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1 Introduction

For a given family of convex lower-semicontinuous functions (f*)cjo,7], defined on a sepa-
rable real Hilbert space X with range in R U {oc}, and a family of multivalued operators
(B(t,.))tepo,r) on X, we shall prove an existence theorem for evolution equations of type:

u'(t) + Of (u(t)) + B(t,u(t)) 20, t€[0,T). (1)

For each t, 0f' denotes the ordinary subdifferential of convex analysis. The operator
B(t,.) : X Z X is a multivalued perturbation of df*, dependent on the time ¢.

When the perturbation B(t, .) is single valued and monotone, many existence, unique-
ness and regularity results have been established, see Brezis [3] (if f* is independent of
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t), Attouch-Damlamian [2] and Yamada [18]. The study of case B(t,.) nonmonotone and
upper-semicontinuous with convex closed values has been developed under some assump-
tions of compactness on dom f! = {z € X | f!(x) < oo} the effective domain of f*. For
example, Attouch-Damlamian [1] have studied the case f independent of time. Otani [15]
has extended this result with more general assumptions (the convex function f* depends
on time). He has also studied the case where —B(t,.) is the subdifferential of a lower
semicontinuous convex function, see [14].

In this article, the operator B(t,.) will be assumed upper-semicontinuous with compact
values which are not necessary convex, and it is not assumed be a contraction map. Never-
theless, —B(t,.) will be assumed cyclically monotone. Cellina and Staicu [7] have studied
this type of inclusion when f* and B(,.) are not dependent on t.

This paper is organized as follows. In Section 2 we recall some definitions and results
on time-dependent subdifferential evolution inclusions and upper-semicontinuity of oper-
ators which will be used in the sequel. We also introduce the assumptions of our main
result. In Section 3 we obtain existence of approximate solutions for the problem (1)
and give properties of these solutions. In Section 4 we establish existence theorem for
the problem (1). We particularly study two cases where the family (f*), satisfies more
restricted assumptions. Examples illustrate our results in Section 5.

2 Perturbed problem

Assume that X is a real separable Hilbert space. We denote by ||.|| the norm associated
with the inner product (.,.) and the topological dual space is identified with the Hilbert
space. Let T' > 0 and (f*):ep,r) be a family of convex lower-semicontinuous (Isc, in short)
proper functions on X. We will denote by 0f! the ordinary subdifferential of convex
analysis.

Definition 2.1 A function u : [0,T] — X is said strong solution of
u' + 0ft(u) + B(t,u) 30

if L (i) there emists 3 € L*(0,T; X) such that 3(t) € B(t,u(t)) for a.e. t € [0,T],
u'(t) +0f (u(t) + B(t) >0  forae te]|0,T)]

(ii) w is a solution of { u(t) € dom f* for any t € [0, T).

The aim result of this article is, for each uy € dom f°, the existence of a local strong
solution u of w + 9f*(u) + B(t,u) 2 0 with u(0) = wug, when the values of the upper-

semicontinuous multiapplication B(t,.) are not convex.

We shall consider the following assumption on (f*);cj0,r], see Kenmochi [10, 11}:

LAs usual, L"™(0,T; X) (T €]0, 00]) denotes the space of X-valued measurable functions on [0, T") which
are " power integrable (if 7 = oo, then essentially bounded). For r = 2, L?(0,T; X) is a Hilbert space,
in which ||.|[z2¢0,7;x) and (.,.) 20,7, x) are the norm and the scalar product.
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(Ho): for each r > 0, there are absolutely continuous real-valued functions h, and k, on
[0, T] such that:

(i) h. € L*(0,T) and k. € L'(0,T),
(i) for each s,t € [0,T] with s <t and each x4 € dom f* with |z,|| < r there
erists vy € dom f! satisfying

{ [z = sl < [he(t) = he(s)|(1 + [f°
(1

( I
ft(xt) < fs(xs) + | r(t kr( )|

(x
+ [ ()])-

or the slightly stronger assumption, see Yamada [18], denoted by (H), when (ii) holds for
any s,t in [0, 7.

The following existence theorem have been proved in [19]:

Theorem 2.1 Let T >0 and 3 € L?(0,T; X). Let uyp € dom f°. If (Hy) holds, then the
problem

W' (t) 4+ Of (u(t ))+ﬂ(t) 50, ae te|0,T]

u(t) € dom f*, t €[0,T]
u(0) = g
[

has a unique solution u : [0, T] — X which is absolutely continuous.

Furthermore, we have the following type of energy inequality, see [11, Chapter 1]: if
|lu(t)|| < r for t € [0,T], then

Fu®) - )+ 5 [ Pdr< g [ 18P+ [ a@ 11 wm)) d

s @
for any s <t in [0, 7], where ¢, : 7 +— 4|h.(7)|* + |k.(7)] is an element of L'(0,T).

Let us add a compactness assumption on each f! by using the following definition:

Definition 2.2 A function f : X — R U {+o00} is said of compact type if the set {x €
X | 1f(@)| + ||lz||* < ¢} is compact at each level c.

Denote by L2 (0,T; X) the space L?(0, T; X) endowed with the weak topology. Under this
compactness assumption on each f*, the map

. < Li(O,ﬁT;X) - C([(),Z];X) )

is continuous and maps bounded set into relatively compact sets following [9, proposition
3.3], 8 and u being defined in Theorem 2.1.

Recall the definition of upper-semicontinuity of operators.
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Definition 2.3 Let E; and Ey be two Hausdorff topological sets. A multivalued operator
B : E1 = By is said upper-semicontinuous (usc in short) at x € Dom B if for all neigh-
borhood Vs of the subset Bx of Es, there exists a neighborhood Vi of x in E; such that
B(Vy) C V.

Furthermore, if F; and FE, are two Hausdorff topological spaces with F, compact and
B : E; 2 E5 is a multivalued map with Bx closed for any x € Ey, then B is usc if and
only if the graph of B is closed in £} x E;. We introduce following conditions on the
multifunction B : [0,7] x X = X:

(B,) : (i) Dom(df*) € Dom B(t,.) for anyt € [0,T],
(ii) there exist nonnegative constants p, M such that ||x — uo|| < p implies
B(t,x) C MBx for any t € [0,T] and x € Dom Of".

