On a time-dependent subdifferential evolution inclusion with a nonconvex upper-semicontinuous perturbation

S. Guillaume ${ }^{1}$, A. Syam ${ }^{2}$
${ }^{1}$ Département de mathématiques, Université d'Avignon, 33, rue Pasteur, 84000 Avignon, France, sophie.guillaume@univ-avignon.fr
${ }^{2}$ Département de mathématiques et informatique, Université Cadi Ayyad, 618 Marrakech, Maroc, syam@fstg-marrakech.ac.ma

Abstract

We investigate the existence of local approximate and strong solutions for a time-dependent subdifferential evolution inclusion with a nonconvex upper-semicontinuous perturbation.

Keywords. Convex function, Evolution equation, Nonconvex perturbation, Subdifferential, Upper-semicontinuous operator.

AMS (MOS) Subject Classifications. 35G25, 47J35, 47H14

1 Introduction

For a given family of convex lower-semicontinuous functions $\left(f^{t}\right)_{t \in[0, T]}$, defined on a separable real Hilbert space X with range in $\mathbb{R} \cup\{\infty\}$, and a family of multivalued operators $(B(t, .))_{t \in[0, T]}$ on X, we shall prove an existence theorem for evolution equations of type:

$$
\begin{equation*}
u^{\prime}(t)+\partial f^{t}(u(t))+B(t, u(t)) \ni 0, \quad t \in[0, T] . \tag{1}
\end{equation*}
$$

For each $t, \partial f^{t}$ denotes the ordinary subdifferential of convex analysis. The operator $B(t,):. X \rightrightarrows X$ is a multivalued perturbation of ∂f^{t}, dependent on the time t.

When the perturbation $B(t,$.$) is single valued and monotone, many existence, unique-$ ness and regularity results have been established, see Brezis [3] (if f^{t} is independent of
t), Attouch-Damlamian [2] and Yamada [18]. The study of case $B(t,$.$) nonmonotone and$ upper-semicontinuous with convex closed values has been developed under some assumptions of compactness on dom $f^{t}=\left\{x \in X \mid f^{t}(x)<\infty\right\}$ the effective domain of f^{t}. For example, Attouch-Damlamian [1] have studied the case f independent of time. Otani [15] has extended this result with more general assumptions (the convex function f^{t} depends on time). He has also studied the case where $-B(t,$.$) is the subdifferential of a lower$ semicontinuous convex function, see [14].
In this article, the operator $B(t,$.$) will be assumed upper-semicontinuous with compact$ values which are not necessary convex, and it is not assumed be a contraction map. Nevertheless, $-B(t,$.$) will be assumed cyclically monotone. Cellina and Staicu [7] have studied$ this type of inclusion when f^{t} and $B(t,$.$) are not dependent on t$.

This paper is organized as follows. In Section 2 we recall some definitions and results on time-dependent subdifferential evolution inclusions and upper-semicontinuity of operators which will be used in the sequel. We also introduce the assumptions of our main result. In Section 3 we obtain existence of approximate solutions for the problem (1) and give properties of these solutions. In Section 4 we establish existence theorem for the problem (1). We particularly study two cases where the family $\left(f^{t}\right)_{t}$ satisfies more restricted assumptions. Examples illustrate our results in Section 5.

2 Perturbed problem

Assume that X is a real separable Hilbert space. We denote by $\|$.$\| the norm associated$ with the inner product $\langle.,$.$\rangle and the topological dual space is identified with the Hilbert$ space. Let $T>0$ and $\left(f^{t}\right)_{t \in[0, T]}$ be a family of convex lower-semicontinuous (lsc, in short) proper functions on X. We will denote by ∂f^{t} the ordinary subdifferential of convex analysis.

Definition 2.1 A function $u:[0, T] \rightarrow X$ is said strong solution of

$$
u^{\prime}+\partial f^{t}(u)+B(t, u) \ni 0
$$

if ${ }^{1}$: (i) there exists $\beta \in L^{2}(0, T ; X)$ such that $\beta(t) \in B(t, u(t))$ for a.e. $t \in[0, T]$,
(ii) u is a solution of $\begin{cases}u^{\prime}(t)+\partial f^{t}(u(t))+\beta(t) \ni 0 & \text { for a.e. } t \in[0, T] \\ u(t) \in \operatorname{dom} f^{t} & \text { for any } t \in[0, T] .\end{cases}$

The aim result of this article is, for each $u_{0} \in \operatorname{dom} f^{0}$, the existence of a local strong solution u of $u^{\prime}+\partial f^{t}(u)+B(t, u) \ni 0$ with $u(0)=u_{0}$, when the values of the uppersemicontinuous multiapplication $B(t,$.$) are not convex.$

We shall consider the following assumption on $\left(f^{t}\right)_{t \in[0, T]}$, see Kenmochi [10, 11]:

[^0]$\left(\mathbf{H}_{0}\right)$: for each $r \geqslant 0$, there are absolutely continuous real-valued functions h_{r} and k_{r} on $[0, T]$ such that:
(i) $h_{r}^{\prime} \in L^{2}(0, T)$ and $k_{r}^{\prime} \in L^{1}(0, T)$,
(ii) for each $s, t \in[0, T]$ with $s \leqslant t$ and each $x_{s} \in \operatorname{dom} f^{s}$ with $\left\|x_{s}\right\| \leqslant r$ there exists $x_{t} \in \operatorname{dom} f^{t}$ satisfying
\[

\left\{$$
\begin{array}{l}
\left\|x_{t}-x_{s}\right\| \leqslant\left|h_{r}(t)-h_{r}(s)\right|\left(1+\left|f^{s}\left(x_{s}\right)\right|^{1 / 2}\right) \\
f^{t}\left(x_{t}\right) \leqslant f^{s}\left(x_{s}\right)+\left|k_{r}(t)-k_{r}(s)\right|\left(1+\left|f^{s}\left(x_{s}\right)\right|\right)
\end{array}
$$\right.
\]

or the slightly stronger assumption, see Yamada [18], denoted by (H), when (ii) holds for any s, t in $[0, T]$.
The following existence theorem have been proved in [19]:
Theorem 2.1 Let $T>0$ and $\beta \in L^{2}(0, T ; X)$. Let $u_{0} \in \operatorname{dom} f^{0}$. If $\left(H_{0}\right)$ holds, then the problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)+\partial f^{t}(u(t))+\beta(t) \ni 0, \text { a.e. } t \in[0, T] \\
u(t) \in \operatorname{dom} f^{t}, \quad t \in[0, T] \\
u(0)=u_{0}
\end{array}\right.
$$

has a unique solution $u:[0, T] \rightarrow X$ which is absolutely continuous.
Furthermore, we have the following type of energy inequality, see [11, Chapter 1]: if $\|u(t)\|<r$ for $t \in[0, T]$, then

$$
\begin{equation*}
f^{t}(u(t))-f^{s}(u(s))+\frac{1}{2} \int_{s}^{t}\left\|u^{\prime}(\tau)\right\|^{2} d \tau \leqslant \frac{1}{2} \int_{s}^{t}\|\beta(\tau)\|^{2} d \tau+\int_{s}^{t} c_{r}(\tau)\left[1+\left|f^{\tau}(u(\tau))\right|\right] d \tau \tag{2}
\end{equation*}
$$

for any $s \leqslant t$ in $[0, T]$, where $c_{r}: \tau \mapsto 4\left|h_{r}^{\prime}(\tau)\right|^{2}+\left|k_{r}^{\prime}(\tau)\right|$ is an element of $L^{1}(0, T)$.
Let us add a compactness assumption on each f^{t} by using the following definition:
Definition 2.2 A function $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is said of compact type if the set $\{x \in$ $X\left||f(x)|+\|x\|^{2} \leq c\right\}$ is compact at each level c.

