̇(t, ynk
(t)) dt >

∫ T

0

γ̇(t, y(t)) dt.

Then, for each u0 ∈ dom f 0, there exists T0 ∈]0, T ] such that u′ +∂f t(u)+B(t, u) 3 0 has
at least a strong solution u : [0, T0] → X with u(0) = u0.

The assumption 2. is true when γ̇(t, .) is lsc and convex on Dom ∂(f t)?.

Proof. Lemma 4.1 implies Φ(x, y) =

∫ T

0

γ̇(t, y(t)) dt. By assumption 2., we can apply

Theorem 4.1. �

5 Examples of families (f t)t

5.1 Rafle

See Castaing, Valadier and Moreau [4, 17, 13]. Let (C(t))t∈[0,T ] a family of nonempty closed
convex subsets of X whose intersection with bounded closed sets is compact. Consider the
indicator function f t = δC(t) of C(t). Assume that for each r > 0, there is an absolutely
continuous real-valued function ar on [0, T ] such that:

(i) a′r ∈ L2(0, T );
(ii) for each s, t in [0, T ], we have e(C(s) ∩ rBX , C(t)) 6 |ar(s) − ar(t)|.

Under the assumption (B), we can apply Theorem 4.1: Assume that for any sequence
(xn)n in H1(0, T ;X) which converges uniformly to the absolutely continuous function x
with the weak convergence of (x′n)n to x′ in L2, and for any (yn)n which converges weakly
to y in L2 with yn(t) ∈ NC(t)(xn(t)) for almost all t, there exists nk → +∞ such that

lim inf
k→+∞

∫ T

0

〈x′nk
(t), ynk

(t)〉 dt >

∫ T

0

〈x′(t), y(t)〉 dt.

Then, for each u0 ∈ C(0), there exists T0 ∈]0, T ] such that u′ +NC(t)(u) +B(t, u) 3 0 has
at least a strong solution u : [0, T0] → X with u(0) = u0.

Corollary 4.1 becomes:

Corollary 5.1 Let u0 ∈ C(0) and (F t)t∈[0,T ] be a family of differentiable maps from X to
an other Hilbert space Y such that (DF t)t is equilipschitz continuous on a neighborhood
of u0. Assume that C(t) = (F t)−1(C), C being a nonempty closed convex set. Under the
assumptions (B) and:

1. for each r > 0, there is absolutely continuous real-valued function br on [0, T ] such
that:
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(a) b′r ∈ L2(0, T ),

(b) for each s, t ∈ [0, T ], sup‖x‖
�

r ‖F t(x) − F s(x)‖ 6 |br(t) − br(s)|,

2. the qualification condition R+[C − F 0(u0)] −DF 0(u0)X = Y holds,

3. for each r > 0, there exists a negligible subset N of [0, T ] such that the mapping
t 7→ F t(x) admits a derivative ∆t(x) on [0, T ]\N for any x ∈ rBX and ∆t is
continuous on rBX for any t ∈ [0, T ]\N ,

4. the mapping (t, x) 7→ DF t(x) is bounded on [0, T ] × rBX for each r > 0 and it is
continuous at t for each x,

there exists T0 ∈]0, T ] such that u′ +NC(t)(u) + B(t, u) 3 0 has at least a strong solution
u : [0, T0] → X with u(0) = u0.

On the other hand, (f t)? is the support function of C(t), denoted by σC(t). Moreau have
proved in [13] that when C is absolutely continuous, the map t 7→ σC(t)(y) is absolutely
continuous on [0, T ] for any y ∈ D, where D is the domain of σC(t) which is not dependent
of t. Corollary 4.2 becomes:

Corollary 5.2 Assume that (B) is satisfied and that:

1. for each r > 0, there exists a negligible subset N of [0, T ] such that for any t
in [0, T ]\N , the mapping s 7→ σC(s)(y) admits a derivative γ̇(t, y) at t for any
y ∈ Dom ∂σC(t).

2. for any (yn)n which converges weakly to y in L2(0, T ;X) with yn(t) ∈ NC(t)(xn(t))
where (xn)n converges uniformly, there exists nk → +∞ such that

lim inf
k→+∞

∫ T

0

γ̇(t, ynk
(t)) dt >

∫ T

0

γ̇(t, y(t)) dt.

Then, for each u0 ∈ dom f 0, there exists T0 ∈]0, T ] such that u′ +NC(t)(u) + B(t, u) 3 0
has at least a strong solution u : [0, T0] → X with u(0) = u0.

By example, consider the affine map F t(x) = a(t)x + b(t) where a(t) ∈ R
?
+ is derivable

nonincreasing at t ∈ [0, T ] and b(t) ∈ Y is absolutely continuous at t ∈ [0, T ]. We can
apply both corollary 4.1 and 4.2 since

γ̇(t, y) =
−1

a(t)2
[a(t)〈y, b′(t)〉 + a′(t)(σC(y) − 〈y, b(t)〉)]

for a.e. t ∈ [0, T ] and any y ∈ Y . So, γ̇(t, .) is convex l.s.c. on X and

lim
n→+∞

∫ T

0

γ̇(t, yn(t)) dt =

∫ T

0

γ̇(t, y(t)) dt.
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5.2 Viscosity

Let f : X → R ∪ {+∞} be a convex lsc proper function of compact type. Consider

f t(x) = f(x)+
ε(t)

2
‖x‖2 where ε is an absolutely continuous real-valued function on [0, T ]

with nonnegative values and ε′ ∈ L1(0, T ).
We can write f t = g ◦ F t with g(x, r) = f(x) + r for any (x, r) ∈ X × R and F t(x) =

(x, ε(t)
2
‖x‖2) for any x ∈ X. By absolutely continuity of ε, ∆t exists and is continuous on

X for a.e. t ∈ [0, T ] and

∆t(x) = (0,
ε′(t)

2
‖x‖2).

Furthermore,
DF t(x)y = (y, ε(t)〈x, y〉)

and DF t satifies assumption 5. We can apply Corollary 4.1.

On the other hand, (f t)? = (f ?)ε(t) is a C1-function on X and, for any y ∈ X, the map
t 7→ (f t)?(y) is absolutely continuous on [0, T ] with for a.e. t ∈ [0, T ]

γ̇(t, y) = −ε
′(t)

2
‖D(f t)?(y)‖2.

By definition of yn, xn(t) = D(f t)?(yn(t)) holds for a.e. t ∈ [0, T ] and any n ∈ N, hence

γ̇(t, yn(t)) = −ε
′(t)

2
‖xn(t)‖2.

In the same way,

γ̇(t, y(t)) = −ε
′(t)

2
‖x(t)‖2.

By uniform convergence of (xn)n to x on [0, T ] it follows

lim
n→+∞

∫ T

0

γ̇(t, yn(t)) dt =

∫ T

0

γ̇(t, y(t)) dt.

We can apply Corollary 4.2.
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1971, exposé no 15.
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