(i) Dom(df*) C Dom B(t,.) and the set B(t,z) is compact for any t € [0,T] and
x € Dom(9f"),
(ii) there exist a nonnegative real p and a convex lsc function ¢ : X — R such that
|z — wo|| < p implies B(t,z) C —0¢(z) for any t € [0,T] and x € Dom(9f"),

(i) for a.e. t € [0,T], the restriction of B(t,.) to Dom(df") is usc,
(iv) for each v > 0, there is a nonnegative real-valued function g, on [0,T]?* such
that

(a) limy_s_ g.(t,s) =0,

(b) for each s, t € [0,T] witht < s and each xs € Dom 0f* and 35 € B(s, xs)
with ||zg|| V || Bs]] < 7 there exists x; € Dom B(t,.) and ; € B(t,x;) satisfying

[ = sl V15 = Bsll < gr(t;5).

By convexity, the function ¢ of (B)(ii) is M-Lipschitz continuous on some closed ball
ug + pBx and the inclusion dp(x) C MBy holds for any x € ug+ pBy. In fact, we could
take ¢ with extended real values and u in the interior of the effective domain of ¢. Thus,
(B)(ii) implies (B,)(ii).

The condition (B)(ii) means that —B(¢,.) is cyclically monotone uniformly in t. An
example is the multiapplication B(¢,.) : R® ZR" defined by

{1} if$1<0
ﬁ:(ﬁl,,ﬁn)eB(t,x);}ﬁlé {—1,1} ifxy =0 and fBo=---=0,=0
{—1} ifxg >0

for any © = (x1,...,2,) € R". When B(t,.) = —0¢" with ¢ : X — RU {+o0} a lsc
proper function, then " is convex if this operator is monotone and (B)(ii) is equivalent
to the existence of a real constant «; with ¢' = ¢ + ;. In this case we deals with the
problem u' + 9ff(u) — Op(u) 3 0, see Otani [14] when f* is not dependent on ¢. This
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condition (ii) could be extended to a function ' which depends on the time ¢, and also
with a nonconvex function: for example, a convex composite function, see [8].

The condition (B)(iii) is always satisfied if B(¢,.) or —B(t,.) is a maximal monotone
operator of X, and more generally if they are ¢-monotone of order 2.

The condition (B)(iv) is always satisfied if B(¢,.) = B : X Z X is not depending on the
time ¢t. It can also be written for any ¢ < s in [0, T7:

tlim e(gphB(t,.) NrBx2,gphB(s,.)) = 0,

e standing for the excess between two sets. When B(t,.) or —B(t, .) is the subdiffferential
of a convex Isc function 1" which satisfies (Hy), the condition (iv) is satisfied.

3 Existence of approximate solutions

For any real A > 0 and ¢ € [0, T, the function fi shall denote the Moreau- Yosida prozimal
function of index X of f!, and we set

Jo=T+20f)7", Dfy =21~ J3).
We first prove the approximate result of existence :

Theorem 3.1 Let (f")icio,r) be a family of proper convex Isc functions on X with each
It of compact type. Assume that (H) and (B,) are satisfied. For each ug € dom f°, there
exists Ty €]0,T) such that u' + Of*(u) + B(t,u) 3 0 has at least an approximate solution
x 1 [0,Ty] — X with x(0) = ug in the following sense: there exist sequences (), of
absolutely continuous functions from [0,Ty] to X, (un)n and (B,). of piecewise constant
functions from [0, Ty] to X which satisfy:

1. for a.e. t €0, To]

[ OO RO 20 i 1) € Bl n0)

where 0 <t —60,(t) <27"T,
2. there exists N € N such that for any n > N:

vie[0,T]  [lea(t) —uoll < p and [|B.(0)] < M,

3. (xp)n and (uy), converge uniformly to x on [0,To], (Bn)n converges weakly to 3 in
L2(0,Ty; X), (2), converges weakly to x' in L?(0,Ty; X) and x is the solution of
Z'(t) + oft(x(t)) + B(t) 20, (0) = ug on [0, Tp).
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3.1 Proof of Theorem 3.1
Lemma 3.1 We can find a set {z, : t € [0, T} and py > 0 such that z, € peB, f'(z) < po
for every t € 0, T].

Proof. Let zy € dom f° and r > 0 such that r > ||z]| V | f°(20)|. For all ¢ € [0,T], there
exists z; € dom f* satisfying

{ 12 = 2oll < [R(£) = A (O)I(1 + [ f°(20)['/%)
F'(z) < f2(20) + [hn(t) = ke (0)[ (1 + [ *(20)1)-

The lemma holds with pg = (7 + ||RL]|zo(1+7Y2) )V (7 + |[KL|| g (1 +7) ). O

Lemma 3.2 [18, Proposition 3.1]. Letz € X and A > 0. The map t — Jiz is continuous
on [0,T].

Proof. ;From Kenmochi [11, Chapter 1, Section 1.5, Theorem 1.5.1], there is a nonneg-
ative constant « such that f'(z) > —a(||z|| + 1) for all z € X and ¢ € [0, T]. Thus,

1
(@) = gxlle = Sl = f{(SRe) 2 —a(l + || 732]),

which implies
lz = Jzl® < 2Aa(1+ [z — ]| + ||=]]) + 20 fi(2). (3)
Since 2A f1(z) < 2Af(2¢) + ||ze — z||* < 2Apo+ (po+ || z||)* by Lemma 3.1, we can conclude:
sup{||Jiz|| |t €[0,T], X €]0,1] , z € rB} < 00
sup{|f (Jiz)| |t € [0,T], = € rB} < o0
for any r > 0.

Let t € [0,T] and r > ||Jiz||. By assumption (Hy), for each s € [0, 7] with s > ¢ there
exists x; € dom f* satisfying

{ 152 — 2l < [ (t) = he(s)](1 + [f(J32)['?)
fo(ws) < f1(I3) + k() — ke ()| (14 [f1(T32)]).