Denote by $L_{w}^{2}(0, T ; X)$ the space $L^{2}(0, T ; X)$ endowed with the weak topology. Under this compactness assumption on each f^{t}, the map

$$
p:\left(\begin{array}{ccc}
L_{w}^{2}(0, T ; X) & \rightarrow & \mathcal{C}([0, T] ; X) \\
\beta & \mapsto & u
\end{array}\right)
$$

is continuous and maps bounded set into relatively compact sets following [9, proposition 3.3], β and u being defined in Theorem 2.1.

Recall the definition of upper-semicontinuity of operators.

Definition 2.3 Let E_{1} and E_{2} be two Hausdorff topological sets. A multivalued operator $B: E_{1} \rightarrow E_{2}$ is said upper-semicontinuous (usc in short) at $x \in \operatorname{Dom} B$ if for all neighborhood \mathcal{V}_{2} of the subset $B x$ of E_{2}, there exists a neighborhood \mathcal{V}_{1} of x in E_{1} such that $B\left(\mathcal{V}_{1}\right) \subset \mathcal{V}_{2}$.

Furthermore, if E_{1} and E_{2} are two Hausdorff topological spaces with E_{2} compact and $B: E_{1} \rightarrow E_{2}$ is a multivalued map with $B x$ closed for any $x \in E_{1}$, then B is usc if and only if the graph of B is closed in $E_{1} \times E_{2}$. We introduce following conditions on the multifunction $B:[0, T] \times X \rightrightarrows X$:
$\left(\mathbf{B}_{o}\right)$: (i) $\operatorname{Dom}\left(\partial f^{t}\right) \subset \operatorname{Dom} B(t,$.$) for any t \in[0, T]$,
(ii) there exist nonnegative constants ρ, M such that $\left\|x-u_{0}\right\| \leqslant \rho$ implies $B(t, x) \subset M \mathbb{B}_{X}$ for any $t \in[0, T]$ and $x \in \operatorname{Dom} \partial f^{t}$.
(B) :
(i) $\operatorname{Dom}\left(\partial f^{t}\right) \subset \operatorname{Dom} B(t,$.$) and the set B(t, x)$ is compact for any $t \in[0, T]$ and $x \in \operatorname{Dom}\left(\partial f^{t}\right)$,
(ii) there exist a nonnegative real ρ and a convex lsc function $\varphi: X \rightarrow \mathbb{R}$ such that $\left\|x-u_{0}\right\| \leqslant \rho$ implies $B(t, x) \subset-\partial \varphi(x)$ for any $t \in[0, T]$ and $x \in \operatorname{Dom}\left(\partial f^{t}\right)$,
(iii) for a.e. $t \in[0, T]$, the restriction of $B(t,$.$) to \operatorname{Dom}\left(\partial f^{t}\right)$ is usc,
(iv) for each $r \geqslant 0$, there is a nonnegative real-valued function g_{r} on $[0, T]^{2}$ such that
(a) $\lim _{t \rightarrow s_{-}} g_{r}(t, s)=0$,
(b) for each $s, t \in[0, T]$ with $t \leqslant s$ and each $x_{s} \in \operatorname{Dom} \partial f^{s}$ and $\beta_{s} \in B\left(s, x_{s}\right)$ with $\left\|x_{s}\right\| \vee\left\|\beta_{s}\right\| \leqslant r$ there exists $x_{t} \in \operatorname{Dom} B(t,$.$) and \beta_{t} \in B\left(t, x_{t}\right)$ satisfying

$$
\left\|x_{t}-x_{s}\right\| \vee\left\|\beta_{t}-\beta_{s}\right\| \leqslant g_{r}(t, s)
$$

By convexity, the function φ of (B)(ii) is M-Lipschitz continuous on some closed ball $u_{0}+\rho \mathbb{B}_{X}$ and the inclusion $\partial \varphi(x) \subset M \mathbb{B}_{X}$ holds for any $x \in u_{0}+\rho \mathbb{B}_{X}$. In fact, we could take φ with extended real values and u_{0} in the interior of the effective domain of φ. Thus, (B)(ii) implies (B_{o})(ii).

The condition (B)(ii) means that $-B(t,$.$) is cyclically monotone uniformly in t$. An example is the multiapplication $B(t,):. \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ defined by

$$
\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in B(t, x) \Longleftrightarrow \beta_{1} \in\left\{\begin{array}{ll}
\{1\} & \text { if } x_{1}<0 \\
\{-1,1\} & \text { if } x_{1}=0 \\
\{-1\} & \text { if } x_{1}>0
\end{array} \text { and } \beta_{2}=\cdots=\beta_{n}=0\right.
$$

for any $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. When $B(t,)=.-\partial \psi^{t}$ with $\psi^{t}: X \rightarrow \mathbb{R} \cup\{+\infty\}$ a lsc proper function, then ψ^{t} is convex if this operator is monotone and (B)(ii) is equivalent to the existence of a real constant α_{t} with $\psi^{t}=\varphi+\alpha_{t}$. In this case we deals with the problem $u^{\prime}+\partial f^{t}(u)-\partial \varphi(u) \ni 0$, see Otani [14] when f^{t} is not dependent on t. This
condition (ii) could be extended to a function φ^{t} which depends on the time t, and also with a nonconvex function: for example, a convex composite function, see [8].

The condition (B)(iii) is always satisfied if $B(t,$.$) or -B(t,$.$) is a maximal monotone$ operator of X, and more generally if they are ϕ-monotone of order 2 .
The condition (B)(iv) is always satisfied if $B(t,)=B:. X \rightarrow X$ is not depending on the time t. It can also be written for any $t \leqslant s$ in $[0, T]$:

$$
\lim _{t \rightarrow s_{-}} e\left(\operatorname{gph} B(t, .) \cap r \mathbb{B}_{X^{2}}, \operatorname{gph} B(s, .)\right)=0
$$

e standing for the excess between two sets. When $B(t,$.$) or -B(t,$.$) is the subdiffferential$ of a convex lsc function ψ^{t} which satisfies $\left(\mathrm{H}_{0}\right)$, the condition (iv) is satisfied.