Since A\~ (z — J5z) € 0f*(J5x), we have

fo(J3e) + %@3 = Jhw,xs — Jyw) < f(xs) < fHI2) + K (8) — K (8)[(L+ [f/(Na)]).

Hence, for any s > t, we have

X(:p — Sz, Jyx — Jiz)
< %(56 = S, o = x) + [ (L) = L (x) + [ (t) = Ee(s)| (1 + [f' (L))
< DA @A) = ho($)[(1+ £ (R2)[V?) + f(Tz) = f*(J52)

Hka(t) = K () (14 £ (T32)]).
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By symmetry it is true for any s € [0, T]. In the same way for ¢, s in [0, T], we have

(@ — T3, S — J{x) < | DF@) A (t) = B ()| (1 + £ (J32)|2) + f2(J3x) = fH(J5a)
k() =k (8)[(1 4 [£*(J32)])-

> =

Adding these two inequalities we obtain

%Hcfix— Tl < HIDE@IV D@ he(t) = he(s)I(1+ [£2(J52) 2V [ f(S2) )
ko (1) = e ()14 [f*(L32)| VI (D))

Since both ||D fi(z)| and |f*(Jix)| are bounded, t — Jiz is continuous on [0, T7]. O

By [11, Lemma 1.5.3], for r > ||ug|| + 1, My > |f°(uo)| + ar + a + 1 and Ty €]0,T]

such that
T i
{1 + M, exp/ \k;\] / |h| <1
0 0

there exists an absolutely continuous function v on [0, T;] satisfying:

*v(0) =uo and limsup, q, fiv(t)) < fO(up)
 o(t)| < r for any ¢ € (0.1
* for any ¢ € [0, Th], |f*(v(0))] < M+ Myexp [ k| fy IR

* for almost any t € [0, T1], [|v'(¢)] < [1 + M exp fOT |k;|] |h.(t)].

For r > ||ugl|| + p, let us choose T, > 0 such that

<|f° +—T2+/0 ch(r)df) (1+T2exp/0 QCT(T)dT) < [ (uo)| + p.

Let v = (||uol| V | f%(wo)]) + p + 1 be fized. Let us choose Ty > 0 small enough in order to
have

To
(1 + 7”1/2)2T0/ ‘h;‘ < % s TO < T1 AN T2 and
0

>~

T To
My To+[M+aJTo+[1+M1exp< / |k;|>] | s <
0 0

1/2
where Mp = 2 [Ml + M, (exp fOT k.| ) fo \hl.(s)|ds + ar + a] .

Lemma 3.3 Let 5 : [0,T] — X be a measurable function with ||5(t)]| < M for a.e.
t €[0,T]. Then,

vte[0,To]  [lp(B)(F) — uoll <

the map p being defined in Section 2.

N)Ib
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Proof. The curve u = p(f3) exists on [0,7] following Theorem 2.1. We have for a.e.
t e [0, TQ]I

< @) = @) + M+ RO ut) = o(@)]

%M%ﬂM+WﬁN+MM®—WmP

N

We thus obtain for any ¢ € [0, Tp]
1 2 1 2 ! /
Sllu®) —o@I" < 5MrTo + i [M + [[v'(s)]| + a] [lu(s) —v(s)]| ds.

Gronwall’s lemma yields for any ¢ € [0, T}

[u(t) —v(@®)] < Mz To+/O[M+||v'(8)||+a]d8

T T
< Mpy\/Ty+ [M + o]Ty + [1 + M, exp/ |k:;|] / |l (s)|ds < g
0 0

Furthermore,

t T To p
jo(0) = woll < [ Ilds < |1+ anesp [ k1] [T misas <

0 0 0

By choice of Ty > 0, we obtain ||u(t) — uo|| < p/2 for any t € [0, Tp]. O

For simplicity of notation, we now write T instead of Ty. We also assume that f*(x) >0
for any x € X with ||z — uo|| < p, since we have f'(x) = —a(||luol| + p+ 1).
Let n € N* such that :

2

T
Q29 ~6n 4 9—3ntl [r+ (1 +r)(/ |k | +a)] < %
0

Let us set f! = fi_,, and J! = J._,,. Let P be a partition of [0, T]:
P={0=ti<t! <---<th, =T}

where ¢} = k27T for k =0,...,2™

Let us set uj = Jug. By assumption (Bo)(i), B(tg,uy) is non empty and contains
an element 7. Let t € [0,7]. Under the assumption (Hy), there exists u,; € dom f*
satisfying
{ e = uoll < [ha(t) = hr(0)| (1 +71/2)
f (ung) <+ k() =k (0)|(1 + 7).
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Using the definition of the Moreau-Yosida approximate, we obtain

23n
—HJ up —uoll* = fhi(uo) — f'(Jiuo)

23n
< ft(unt)Jr—Hunt—U0|!2+04|Utuo—UOH+Oé(1+HU0H)
< (1+7) / \k’\+ 1—|—r1/2 /W\Q—l—aHJt up — ug|| + a(l + 7).

Thus, by choice of r, T" and n we obtain

| uo — uo|

T
< a2 \/a22—6n 22 4 2(1 4 7’)2_3”(/ K]+ a) + (1 + \/_)QT/ B2
0
p

< £
2

In particular, ||uf —uo|| < p/2. Under (B,)(ii) it follows || 5| < M. Let us set 2§ = p(57).

By Lemma 3.3,

vie 0.7 |lrg(r) ol < 5.
Let us set uf = o xy(th) and take B € B(t},u}). Since Jil is 1-Lipschitz continuous,
we have
luf = woll < [l (£7) = woll + |75 uo — uoll <

Next, (B,)(ii) implies || 57| < M. We then set

wn [ By ifte [t
B (t) —{ 5% ift e [t%,]l]

Let us set 27 = p(f7). By unicity and continuity of the curve it follows x7(t) = xj(t) if
t € [tg,t}]. Furthermore, ||87(t)|| < M for any ¢ € [0,T]. By Lemma 3.3,

vtel0,7]  abt) —uol < £.