3 Existence of approximate solutions

For any real $\lambda>0$ and $t \in[0, T]$, the function f_{λ}^{t} shall denote the Moreau-Yosida proximal function of index λ of f^{t}, and we set

$$
J_{\lambda}^{t}=\left(I+\lambda \partial f^{t}\right)^{-1}, \quad D f_{\lambda}^{t}=\lambda^{-1}\left(I-J_{\lambda}^{t}\right)
$$

We first prove the approximate result of existence :
Theorem 3.1 Let $\left(f^{t}\right)_{t \in[0, T]}$ be a family of proper convex lsc functions on X with each f^{t} of compact type. Assume that (H) and $\left(\mathrm{B}_{o}\right)$ are satisfied. For each $u_{0} \in \operatorname{dom} f^{0}$, there exists $\left.\left.T_{0} \in\right] 0, T\right]$ such that $u^{\prime}+\partial f^{t}(u)+B(t, u) \ni 0$ has at least an approximate solution $x:\left[0, T_{0}\right] \rightarrow X$ with $x(0)=u_{0}$ in the following sense: there exist sequences $\left(x_{n}\right)_{n}$ of absolutely continuous functions from $\left[0, T_{0}\right]$ to $X,\left(u_{n}\right)_{n}$ and $\left(\beta_{n}\right)_{n}$ of piecewise constant functions from $\left[0, T_{0}\right]$ to X which satisfy:

1. for a.e. $t \in\left[0, T_{0}\right]$

$$
\left\{\begin{array}{l}
x_{n}^{\prime}(t)+\partial f^{t}\left(x_{n}(t)\right)+\beta_{n}(t) \ni 0 \\
x_{n}(0)=u_{0}
\end{array} \quad \text { and } \quad \beta_{n}(t) \in B\left(\theta_{n}(t), u_{n}(t)\right)\right.
$$

where $0 \leqslant t-\theta_{n}(t) \leqslant 2^{-n} T$,
2. there exists $N \in \mathbb{N}$ such that for any $n \geqslant N$:

$$
\forall t \in[0, T] \quad\left\|x_{n}(t)-u_{0}\right\| \leqslant \rho \quad \text { and } \quad\left\|\beta_{n}(t)\right\| \leqslant M
$$

3. $\left(x_{n}\right)_{n}$ and $\left(u_{n}\right)_{n}$ converge uniformly to x on $\left[0, T_{0}\right],\left(\beta_{n}\right)_{n}$ converges weakly to β in $L^{2}\left(0, T_{0} ; X\right),\left(x_{n}^{\prime}\right)_{n}$ converges weakly to x^{\prime} in $L^{2}\left(0, T_{0} ; X\right)$ and x is the solution of $x^{\prime}(t)+\partial f^{t}(x(t))+\beta(t) \ni 0, x(0)=u_{0}$ on $\left[0, T_{0}\right]$.

3.1 Proof of Theorem 3.1

Lemma 3.1 We can find a set $\left\{z_{t}: t \in[0, T]\right\}$ and $\rho_{0}>0$ such that $z_{t} \in \rho_{0} \mathbb{B}, f^{t}\left(z_{t}\right) \leq \rho_{0}$ for every $t \in[0, T]$.
Proof. Let $z_{0} \in \operatorname{dom} f^{0}$ and $r>0$ such that $r \geqslant\left\|z_{0}\right\| \vee\left|f^{0}\left(z_{0}\right)\right|$. For all $t \in[0, T]$, there exists $z_{t} \in \operatorname{dom} f^{t}$ satisfying

$$
\left\{\begin{array}{l}
\left\|z_{t}-z_{0}\right\| \leqslant\left|h_{r}(t)-h_{r}(0)\right|\left(1+\left|f^{0}\left(z_{0}\right)\right|^{1 / 2}\right) \\
f^{t}\left(z_{t}\right) \leqslant f^{0}\left(z_{0}\right)+\left|k_{r}(t)-k_{r}(0)\right|\left(1+\left|f^{0}\left(z_{0}\right)\right|\right) .
\end{array}\right.
$$

The lemma holds with $\rho_{0}=\left(r+\left\|h_{r}^{\prime}\right\|_{L^{1}}\left(1+r^{1 / 2}\right)\right) \vee\left(r+\left\|k_{r}^{\prime}\right\|_{L^{1}}(1+r)\right)$.
Lemma 3.2 [18, Proposition 3.1]. Let $x \in X$ and $\lambda>0$. The map $t \mapsto J_{\lambda}^{t} x$ is continuous on $[0, T]$.

Proof. ¿From Kenmochi [11, Chapter 1, Section 1.5, Theorem 1.5.1], there is a nonnegative constant α such that $f^{t}(x) \geqslant-\alpha(\|x\|+1)$ for all $x \in X$ and $t \in[0, T]$. Thus,

$$
f_{\lambda}^{t}(x)-\frac{1}{2 \lambda}\left\|x-J_{\lambda}^{t} x\right\|^{2}=f^{t}\left(J_{\lambda}^{t} x\right) \geqslant-\alpha\left(1+\left\|J_{\lambda}^{t} x\right\|\right)
$$

which implies

$$
\begin{equation*}
\left\|x-J_{\lambda}^{t} x\right\|^{2} \leqslant 2 \lambda \alpha\left(1+\left\|J_{\lambda}^{t} x-x\right\|+\|x\|\right)+2 \lambda f_{\lambda}^{t}(x) \tag{3}
\end{equation*}
$$

Since $2 \lambda f_{\lambda}^{t}(x) \leqslant 2 \lambda f^{t}\left(z_{t}\right)+\left\|z_{t}-x\right\|^{2} \leqslant 2 \lambda \rho_{0}+\left(\rho_{0}+\|x\|\right)^{2}$ by Lemma 3.1, we can conclude:

$$
\begin{array}{r}
\left.\sup \left\{\left\|J_{\lambda}^{t} x\right\| \mid t \in[0, T], \lambda \in\right] 0,1\right], \\
\sup \left\{\left|f^{t}\left(J_{\lambda}^{t} x\right)\right| \mid t \in[0, T],\right. \\
x \in r \mathbb{B}\}<\infty
\end{array}
$$

for any $r>0$.
Let $t \in[0, T]$ and $r \geqslant\left\|J_{\lambda}^{t} x\right\|$. By assumption $\left(\mathrm{H}_{0}\right)$, for each $s \in[0, T]$ with $s \geqslant t$ there exists $x_{s} \in \operatorname{dom} f^{s}$ satisfying

$$
\left\{\begin{array}{l}
\left\|J_{\lambda}^{t} x-x_{s}\right\| \leqslant\left|h_{r}(t)-h_{r}(s)\right|\left(1+\left|f^{t}\left(J_{\lambda}^{t} x\right)\right|^{1 / 2}\right) \\
f^{s}\left(x_{s}\right) \leqslant f^{t}\left(J_{\lambda}^{t} x\right)+\left|k_{r}(t)-k_{r}(s)\right|\left(1+\left|f^{t}\left(J_{\lambda}^{t} x\right)\right|\right) .
\end{array}\right.
$$

Since $\lambda^{-1}\left(x-J_{\lambda}^{s} x\right) \in \partial f^{s}\left(J_{\lambda}^{s} x\right)$, we have

$$
f^{s}\left(J_{\lambda}^{s} x\right)+\frac{1}{\lambda}\left\langle x-J_{\lambda}^{s} x, x_{s}-J_{\lambda}^{s} x\right\rangle \leqslant f^{s}\left(x_{s}\right) \leqslant f^{t}\left(J_{\lambda}^{t} x\right)+\left|k_{r}(t)-k_{r}(s)\right|\left(1+\left|f^{t}\left(J_{\lambda}^{t} x\right)\right|\right) .
$$

Hence, for any $s \geqslant t$, we have

$$
\begin{aligned}
& \frac{1}{\lambda}\left\langle x-J_{\lambda}^{s} x, J_{\lambda}^{t} x-J_{\lambda}^{s} x\right\rangle \\
\leqslant & \frac{1}{\lambda}\left\langle x-J_{\lambda}^{s} x, J_{\lambda}^{t} x-x_{s}\right\rangle+f^{t}\left(J_{\lambda}^{t} x\right)-f^{s}\left(J_{\lambda}^{s} x\right)+\left|k_{r}(t)-k_{r}(s)\right|\left(1+\left|f^{t}\left(J_{\lambda}^{t} x\right)\right|\right) \\
\leqslant & \left\|D f_{\lambda}^{s}(x)\right\|\left|h_{r}(t)-h_{r}(s)\right|\left(1+\left|f^{t}\left(J_{\lambda}^{t} x\right)\right|^{1 / 2}\right)+f^{t}\left(J_{\lambda}^{t} x\right)-f^{s}\left(J_{\lambda}^{s} x\right) \\
& +\left|k_{r}(t)-k_{r}(s)\right|\left(1+\left|f^{t}\left(J_{\lambda}^{t} x\right)\right|\right) .
\end{aligned}
$$

By symmetry it is true for any $s \in[0, T]$. In the same way for t, s in $[0, T]$, we have

$$
\begin{array}{r}
\frac{1}{\lambda}\left\langle x-J_{\lambda}^{t} x, J_{\lambda}^{s} x-J_{\lambda}^{t} x\right\rangle \leqslant\left\|D f_{\lambda}^{t}(x)\right\|\left|h_{r}(t)-h_{r}(s)\right|\left(1+\left|f^{s}\left(J_{\lambda}^{s} x\right)\right|^{1 / 2}\right)+f^{s}\left(J_{\lambda}^{s} x\right)-f^{t}\left(J_{\lambda}^{t} x\right) \\
+\left|k_{r}(t)-k_{r}(s)\right|\left(1+\left|f^{s}\left(J_{\lambda}^{s} x\right)\right|\right) .
\end{array}
$$

Adding these two inequalities we obtain

$$
\begin{gathered}
\frac{1}{\lambda}\left\|J_{\lambda}^{s} x-J_{\lambda}^{t} x\right\|^{2} \leqslant\left[\left\|D f_{\lambda}^{t}(x)\right\| \vee\left\|D f_{\lambda}^{s}(x)\right\|\right]\left|h_{r}(t)-h_{r}(s)\right|\left(1+\left|f^{s}\left(J_{\lambda}^{s} x\right)\right|^{1 / 2} \vee\left|f^{t}\left(J_{\lambda}^{t} x\right)\right|^{1 / 2}\right) \\
+\left|k_{r}(t)-k_{r}(s)\right|\left(1+\left|f^{s}\left(J_{\lambda}^{s} x\right)\right| \vee\left|f^{t}\left(J_{\lambda}^{t} x\right)\right|\right)
\end{gathered}
$$

Since both $\left\|D f_{\lambda}^{t}(x)\right\|$ and $\left|f^{t}\left(J_{\lambda}^{t} x\right)\right|$ are bounded, $t \mapsto J_{\lambda}^{t} x$ is continuous on $[0, T]$.
By [11, Lemma 1.5.3], for $r \geqslant\left\|u_{0}\right\|+1, M_{1} \geqslant\left|f^{0}\left(u_{0}\right)\right|+\alpha r+\alpha+1$ and $\left.T_{1} \in\right] 0, T[$ such that

$$
\left[1+M_{1} \exp \int_{0}^{T}\left|k_{r}^{\prime}\right|\right] \int_{0}^{T_{1}}\left|h_{r}^{\prime}\right| \leqslant 1
$$

there exists an absolutely continuous function v on $\left[0, T_{1}\right]$ satisfying:

$$
\begin{aligned}
& * v(0)=u_{0} \text { and } \lim \sup _{t \rightarrow 0_{+}} f^{t}(v(t)) \leqslant f^{0}\left(u_{0}\right) \\
& *\|v(t)\| \leqslant r \text { for any } t \in\left[0, T_{1}\right] \\
& * \text { for any } t \in\left[0, T_{1}\right],\left|f^{t}(v(t))\right| \leqslant M_{1}+M_{1} \exp \int_{0}^{T}\left|k_{r}^{\prime}\right| \int_{0}^{t}\left|h_{r}^{\prime}\right| \\
& * \text { for almost any } t \in\left[0, T_{1}\right],\left\|v^{\prime}(t)\right\| \leqslant\left[1+M_{1} \exp \int_{0}^{T}\left|k_{r}^{\prime}\right|\right]\left|h_{r}^{\prime}(t)\right| .
\end{aligned}
$$

For $r \geqslant\left\|u_{0}\right\|+\rho$, let us choose $T_{2}>0$ such that

$$
\left(\left|f^{0}\left(u_{0}\right)\right|+\frac{M^{2}}{2} T_{2}+\int_{0}^{T_{2}} c_{r}(\tau) d \tau\right)\left(1+T_{2} \exp \int_{0}^{T_{2}} c_{r}(\tau) d \tau\right) \leqslant\left|f^{0}\left(u_{0}\right)\right|+\rho
$$

Let $r \geqslant\left(\left\|u_{0}\right\| \vee\left|f^{0}\left(u_{0}\right)\right|\right)+\rho+1$ be fixed. Let us choose $T_{0}>0$ small enough in order to have

$$
\begin{gathered}
\left(1+r^{1 / 2}\right)^{2} T_{0} \int_{0}^{T_{0}}\left|h_{r}^{\prime}\right| \leqslant \frac{\rho^{2}}{32}, \quad T_{0} \leqslant T_{1} \wedge T_{2} \quad \text { and } \\
M_{T} \sqrt{T_{0}}+[M+\alpha] T_{0}+\left[1+M_{1} \exp \left(\int_{0}^{T}\left|k_{r}^{\prime}\right|\right)\right] \int_{0}^{T_{0}}\left|h_{r}^{\prime}(s)\right| d s \leqslant \frac{\rho}{4}
\end{gathered}
$$

where $M_{T}=2\left[M_{1}+M_{1}\left(\exp \int_{0}^{T}\left|k_{r}^{\prime}\right|\right) \int_{0}^{T}\left|h_{r}^{\prime}(s)\right| d s+\alpha r+\alpha\right]^{1 / 2}$.
Lemma 3.3 Let $\beta:[0, T] \rightarrow X$ be a measurable function with $\|\beta(t)\| \leqslant M$ for a.e. $t \in[0, T]$. Then,

$$
\forall t \in\left[0, T_{0}\right] \quad\left\|p(\beta)(t)-u_{0}\right\| \leqslant \frac{\rho}{2}
$$

the map p being defined in Section 2.