Let k € N*. Assume that there exists a map (', : [0,7] — X which is constant on
each [tf_,, 7] with ||, (¢)|| < M for any t € [0,T]. Set z}_; = p(Bp_;). Then,

vee[0,7] i () —uoll < 5.
Let us set u} = Jflzxz_l(t;;) and take 5y € B(t}, u}). Since

tn
[ui = woll < [, (¢7) — woll + [[Jn" 10 — uol| <
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we have ||G7]] < M. We then set

noe | B (t) it e [ttt
B (t) = { 52 ifte [tg,T]O *

Let us set a2} = p(6y). By unicity it follows z}(t) = a}_,(t) if ¢ € [0,¢}]. Furthermore,
18E()|| < M for any t € [0,7]. By Lemma 3.3,

vte0,7]  flah(t) - uoll <

We then set
on on
e _ n e Aan . n
Ty = Ton_1 = E Tr Xt tp, and B = Pan_y = E ,ﬁk Xltptiy [
k=0 k=0

where xpp (1) =1 if t € [t} 17,,[, and = 0 otherwise. For all ¢ € [0, T'[, there exists
0 <k <2"with t € [17,17, ] and we set

0.(t) =t and 0,(T)="T.

So, z, : [0,7] — X is an absolutely continuous function and 3, : [0,7] — X is a
measurable map which satisfy for a.e. ¢ € [0, 7]

{2 PO RO 20 a5, 0) € B0 )

where we set u,(t) = Jn”(t)xn(ﬁn(t)). By construct, there exists N € N such that for any
n > N:
Ve [0, T flza(t) —uol <p and [B,(8)]| < M.

A subsequence of (3,,),, again denoted by (3, )., converges weakly to 3 in L*(0,T; X). By
continuity of the map p, the sequence z,, = p(3,,) converges uniformly to a curve z = p(3)
on [0, 7] and a subsequence of (z/,),, converges weakly to z’ in L*(0,T; X).

In other words, the curve z is the solution of 2/(t) + df*(x(t)) + 4(t) 2 0, x(0) = uy on
0, 7].

Let n € N* and ¢ € [0, T]. We have
lun(t) = ()] < 20 (0(8)) = 2@ (@) + 2(0a()) = 2@ + 17O (t) = 2(@)]].  (4)
Under the assumption (Hy), there exists u,; € dom £ satisfying

{ [une = ()] < [ (0n (1)) = he(®)|(1 4 71/%)
7 e (8 () — En(8)] (1 + 7).
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Using the definition of the Moreau-Yosida approximate, we obtain

23n
o 1Tty — x> = firO () — f(TrPa(t)
23n
< SO (ung) + 5 e = 2O + al| O (t) — 2(0)]| + a(l +7)

t 23n t
< ri(ler) / KL+ 21+ 22— 0,() / 2
00 (1) 2 O ()

—l—ozHJg"(t)x(t) —z(t)] + a(1 + 7).
Thus,
[ JE O a(t) — x(t)]| <

T T
a2 4 \/04226” +2r2737 4 2(1 + 7’)23”(/ |kl 4+ o) + (1 + 7’1/2)22”/ |hl|?
0 0

and (Jg”(')x)n converges uniformly to x on [0,7]. Since (x,), converges uniformly to x
on [0,7] and z is continuous on [0, 7], (4) assures the uniform convergence of (u,), to x
on [0, 7.

U

3.2 Properties of approximate solutions

Lemma 3.4 We have ||z(t)|| V |f (x(t))| < r for all t € [0,T). Under the assumption
(B)(ii), the element ((t) belongs to —0p(x(t)) for a.e. t € [0,T].

Proof. By inequality (2), we have for any s <t in [0, T

Fat) = @) +5 [ 1@ ar < DPT+ [ o) (1417 @) dr

Since ||z(t) — uo|| < p, we have assumed for simplicity that f*(x(¢)) = 0 for any t € [0, T.
Gronwall’s lemma yields for any ¢ € [0, T

2

) < (P + 2+ [Camar) (14700 [ a@ar) </l @

by assumption on 7.
Next, [,(t) belongs to —dp(u,(t)) with the uniform convergence of (u,), to z on
[0, T7].
Let us define ¢ : L?(0,7; X) — RU {400} by ¢(u) = fOTgo(u(t)) dt. It is known that ¢
is proper Isc convex and
a € 0p(u) < at) € 0p(u(t)) for a.e. t € [0,T].

Thus, —f, € 0p(u,). Passing to the limit we obtain —3 € dp(z). Hence, §(t) belongs to
—0p(x(t)) for a.e. t € [0,T]. O
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Lemma 3.5 For almost any t € [0, T] we have f'(z(t)) = liminf f*(x,(t)). Furthermore,

n—-400

lim / iz, (t) dt = / fi(z(¥))dt and lim (F) (yn(t)) dt = /O (F*(y(t)) dt,

n—-+0oo n—-+00 0
where we set y,(t) = —x! (t) — B.(t) and y(t) = —2'(t) — B(t) for a.e. t in [0,T].
Proof. By lower semicontinuity of f*, the inequality

F((t)) < liminf f(ra(0)

holds for any ¢ € [0,7]. The maps v +— fOT fi(v(t))dt and w — fOT(ft)*(w(t))dt are
proper lsc convex on L?(0,7T; X). So,

liminf/O ft(xn(t))dt>/0 fi(x(t))dt and hminf/o (ft)*(yn(t))dt>/0 (f*(y(t)) dt

n—-400 n—-400

But, f{(z,(t)) + (f)*(yn(t)) = (yn(t), x,(t)) for any ¢ € [0, T], with

i [ (0.0 dt = [ o)) ar

n—-4o0o 0

Lemma 3.6 We have the inequality

/0 (B(s),2'(s)) ds < lim inf/o (Bn(s), ., (s)) ds. (6)

n—-4o0o

Proof. Let n € N*. The maps x,, 3, and u,, are constant on [t}, ¢}, [, k =0,...,2" — 1.
Hence,
T 21 em 2" —1
| G aehas= Y0 [ ) ds = Y (Bt - ()
0 k=0 Ytk k=0
Since G € —0p(u}) for any k=0,...,2" — 1, we obtain:
T 2" —1
/0 Bals),an()ds = > o(up) — p(@p(tyy)) — Mllup — 2 (1)
k=0
2n 1
= p(uf) = e(amny (52) + > plup) — p(ap(ty) — Mllug — a3 (t3)]]
k=1
on 1
> p(Juo) — pla —2M Y Jlup — 2y (i7))|
k=1
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Since ||uf — ugl| < ||un(t2) — 2, (8)|| + p/2 < p for n large enough, we have fi (u) > 0.
Furthermore, inequality (5) assures that f (z(t2)) < f°(ug)+p < r. Using the definition
of the Moreau-Yosida approximate, we obtain