Proof. The curve $u=p(\beta)$ exists on $[0, T]$ following Theorem 2.1. We have for a.e. $t \in\left[0, T_{0}\right]$:

$$
\begin{aligned}
\frac{d}{d t} \frac{1}{2}\|u(t)-v(t)\|^{2} & \leqslant f^{t}(v(t))-f^{t}(u(t))+\left[M+\left\|v^{\prime}(t)\right\|\right]\|u(t)-v(t)\| \\
& \leqslant \frac{1}{2} M_{T}^{2}+\left[M+\left\|v^{\prime}(t)\right\|+\alpha\right]\|u(t)-v(t)\|
\end{aligned}
$$

We thus obtain for any $t \in\left[0, T_{0}\right]$

$$
\frac{1}{2}\|u(t)-v(t)\|^{2} \leqslant \frac{1}{2} M_{T}^{2} T_{0}+\int_{0}^{t}\left[M+\left\|v^{\prime}(s)\right\|+\alpha\right]\|u(s)-v(s)\| d s
$$

Gronwall's lemma yields for any $t \in\left[0, T_{0}\right]$

$$
\begin{aligned}
\|u(t)-v(t)\| & \leqslant M_{T} \sqrt{T_{0}}+\int_{0}^{t}\left[M+\left\|v^{\prime}(s)\right\|+\alpha\right] d s \\
& \leqslant M_{T} \sqrt{T_{0}}+[M+\alpha] T_{0}+\left[1+M_{1} \exp \int_{0}^{T}\left|k_{r}^{\prime}\right|\right] \int_{0}^{T_{0}}\left|h_{r}^{\prime}(s)\right| d s \leqslant \frac{\rho}{4}
\end{aligned}
$$

Furthermore,

$$
\left\|v(t)-u_{0}\right\| \leqslant \int_{0}^{t}\left\|v^{\prime}(s)\right\| d s \leqslant\left[1+M_{1} \exp \int_{0}^{T}\left|k_{r}^{\prime}\right|\right] \int_{0}^{T_{0}}\left|h_{r}^{\prime}(s)\right| d s \leqslant \frac{\rho}{4}
$$

By choice of $T_{0}>0$, we obtain $\left\|u(t)-u_{0}\right\| \leqslant \rho / 2$ for any $t \in\left[0, T_{0}\right]$.
For simplicity of notation, we now write T instead of T_{0}. We also assume that $f^{t}(x) \geqslant 0$ for any $x \in X$ with $\left\|x-u_{0}\right\| \leqslant \rho$, since we have $f^{t}(x) \geqslant-\alpha\left(\left\|u_{0}\right\|+\rho+1\right)$.

Let $n \in \mathbb{N}^{\star}$ such that :

$$
\alpha^{2} 2^{-6 n}+2^{-3 n+1}\left[r+(1+r)\left(\int_{0}^{T}\left|k_{r}^{\prime}\right|+\alpha\right)\right] \leqslant \frac{\rho^{2}}{32} .
$$

Let us set $f_{n}^{t}=f_{2^{-3 n}}^{t}$ and $J_{n}^{t}=J_{2^{-3 n}}^{t}$. Let \mathcal{P} be a partition of $[0, T]$:

$$
\mathcal{P}=\left\{0=t_{0}^{n}<t_{1}^{n}<\cdots<t_{2^{n}}^{n}=T\right\}
$$

where $t_{k}^{n}=k 2^{-n} T$ for $k=0, \ldots, 2^{n}$.
Let us set $u_{0}^{n}=J_{n}^{t_{n}^{n}} u_{0}$. By assumption $\left(\mathrm{B}_{o}\right)(\mathrm{i}), B\left(t_{0}^{n}, u_{0}^{n}\right)$ is non empty and contains an element β_{0}^{n}. Let $t \in[0, T]$. Under the assumption $\left(\mathrm{H}_{0}\right)$, there exists $u_{n, t} \in \operatorname{dom} f^{t}$ satisfying

$$
\left\{\begin{array}{l}
\left\|u_{n, t}-u_{0}\left|\| \leqslant\left|h_{r}(t)-h_{r}(0)\right|\left(1+r^{1 / 2}\right)\right.\right. \\
f^{t}\left(u_{n, t}\right) \leqslant r+\left|k_{r}(t)-k_{r}(0)\right|(1+r) .
\end{array}\right.
$$

Using the definition of the Moreau-Yosida approximate, we obtain

$$
\begin{aligned}
\frac{2^{3 n}}{2}\left\|J_{n}^{t} u_{0}-u_{0}\right\|^{2} & =f_{n}^{t}\left(u_{0}\right)-f^{t}\left(J_{n}^{t} u_{0}\right) \\
& \leqslant f^{t}\left(u_{n, t}\right)+\frac{2^{3 n}}{2}\left\|u_{n, t}-u_{0}\right\|^{2}+\alpha\left\|J_{n}^{t} u_{0}-u_{0}\right\|+\alpha\left(1+\left\|u_{0}\right\|\right) \\
& \leqslant r+(1+r) \int_{0}^{t}\left|k_{r}^{\prime}\right|+\frac{2^{3 n}}{2}\left(1+r^{1 / 2}\right)^{2} t \int_{0}^{t}\left|h_{r}^{\prime}\right|^{2}+\alpha\left\|J_{n}^{t} u_{0}-u_{0}\right\|+\alpha(1+r)
\end{aligned}
$$

Thus, by choice of r, T and n we obtain

$$
\begin{aligned}
& \left\|J_{n}^{t} u_{0}-u_{0}\right\| \\
\leqslant & \alpha 2^{-3 n}+\sqrt{\alpha^{2} 2^{-6 n}+2 r 2^{-3 n}+2(1+r) 2^{-3 n}\left(\int_{0}^{T}\left|k_{r}^{\prime}\right|+\alpha\right)+(1+\sqrt{r})^{2} T \int_{0}^{T}\left|h_{r}^{\prime}\right|^{2}} \\
\leqslant & \frac{\rho}{2} .
\end{aligned}
$$

In particular, $\left\|u_{0}^{n}-u_{0}\right\| \leqslant \rho / 2$. Under $\left(\mathrm{B}_{o}\right)$ (ii) it follows $\left\|\beta_{0}^{n}\right\| \leqslant M$. Let us set $x_{0}^{n}=p\left(\beta_{0}^{n}\right)$. By Lemma 3.3,

$$
\forall t \in[0, T] \quad\left\|x_{0}^{n}(t)-u_{0}\right\| \leqslant \frac{\rho}{2}
$$

Let us set $u_{1}^{n}=J_{n}^{t_{1}^{n}} x_{0}^{n}\left(t_{1}^{n}\right)$ and take $\beta_{1}^{n} \in B\left(t_{1}^{n}, u_{1}^{n}\right)$. Since $J_{n}^{t_{1}^{n}}$ is 1 -Lipschitz continuous, we have

$$
\left\|u_{1}^{n}-u_{0}\right\| \leqslant\left\|x_{0}^{n}\left(t_{1}^{n}\right)-u_{0}\right\|+\left\|J_{n}^{t_{n}^{n}} u_{0}-u_{0}\right\| \leqslant \rho .
$$

Next, $\left(\mathrm{B}_{o}\right)($ ii $)$ implies $\left\|\beta_{1}^{n}\right\| \leqslant M$. We then set

$$
\beta_{1}^{n}(t)= \begin{cases}\beta_{0}^{n} & \text { if } t \in\left[t_{0}^{n}, t_{1}^{n}[\right. \\ \beta_{1}^{n} & \text { if } t \in\left[t_{1}^{n}, T\right]\end{cases}
$$

Let us set $x_{1}^{n}=p\left(\beta_{1}^{n}\right)$. By unicity and continuity of the curve it follows $x_{1}^{n}(t)=x_{0}^{n}(t)$ if $t \in\left[t_{0}^{n}, t_{1}^{n}\right]$. Furthermore, $\left\|\beta_{1}^{n}(t)\right\| \leqslant M$ for any $t \in[0, T]$. By Lemma 3.3,

$$
\forall t \in[0, T] \quad\left\|x_{1}^{n}(t)-u_{0}\right\| \leqslant \frac{\rho}{2}
$$

Let $k \in \mathbb{N}^{\star}$. Assume that there exists a map $\beta_{k-1}^{n}:[0, T] \rightarrow X$ which is constant on each $\left[t_{k-1}^{n}, t_{k}^{n}\left[\right.\right.$ with $\left\|\beta_{k-1}^{n}(t)\right\| \leqslant M$ for any $t \in[0, T]$. Set $x_{k-1}^{n}=p\left(\beta_{k-1}^{n}\right)$. Then,

$$
\forall t \in[0, T] \quad\left\|x_{k-1}^{n}(t)-u_{0}\right\| \leqslant \frac{\rho}{2}
$$

Let us set $u_{k}^{n}=J_{n}^{t_{k}^{n}} x_{k-1}^{n}\left(t_{k}^{n}\right)$ and take $\beta_{k}^{n} \in B\left(t_{k}^{n}, u_{k}^{n}\right)$. Since

$$
\left\|u_{k}^{n}-u_{0}\right\| \leqslant\left\|x_{k-1}^{n}\left(t_{k}^{n}\right)-u_{0}\right\|+\left\|J_{n}^{t_{k}^{n}} u_{0}-u_{0}\right\| \leqslant \rho
$$

we have $\left\|\beta_{k}^{n}\right\| \leqslant M$. We then set

$$
\beta_{k}^{n}(t)=\left\{\begin{array}{l}
\beta_{k-1}^{n}(t) \text { if } t \in\left[t_{0}^{n}, t_{k}^{n}[\right. \\
\beta_{k}^{n} \text { if } t \in\left[t_{k}^{n}, T\right]
\end{array}\right.
$$

Let us set $x_{k}^{n}=p\left(\beta_{k}^{n}\right)$. By unicity it follows $x_{k}^{n}(t)=x_{k-1}^{n}(t)$ if $t \in\left[0, t_{k}^{n}\right]$. Furthermore, $\left\|\beta_{k}^{n}(t)\right\| \leqslant M$ for any $t \in[0, T]$. By Lemma 3.3,

$$
\forall t \in[0, T] \quad\left\|x_{k}^{n}(t)-u_{0}\right\| \leqslant \frac{\rho}{2} .
$$

We then set

$$
x_{n}:=x_{2^{n}-1}^{n}=\sum_{k=0}^{2^{n}} x_{k}^{n} \chi_{\left[t_{k}^{n}, t_{k+1}^{n}[\right.} \quad \text { and } \quad \beta_{n}:=\beta_{2^{n}-1}^{n}=\sum_{k=0}^{2^{n}} \beta_{k}^{n} \chi_{\left[t_{k}^{n}, t_{k+1}^{n}[\right.},
$$

where $\chi_{\left[t_{k}^{n}, t_{k+1}^{n}[\right.}[t)=1$ if $t \in\left[t_{k}^{n}, t_{k+1}^{n}[\right.$, and $=0$ otherwise. For all $t \in[0, T[$, there exists $0 \leqslant k \leqslant 2^{n}$ with $t \in\left[t_{k}^{n}, t_{k+1}^{n}\right.$ [and we set

$$
\theta_{n}(t)=t_{k}^{n} \quad \text { and } \quad \theta_{n}(T)=T
$$

So, $x_{n}:[0, T] \rightarrow X$ is an absolutely continuous function and $\beta_{n}:[0, T] \rightarrow X$ is a measurable map which satisfy for a.e. $t \in[0, T]$

$$
\left\{\begin{array}{l}
x_{n}^{\prime}(t)+\partial f^{t}\left(x_{n}(t)\right)+\beta_{n}(t) \ni 0 \\
x_{n}(0)=u_{0}
\end{array} \quad \text { and } \quad \beta_{n}(t) \in B\left(\theta_{n}(t), u_{n}(t)\right)\right.
$$

where we set $u_{n}(t)=J_{n}^{\theta_{n}(t)} x_{n}\left(\theta_{n}(t)\right)$. By construct, there exists $N \in \mathbb{N}$ such that for any $n \geqslant N$:

$$
\forall t \in[0, T] \quad\left\|x_{n}(t)-u_{0}\right\| \leqslant \rho \quad \text { and } \quad\left\|\beta_{n}(t)\right\| \leqslant M
$$

A subsequence of $\left(\beta_{n}\right)_{n}$, again denoted by $\left(\beta_{n}\right)_{n}$, converges weakly to β in $L^{2}(0, T ; X)$. By continuity of the map p, the sequence $x_{n}=p\left(\beta_{n}\right)$ converges uniformly to a curve $x=p(\beta)$ on $[0, T]$ and a subsequence of $\left(x_{n}^{\prime}\right)_{n}$ converges weakly to x^{\prime} in $L^{2}(0, T ; X)$.
In other words, the curve x is the solution of $x^{\prime}(t)+\partial f^{t}(x(t))+\beta(t) \ni 0, x(0)=u_{0}$ on $[0, T]$.

Let $n \in \mathbb{N}^{\star}$ and $t \in[0, T]$. We have

$$
\begin{equation*}
\left\|u_{n}(t)-x(t)\right\| \leqslant\left\|x_{n}\left(\theta_{n}(t)\right)-x\left(\theta_{n}(t)\right)\right\|+\left\|x\left(\theta_{n}(t)\right)-x(t)\right\|+\left\|J_{n}^{\theta_{n}(t)} x(t)-x(t)\right\| . \tag{4}
\end{equation*}
$$

Under the assumption $\left(\mathrm{H}_{0}\right)$, there exists $u_{n, t} \in \operatorname{dom} f^{\theta_{n}(t)}$ satisfying

$$
\left\{\begin{array}{l}
\left\|u_{n, t}-x(t)\right\| \leqslant\left|h_{r}\left(\theta_{n}(t)\right)-h_{r}(t)\right|\left(1+r^{1 / 2}\right) \\
f^{\theta_{n}(t)}\left(u_{n, t}\right) \leqslant r+\left|k_{r}\left(\theta_{n}(t)\right)-k_{r}(t)\right|(1+r) .
\end{array}\right.
$$