23n n n/m R/ nin nweon
7”% — 2y (E)II° = fu (2 (7)) — [ (ug) <7
Thus, [l — 27 ()] < /2577 and

2" —1

Dl — 2Rl < V2ot
k=1

Consequently,
on_1

lim Y [luf — 2} (8] = 0.
k=1

n—-+o00

By continuity of ¢ and convergence of (z,), to z, we obtain

inaint [ (3().4(5) ds > o) = p(a(T)).

n—-4o0o

Since ((s) € —0p(x(s)) almost everywhere, (3(s),z'(s)) = —(¢ ox)'(s) holds for a.e. s
and we obtain the inequality (6) . O

4 Existence of strong solutions

We now prove the existence of strong solutions.

4.1 General case

Let us set
B(z,y) = / ((0), 2'() dt — T ((T) + (o)

for any absolutely continuous function z : [0,7] — X with 2’ € L*(0,7;X) and any
fonction y € L*(0,T; X).

Theorem 4.1 Let (f*)icor) be a family of proper convex lsc functions on X with each f*
of compact type which satifies the assumption (H). Assume that for any sequence (), in
HY0,T; X) which converges uniformly to the absolutely continuous function x with the
weak convergence of (z),), to @’ in L*, and for any (yn), which converges weakly to y in
L* with y,(t) € 0f (x,(t)) for almost all t, there exists ny — +oo such that
llimjnfq)(xnk,ynk) > O(x,y).

Then, for each ug € dom f°, there exists Ty €]0,T] such that v’ + 0 f*(u) + B(t,u) 2 0 has
at least a strong solution u : [0, To] — X with u(0) = wy.
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Proof. Consider x an approximate solution. We prove 2'(t) + df*(z(t)) + B(t,z(t)) 2 0
for a.e. ¢tin [0, T]. So, we begin by prove that (x/,),, converges strongly to 2’ in L?(0,T; X).
Step 1. - Let us set y,(t) = —x,,(t) — Ba(t) and y(t) = —2/(t) — B(t) for a.e. ¢t in [0,T]. Tt
is easy to see that for any n € N and almost any ¢ € [0, T:

125 O+ yn (2), 2, (D) +(Ba(t), 2, (£)) =0 and  [l2'(B)]|*+(y(1), 2'(£)+(B(2), 2'(t)) = 0.

The sequence (), converges weakly to ' in L*(0,7T;X). The strong convergence of

(z!), to x’ in L*(0,T; X) is equivalent to

T T
limsup/ |2, (#)]|? dt < / |2 (2)|* dt.
0 0

n—-4o0o

JFrom Lemma 3.6 it follows:

lim sup /T |2,(®)||?dt < —liminf /T(yn(t),x;(t» dt — lim inf /T(ﬁn(t),x;(t» dt
0 0 0

n—-—+o0o n—-+oo n—-+oo

< —liminf /O (D), 2, (1)) dt — /0 (B(t), 2 (1)) dt.

n—-4o0o

Since [} (B(t), /(1)) dt = — [, ||/ ()| dt + [ (y(t), 2'(t)) dt, it suffices to show that

/0 (y(t),«'(t)) dt < lim inf/o (yn(t), z (1)) dt. (7)

n—-4o0o

Step 2. - Under the assumption on ®, it follows by lower semicontinuity of f7 :

T T
iminf [ (g (6,7, () di > 57 (@(T) = o) + it @ ) > [ (u(0),'(0) .
—Tee Jo e 0

Step 3. - Let N be the negligeable subset of [0,7] such that, for any ¢ € [0, T]\N, we
have 2/ (t) + Of"(z,(t)) + Bu(t) 2 0, B,(t) € B(0,(t),u,(t)) and (2, (t)), converges to
2/(t). Since each f' are of compact type, the sets X(t) := cl{z,(t) | n € N*} and
U(t) := cl{un,(t) | n € N*} are compact in Dom(9f"). Let r = M V (p + |Juo||). Under
the assumption (B)(iv), for each n > N and t € [0,T] with ¢t # 0,(t), there exists
2t € Dom B(t,.) and of, € B(t, z!) satisfying

1z — w1V oz, = Ba(®)]] < 9-(0u(t). 1).

When ¢ = 6,,(t), we simply take 2! = u,(t) and of, = 3,,(t). Then, (2%), converges to x(t)
and Z(t) := cl{z | n € N*} is compact in Dom(9f*).

The restriction of B(t,.) to Dom(df") being usc, the set {B(t, z)|z € Z(t)} is compact
in X. Hence, I'(t) := cl{a!, | n € N*}, and thus cl{8,(t) | n € N*}, are compact. So,
Y(t) := cl{y,(t) | n € N*} is compact in X.
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Let us set F'(z) = dff(x) NY(¢t) and G'(xz) = B(t,x) N [(t) for any x € Dom(9f*)
and ¢t € [0,7]. The multimaps F* and G* are upper semicontinuous on Dom(9f*) with
compact values in X. Let us denote by e the excess between two sets. We have:

d(=a,(t), F'(2(t) + G'(z(1)) < d(ya(t), F'(2(1)) + d(Ba(t), G'((1)))
e(F'(an(t)), F* (1)) + 118n(t) = o[l + d(ar,, G* (z(1)))
e(F!(wn(t)), F'(x(1) + g0 (0n(t),1) + €(G(2), G'(2(2)))-

The upper-semicontinuity of F* and G assures that

INCIN N

lim d(—z(t), F'(x(t)) + G*(z(t))) = 0.

n—-+o00

Since (7,), converges to 2’ a.e. on [0, T], the equality d(—z'(
holds for a.e. t € [0,T] and we obtain by closedness of F*(x(t

t), F'(x(t)) + G'(x(t))) = 0
) + Gz (t)):

—2'(t) € F'(x(t)) + G'(z(t)) for a.e. t€]0,T).

Consequently, z is a local solution to 2’ + df*(z) + B(t,z) 3 0 with z(0) = wuy. O

4.2 Two particular cases

We consider two particular cases for which we can apply Theorem 4.1. These cases
contains those of f* not depending on t.
First,

Corollary 4.1 Let (f*)icior) be a family of proper convex lsc functions on X with each
ft of compact type. Let uy € dom f°. Assume that f' = go F* where g is a proper convex
Isc function on a Hilbert space Y and (F*)cpor) is a family of differentiable maps from X
to'Y such that (DF"'); is equilipschitz continuous on a neighborhood of uy and such that:

1. for each r = 0, there is absolutely continuous real-valued function b, on [0,T] such
that:

(a) b, € L*(0,T),
(b) for each s,t € [0, T], supj, <, [ F*(x) — F*(2)[| < [b.(t) — b.(s)],
2. the qualification condition R y[dom g — F°(ug)] — DF%(up)X =Y holds,

3. for each r > 0, there exists a negligible subset N of [0,T] such that the mapping
t — F'z) admits a derivative A'(x) on [0,TI\N for any x € rBx and A" is
continuous on rByx for any t € [0, T]\N,

4. the mapping (t,x) — DF'(x) is bounded on [0,T] x rBx for each r > 0 and it is
continuous at t for each x.
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Assume that (H) and (B) are satisfied. Then, there exists Ty €]0,T) such that u'+0f*(u)+
B(t,u) 30 has at least a strong solution u : [0,Ty] — X with u(0) = uy.

Remark under assumption 1., the mapping ¢ — F*(z) is absolutely continuous and ad-
mits a derivative at a.e. ¢ € [0,7] for each x. With the uniformly inequality 1.(b), we
can hope that the almost derivability of ¢ — F'(z) at ¢ is uniform in z € rBy thanks
to the regularity of F' at x. Illustrate the importance of differentiability of F* by the
following example : F(t,z) = h(t — x) where X =Y = R and the real function A is
convex, Lipschitz continuous and non differentiable on [0, T7].

Proof of Corollary 4.1. Consider x : [0,7] — X an approximate solution. Let us set

nlt) = —y(1) — Bu(t) amd () = —2'(£) — (1) for ae. £ in [0, T), 20(t) = F'(za(r)) and
z(t) = F*(xz(t)) for a.e. t € [0,7]. Then, 2, and z are absolutely continuous on [0, T,
thus are derivable at a.e. ¢t € [0,7] and

2 (t) = Alza(t)) + DF (2 ()2, (1), /() = Al(x(t)) + DF((t))2'(t).

Under the qualification condition, we have for any z € X

0f'(z) = DF'(x)"0g(F'(x)).

Let us write y,, (t) = DF'(x,(t))*w,(t) and y(t) = DF'(x(t))*w(t) where w, (t) € g(2,(t))
and w(t) € dg(z(t)) for almost all ¢ € [0,T]. Hence, g o z, and g o z are absolutely
continuous with (w,(t), 2/ (t)) = (g o z,)'(t) for almost all ¢ € [0, T]. So,

rn

(yn (1), 2, (1)) = %(ft 0 ) (t) — (wn(t), A (za(t)).

and ®(x,, yn) = fo wy(t), A (z,(¢))) dt.

Let r > ||lx,(t )H V()| for any n € N and ¢ € [0,7]. By continuity of A" on By,
(A (2, (t)))n converges to Af(z(t)) for a.e t € [0,T]. Next, for a.e. ¢t and any x € rBy,
we have ||A'(z)| < [b.(t)]. By Lebesgue’s theorem A-(x,(.)) converges to Az(.)) in
L?(0,T,Y). Since a subsequence of (w,), converges weakly to w, we can apply Theo-
rem 4.1. 0J

For example, if F"' is the affine mapping x — A(t)x + b(t) where A(t) : X — Y is linear
continuous and b(t) € Y, the assumption of Corollary 4.1 becomes :

1. b is absolutely continuous on [0,7] and there is absolutely continuous real-valued
function a on [0, 7] such that:

(a) a' € L*(0,T),
(b) for each s,t € [0,T], ||A(t) — A(s)|| < |a(t) — a(s)|.

2. the qualification condition R, dom g — A(0)X =Y holds.
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3. for each r > 0, there exists a negligible subset N of [0, 7] such that A’(¢) is contin-
uous on 7By for any t € [0, T]\ V.

Second, we use the conjugate of f°.

Lemma 4.1 Let (f*)ico1) be a family of proper convez lsc functions on X satisfying (H).
Assume that :

for each r > 0, there exists a negligible subset N of [0,T] such that for any
t € [0, T]\N, the mapping s — (f*)*(y) admits a derivative ¥(t,y) att for any
y € Dom o(f*)*.

Let x : [0,T] — X be an absolutely continuous function and y : [0,T] — Y be such that
y(t) € dft(x(t)) for a.e. t € [0,T]. For almost all t € [0,T], we have

Yt y() + %ft(w(t)) = (y(®), z'())- (8)

Proof. Let s and ¢ be in [0, T]\N where N is a suitable negligible subset of [0, 7]. We
have :

() () = () (w(s) < (f)"(wls) = (F)(w(t) = (y(s) — y(t), x(t))
since x(t) € O(f*)*(y(t)). From f'(z(t)) + (f)*(y(£)) = (y(t), z(1)), we deduce
()W) = (f) () < £ (1) = f2(x() + (y(s), x(s) — x(t)).

In the same way, for almost every ¢, s in [0, T] we have

()W) = (f) () < f1(2(t) = f1(x() + (y(s), x(s) — x(t)).

Changing the role of s and ¢, we also have:

(@) = () < f(2(s) = f1@(t) + (y(), x(t) — x(s))
< ()W) = (£ () + (wt) = y(s), 2() — x(s)).