Using the definition of the Moreau-Yosida approximate, we obtain

$$
\begin{aligned}
& \frac{2^{3 n}}{2}\left\|J_{n}^{\theta_{n}(t)} x(t)-x(t)\right\|^{2}=f_{n}^{\theta_{n}(t)}(x(t))-f^{t}\left(J_{n}^{\theta_{n}(t)} x(t)\right) \\
& \leqslant f^{\theta_{n}(t)}\left(u_{n, t}\right)+\frac{2^{3 n}}{2}\left\|u_{n, t}-x(t)\right\|^{2}+\alpha\left\|J_{n}^{\theta_{n}(t)} x(t)-x(t)\right\|+\alpha(1+r) \\
& \leqslant r+(1+r) \int_{\theta_{n}(t)}^{t}\left|k_{r}^{\prime}\right|+\frac{2^{3 n}}{2}\left(1+r^{1 / 2}\right)^{2}\left(t-\theta_{n}(t)\right) \int_{\theta_{n}(t)}^{t}\left|h_{r}^{\prime}\right|^{2} \\
& +\alpha\left\|J_{n}^{\theta_{n}(t)} x(t)-x(t)\right\|+\alpha(1+r) .
\end{aligned}
$$

Thus,

$$
\alpha 2^{-3 n}+\sqrt{\alpha^{2} 2^{-6 n}+2 r 2^{-3 n}+2(1+r) 2^{-3 n}\left(\int_{0}^{T}\left|k_{r}^{\prime}\right|+\alpha\right)+\left(1+r^{1 / 2}\right)^{2} 2^{-n} \int_{0}^{T}\left|h_{r}^{\prime}\right|^{2}}
$$

and $\left(J_{n}^{\theta_{n}(.)} x\right)_{n}$ converges uniformly to x on $[0, T]$. Since $\left(x_{n}\right)_{n}$ converges uniformly to x on $[0, T]$ and x is continuous on $[0, T]$, (4) assures the uniform convergence of $\left(u_{n}\right)_{n}$ to x on $[0, T]$.

3.2 Properties of approximate solutions

Lemma 3.4 We have $\|x(t)\| \vee\left|f^{t}(x(t))\right| \leqslant r$ for all $t \in[0, T]$. Under the assumption (B) (ii), the element $\beta(t)$ belongs to $-\partial \varphi(x(t))$ for a.e. $t \in[0, T]$.

Proof. By inequality (2), we have for any $s \leqslant t$ in $[0, T]$

$$
f^{t}(x(t))-f^{s}(x(s))+\frac{1}{2} \int_{s}^{t}\left\|x^{\prime}(\tau)\right\|^{2} d \tau \leqslant \frac{1}{2} M^{2} T+\int_{s}^{t} c_{r}(\tau)\left[1+\left|f^{\tau}(x(\tau))\right|\right] d \tau
$$

Since $\left\|x(t)-u_{0}\right\| \leqslant \rho$, we have assumed for simplicity that $f^{t}(x(t)) \geqslant 0$ for any $t \in[0, T]$. Gronwall's lemma yields for any $t \in[0, T]$

$$
\begin{equation*}
f^{t}(x(t)) \leqslant\left(f^{0}\left(u_{0}\right)+\frac{M^{2}}{2} T+\int_{0}^{T} c_{r}(\tau) d \tau\right)\left(1+T \exp \int_{0}^{T} c_{r}(\tau) d \tau\right) \leqslant\left|f^{0}\left(u_{0}\right)\right|+\rho \tag{5}
\end{equation*}
$$

by assumption on T.
Next, $\beta_{n}(t)$ belongs to $-\partial \varphi\left(u_{n}(t)\right)$ with the uniform convergence of $\left(u_{n}\right)_{n}$ to x on $[0, T]$.
Let us define $\tilde{\varphi}: L^{2}(0, T ; X) \rightarrow \mathbb{R} \cup\{+\infty\}$ by $\tilde{\varphi}(u)=\int_{0}^{T} \varphi(u(t)) d t$. It is known that $\tilde{\varphi}$ is proper lsc convex and

$$
\alpha \in \partial \tilde{\varphi}(u) \Longleftrightarrow \alpha(t) \in \partial \varphi(u(t)) \text { for a.e. } t \in[0, T] .
$$

Thus, $-\beta_{n} \in \partial \tilde{\varphi}\left(u_{n}\right)$. Passing to the limit we obtain $-\beta \in \partial \tilde{\varphi}(x)$. Hence, $\beta(t)$ belongs to $-\partial \varphi(x(t))$ for a.e. $t \in[0, T]$.

Lemma 3.5 For almost any $t \in[0, T]$ we have $f^{t}(x(t))=\liminf _{n \rightarrow+\infty} f^{t}\left(x_{n}(t)\right)$. Furthermore, $\lim _{n \rightarrow+\infty} \int_{0}^{T} f^{t}\left(x_{n}(t)\right) d t=\int_{0}^{T} f^{t}(x(t)) d t$ and $\lim _{n \rightarrow+\infty} \int_{0}^{T}\left(f^{t}\right)^{\star}\left(y_{n}(t)\right) d t=\int_{0}^{T}\left(f^{t}\right)^{\star}(y(t)) d t$, where we set $y_{n}(t)=-x_{n}^{\prime}(t)-\beta_{n}(t)$ and $y(t)=-x^{\prime}(t)-\beta(t)$ for a.e. t in $[0, T]$.

Proof. By lower semicontinuity of f^{t}, the inequality

$$
f^{t}(x(t)) \leqslant \liminf _{n \rightarrow+\infty} f^{t}\left(x_{n}(t)\right)
$$

holds for any $t \in[0, T]$. The maps $v \mapsto \int_{0}^{T} f^{t}(v(t)) d t$ and $w \mapsto \int_{0}^{T}\left(f^{t}\right)^{\star}(w(t)) d t$ are proper lsc convex on $L^{2}(0, T ; X)$. So,
$\liminf _{n \rightarrow+\infty} \int_{0}^{T} f^{t}\left(x_{n}(t)\right) d t \geqslant \int_{0}^{T} f^{t}(x(t)) d t \quad$ and $\quad \liminf _{n \rightarrow+\infty} \int_{0}^{T}\left(f^{t}\right)^{\star}\left(y_{n}(t)\right) d t \geqslant \int_{0}^{T}\left(f^{t}\right)^{\star}(y(t)) d t$.
But, $f^{t}\left(x_{n}(t)\right)+\left(f^{t}\right)^{\star}\left(y_{n}(t)\right)=\left\langle y_{n}(t), x_{n}(t)\right\rangle$ for any $t \in[0, T]$, with

$$
\lim _{n \rightarrow+\infty} \int_{0}^{T}\left\langle y_{n}(t), x_{n}(t)\right\rangle d t=\int_{0}^{T}\langle y(t), x(t)\rangle d t .
$$

Lemma 3.6 We have the inequality

$$
\begin{equation*}
\int_{0}^{T}\left\langle\beta(s), x^{\prime}(s)\right\rangle d s \leqslant \liminf _{n \rightarrow+\infty} \int_{0}^{T}\left\langle\beta_{n}(s), x_{n}^{\prime}(s)\right\rangle d s \tag{6}
\end{equation*}
$$