The function ¢ — f*(z(t)) being absolutely continuous on [0, 7], see [11, Chapter 1], we
obtain (8). O

The existence of 4 implies some regularity on the domain of (f*)*. For example, consider
(f9*(y) = h(t —y) where X = Y = R and the real function h is convex, Lipschitz
continuous and non differentiable on [0, 7]. Then, we can not apply above lemma. The
domain of (f*)* changes with ¢. But, we can apply Corollary 4.1 since f*(z) = tx+h*(—x).
However, we have the absolutely continuity of s — (f*)*(y) in the following sense :

Proposition 4.1 Lett € [0,T], y € Y, n >0 and r > 0 such that if [t — s| < n, the set
I(f*)*(y)NrBx is nonempty. Then, s — (f*)*(y) is absolutely continuous on |t —n, t+n].
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Proof. 1) Lemma 3.1 with 5 = p, assures that (f*)*(v) = (y,z) — f'(z) = —|yllB — 5
for any ¢ € [0,7] and y € X. For y € df*(x), it follows

—a(|lzll +1) < f2) = {y.x) = (F) @) < Myl llell + B8] + 8.

So, there is a nonnegative constant 3 such that (f*)*(y) = —8(||y|| + 1) for all y € X and
t € 10,77

Furthermore, for each r > 0, there is a nonnegative constant ¢ such that |f(z)| <
c(lyl|+1) for all z € rByx, t € [0,T] and y € Of*(x).

2) Let ¢ be fixed in [0, 7] and y € 9f*(x). Let r > ||z|| and s € [¢,T]. Under the
assumption (Hy), there exists z;, € dom f* satisfying

{ l2 = @l < [Rr () = B ($)I(1+ [ f4(2)['/2)
fo(@s) < 1) + [k (t) = kr(s)| (14 [ f1(2)]).

By definition of conjugate of a convex function, it follows
()W) = ()W) < (yoo—z5)+ f(2s) = fi(2)
< Nyl (t) = ()L + (@) 2) + K (t) = ke (8)I(L+ | f4(2)]).
We conclude thanks to 1):

@) = @) < lyllie(t) = (8)\( + 1 @)12) + k() — (8)\(1+\ft( )
[yll1he(t) = 2o ()| (1 + Ve + VVelyll) + k() = k()] (1 + e+ cllyl])

<
<

3) Let y € Y, r > 0 and s,t € [0,T]. If the intersections of d(f*)*(y) and O(f*)*(y)
with 7By are non empty, let x, € 9(f%)*(y) and x; € 9(f")*(y) with r > ||| V ||z:]].
Step 2) implies

(f) () = (f) )] <
Iyl (8) = o ()14 | £2 () |2V | F1(@)|V2) + K () = k()L + £ ()| V[ f(20)]).

By 1) we conlude:

()" () = () )] < Myl (8) = o ()] (L €2+ (ellyID ') + [ (8) = i ()] (1 + e+ cllyl)-
O

Corollary 4.2 Let (f")icjo,r] be a family of proper convex lsc functions on X with each
It of compact type. Assume that (H) and (B) are satisfied and that:

1. for each r > 0, there exists a negligible subset N of [0,T] such that for any t
in [0, TI\N, the mapping s — (f*)*(y) admits a derivative ¥(t,y) at t for any
y € Dom o(f*)*.
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2. for any (yn)n which converges weakly to y in L*(0,T; X) with y,(t) € Oft(z,(t))
where (x,), converges uniformly, there exists ny — 400 such that

liminf/O 7(t7ynk(t))dt>/0 A(t,y(t)) dt.

k——4o00

Then, for each ug € dom f°, there exists Ty €]0,T] such that v’ + 0 f(u) + B(t,u) 2 0 has
at least a strong solution u : [0, Ty] — X with u(0) = uo.

The assumption 2. is true when (¢, .) is Isc and convex on Dom J( f*)*.

T

Proof. Lemma 4.1 implies ®(z,y) = / A(t,y(t)) dt. By assumption 2., we can apply
0

Theorem 4.1. U

5 Examples of families (f'),

5.1 Ralfle

See Castaing, Valadier and Moreau [4, 17, 13]. Let (C(t))cjo,r a family of nonempty closed
convex subsets of X whose intersection with bounded closed sets is compact. Consider the
indicator function f* = d¢( of C(t). Assume that for each r > 0, there is an absolutely
continuous real-valued function a, on [0, 7] such that:

(i) a. € L*(0,T);
(ii) for each s,t in [0, 7], we have e(C(s) NrBx,C(t)) < |a-(s) — a,(t)].

Under the assumption (B), we can apply Theorem 4.1: Assume that for any sequence
(p)n in HY(0,T; X) which converges uniformly to the absolutely continuous function x
with the weak convergence of (x'), to ' in L?, and for any (y,). which converges weakly
toy in L* with y,(t) € Neg) (2, (t)) for almost all t, there exists ny — 400 such that

k—-+o00

lim inf /O (2 (8)s g (1)) dt > /0 (), y(8) dt.

Then, for each uy € C(0), there exists Ty €]0, T such that v’ 4+ New(u) + B(t,u) 3 0 has
at least a strong solution u : [0, To] — X with u(0) = uy.

Corollary 4.1 becomes:
Corollary 5.1 Let ug € C(0) and (F*)com be a family of differentiable maps from X to
an other Hilbert space Y such that (DF"); is equilipschitz continuous on a neighborhood

of uy. Assume that C(t) = (F*)~(C), C being a nonempty closed convex set. Under the
assumptions (B) and:

1. for each r > 0, there is absolutely continuous real-valued function b, on [0,T] such
that:
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(a) V. € L*(0,T),
(b) for cach s,t € [0,T], supyyye, | F'(x) — F*(@)|] < [br(t) = bi(s)],

2. the qualification condition R [C' — F°(ug)] — DF°(ug)X =Y holds,

3. for each r > 0, there exists a negligible subset N of [0,T] such that the mapping
t — F'z) admits a derivative A'(x) on [0,TI\N for any x € rBx and A" is
continuous on rByx for any t € [0, T]\N,

4. the mapping (t,z) — DF'(x) is bounded on [0,T] X rBx for each r > 0 and it is
continuous at t for each x,

there exists Ty €]0,T] such that u' + Neogy(u) + B(t,u) 3 0 has at least a strong solution
w: [0, To] — X with u(0) = uyg.

On the other hand, (f*)* is the support function of C(¢), denoted by o¢ (). Moreau have
proved in [13] that when C' is absolutely continuous, the map ¢ — o¢)(y) is absolutely
continuous on [0, 7] for any y € D, where D is the domain of o¢ () which is not dependent
of t. Corollary 4.2 becomes:

Corollary 5.2 Assume that (B) is satisfied and that:

1. for each r > 0, there exists a negligible subset N of [0,T] such that for any t
in [0, TI\N, the mapping s — oc)(y) admits a derivative §(t,y) at t for any
y € Dom 800(25).

2. for any (yn)n which converges weakly to y in L*(0,T; X) with y,(t) € Neow (@, (t))
where (x,,), converges uniformly, there exists ny — 400 such that

liminf/O "y(t,ynk(t))dt>/0 A(t,y(t)) dt.

k——4o00

Then, for each uy € dom f°, there exists Ty €]0, T such that u' + Newy(u) + B(t,u) 3 0
has at least a strong solution u : [0, Ty] — X with u(0) = ug.

By example, consider the affine map F*(z) = a(t)x + b(t) where a(t) € R is derivable
nonincreasing at ¢ € [0,7] and b(t) € Y is absolutely continuous at t € [0,7]. We can
apply both corollary 4.1 and 4.2 since

§0.) = o5z [0 0.6(0) + /(0 (o) = (9.4(0))

for a.e. t € [0,7] and any y € Y. So, 4(t,.) is convex l.s.c. on X and
T T
i [ s it = [ ()
0

n—-+o00 0
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5.2 Viscosity
Let f: X — RU{+oc} be a convex lsc proper function of compact type. Consider

e(t)

fH(z) = f(z)+ - ||z||* where ¢ is an absolutely continuous real-valued function on [0, 7]

with nonnegative values and ¢’ € L'(0,T).
We can write f' = go F* with g(x,7) = f(z) + r for any (z,7) € X x R and F'(z) =
e(t

(x, T) |z||?) for any z € X. By absolutely continuity of e, A’ exists and is continuous on

X for a.e. t € [0,7] and
e'(t)
@) = 0. ).
Furthermore,
DF'(x)y = (y,e(t)(z,y))
and DF* satifies assumption 5. We can apply Corollary 4.1.
On the other hand, (f)* = (f*).u is a C'-function on X and, for any y € X, the map
t — (f")*(y) is absolutely continuous on [0, 7] with for a.e. ¢ € [0, 7]

e'(t)
2

DO ()l
By definition of y,,, =, (t) = D(f*)*(y.(t)) holds for a.e. ¢ € [0,T] and any n € N, hence

e'(t)
2

Y(ty) =

[ENG]

Y yn(t) = —

In the same way,

(t.(0) = - a1

By uniform convergence of (z,), to x on [0,T] it follows

tim [ 4t ya(t)) dt = / it (1)t

n—-400 0

We can apply Corollary 4.2.

References

[1] H. Attouch and A. Damlamian, On multivalued evolution equations in Hilbert spaces,
Israel J. Math., Vol. 12 (1972), 373-390.

[2] H. Attouch and A. Damlamian, Problemes d’évolution dans les Hilbert et applications,
J. Math. pures et appl. 54 (1975), 53-74.

(3] H. Brezis, Opérateurs maximaux et semi-groupes de contractions dans les espaces de
Hilbert, Lecture Notes n°5, North Holland, 1973.

EJQTDE, 2005 No. 11, p. 21



[4]

[15]

[16]

[17]

[18]

[19]

C. Castaing, Truong Xuan Duc Ha and M. Valadier, Evolution equations governed
by the sweeping process, Set-valued Analysis 1 (1993), 109-139.

C. Castaing and A. Syam, On class of evolutions governed by a nonconvex sweeping
process, preprint, 2003.

C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture
Notes, Springer Verlag, n° 580, 1977.

A. Cellina and V. Staicu, On evolution equations having monotonicities of opposite
sign, International School for Advanced Studied, ref. SISSA 142M, 1989.

S. Guillaume, Time dependent subdifferential evolution equations in nonconvex analysis,

Adv. Math. Sci. Appl. Vol.10, No. 2 (2000), 873-898.

S. Hu and N. S. Papageorgiou, Time-dependent subdifferential evolution inclusions
and optimal control, Memoirs AMS, 1998.

N. Kenmochi, Nonlinear evolution equations with variable domains in Hilbert spaces,
Proceedings of the Japan Academy, Vol. 53, Ser. A, n° 5 (1977), 163-166.

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent con-
straints and applications, Bull. Fac. Ed. Chiba Univ. 30 (1981), 1-87.

J.J. Moreau, Rafle par un convexe variable, Séminaire d’Analyse Convexe, Montpellier
1971, exposé n° 15.

J.J. Moreau, Evolution problem associated with a moving set in Hilbert space, J. Diff.
FEq. 26 (1977), 347-374.

M. Otani, On existence of strong solutions for () + 9! (u(t)) — 2 (u(t)) 3 f(t), J.

Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 575-605.

M. Otani, Nonmonotone perturbations for nonlinear parabolic equations associated with
subdifferential operators, Cauchy problems, J. Differential Equations 46 (1982), 268-299.

A. Syam, Contribution aux inclusions différentielles, Thése de doctorat, Université Mont-
pellier IT, 1993.

M. Valadier, Lipschitz approximation of the sweeping (or Moreau) process, J. Differential
Equations, Vol 88, n°® 2 (décembre 1990), 248-264.

Y. Yamada, On evolution equations generated by subdifferential operators, Journal of
the faculty of science, the university of Tokyo, Sec. IA, Vol. 23, n® 3 (décembre 1976),
491-515.

S. Yotsutani, Evolution equations associated with the subdifferentials, Journal of Math.
Soc. Japan, 31 (1978), 623-646.

(Received January 22, 2004)

EJQTDE, 2005 No. 11, p. 22