Proof. Let $n \in \mathbb{N}^{\star}$. The maps x_{n}, β_{n} and u_{n} are constant on $\left[t_{k}^{n}, t_{k+1}^{n}\left[, k=0, \ldots, 2^{n}-1\right.\right.$. Hence,

$$
\int_{0}^{T}\left\langle\beta_{n}(s), x_{n}^{\prime}(s)\right\rangle d s=\sum_{k=0}^{2^{n}-1} \int_{t_{k}^{n}}^{t_{k+1}^{n}}\left\langle\beta_{k}^{n},\left(x_{k}^{n}\right)^{\prime}(s)\right\rangle d s=\sum_{k=0}^{2^{n}-1}\left\langle\beta_{k}^{n}, x_{k}^{n}\left(t_{k+1}^{n}\right)-x_{k}^{n}\left(t_{k}^{n}\right)\right\rangle .
$$

Since $\beta_{k}^{n} \in-\partial \varphi\left(u_{k}^{n}\right)$ for any $k=0, \ldots, 2^{n}-1$, we obtain:

$$
\begin{aligned}
\int_{0}^{T}\left\langle\beta_{n}(s), x_{n}^{\prime}(s)\right\rangle d s & \geqslant \sum_{k=0}^{2^{n}-1} \varphi\left(u_{k}^{n}\right)-\varphi\left(x_{k}^{n}\left(t_{k+1}^{n}\right)\right)-M\left\|u_{k}^{n}-x_{k}^{n}\left(t_{k}^{n}\right)\right\| \\
& =\varphi\left(u_{0}^{n}\right)-\varphi\left(x_{2^{n}-1}^{n}\left(t_{2^{n}}^{n}\right)\right)+\sum_{k=1}^{2^{n}-1} \varphi\left(u_{k}^{n}\right)-\varphi\left(x_{k}^{n}\left(t_{k}^{n}\right)\right)-M\left\|u_{k}^{n}-x_{k}^{n}\left(t_{k}^{n}\right)\right\| \\
& \geqslant \varphi\left(J_{n}^{0} u_{0}\right)-\varphi\left(x_{n}(T)\right)-2 M \sum_{k=1}^{2^{n}-1}\left\|u_{k}^{n}-x_{k}^{n}\left(t_{k}^{n}\right)\right\| .
\end{aligned}
$$

EJQTDE, 2005 No. 11, p. 12

Since $\left\|u_{k}^{n}-u_{0}\right\| \leqslant\left\|u_{n}\left(t_{k}^{n}\right)-x_{n}\left(t_{k}^{n}\right)\right\|+\rho / 2 \leqslant \rho$ for n large enough, we have $f^{t_{k}^{n}}\left(u_{k}^{n}\right) \geqslant 0$. Furthermore, inequality (5) assures that $f_{k}^{t_{k}^{n}}\left(x_{k}^{n}\left(t_{k}^{n}\right)\right) \leqslant f^{0}\left(u_{0}\right)+\rho \leqslant r$. Using the definition of the Moreau-Yosida approximate, we obtain

$$
\frac{2^{3 n}}{2}\left\|u_{k}^{n}-x_{k}^{n}\left(t_{k}^{n}\right)\right\|^{2}=f_{n}^{t_{k}^{n}}\left(x_{k}^{n}\left(t_{k}^{n}\right)\right)-f_{k}^{t_{k}^{n}}\left(u_{k}^{n}\right) \leqslant r
$$

Thus, $\left\|u_{k}^{n}-x_{k}^{n}\left(t_{k}^{n}\right)\right\| \leqslant \sqrt{r 2^{-3 n+1}}$ and

$$
\sum_{k=1}^{2^{n}-1}\left\|u_{k}^{n}-x_{k}^{n}\left(t_{k}^{n}\right)\right\| \leqslant \sqrt{r 2^{-n+1}}
$$

Consequently,

$$
\lim _{n \rightarrow+\infty} \sum_{k=1}^{2^{n}-1}\left\|u_{k}^{n}-x_{k}^{n}\left(t_{k}^{n}\right)\right\|=0
$$

By continuity of φ and convergence of $\left(x_{n}\right)_{n}$ to x, we obtain

$$
\liminf _{n \rightarrow+\infty} \int_{0}^{T}\left\langle\beta_{n}(s), x_{n}^{\prime}(s)\right\rangle d s \geqslant \varphi\left(u_{0}\right)-\varphi(x(T)) .
$$

Since $\beta(s) \in-\partial \varphi(x(s))$ almost everywhere, $\left\langle\beta(s), x^{\prime}(s)\right\rangle=-(\varphi \circ x)^{\prime}(s)$ holds for a.e. s and we obtain the inequality (6) .

4 Existence of strong solutions

We now prove the existence of strong solutions.

4.1 General case

Let us set

$$
\Phi(x, y)=\int_{0}^{T}\left\langle y(t), x^{\prime}(t)\right\rangle d t-f^{T}(x(T))+f^{0}\left(u_{0}\right)
$$

for any absolutely continuous function $x:[0, T] \rightarrow X$ with $x^{\prime} \in L^{2}(0, T ; X)$ and any fonction $y \in L^{2}(0, T ; X)$.

Theorem 4.1 Let $\left(f^{t}\right)_{t \in[0, T]}$ be a family of proper convex lsc functions on X with each f^{t} of compact type which satifies the assumption (H). Assume that for any sequence $\left(x_{n}\right)_{n}$ in $H^{1}(0, T ; X)$ which converges uniformly to the absolutely continuous function x with the weak convergence of $\left(x_{n}^{\prime}\right)_{n}$ to x^{\prime} in L^{2}, and for any $\left(y_{n}\right)_{n}$ which converges weakly to y in L^{2} with $y_{n}(t) \in \partial f^{t}\left(x_{n}(t)\right)$ for almost all t, there exists $n_{k} \rightarrow+\infty$ such that

$$
\liminf _{k \rightarrow+\infty} \Phi\left(x_{n_{k}}, y_{n_{k}}\right) \geqslant \Phi(x, y) .
$$

Then, for each $u_{0} \in \operatorname{dom} f^{0}$, there exists $\left.\left.T_{0} \in\right] 0, T\right]$ such that $u^{\prime}+\partial f^{t}(u)+B(t, u) \ni 0$ has at least a strong solution $u:\left[0, T_{0}\right] \rightarrow X$ with $u(0)=u_{0}$.

Proof. Consider x an approximate solution. We prove $x^{\prime}(t)+\partial f^{t}(x(t))+B(t, x(t)) \ni 0$ for a.e. t in $[0, T]$. So, we begin by prove that $\left(x_{n}^{\prime}\right)_{n}$ converges strongly to x^{\prime} in $L^{2}(0, T ; X)$. Step 1. - Let us set $y_{n}(t)=-x_{n}^{\prime}(t)-\beta_{n}(t)$ and $y(t)=-x^{\prime}(t)-\beta(t)$ for a.e. t in $[0, T]$. It $\overline{\text { is easy }}$ to see that for any $n \in \mathbb{N}$ and almost any $t \in[0, T]$:

$$
\left\|x_{n}^{\prime}(t)\right\|^{2}+\left\langle y_{n}(t), x_{n}^{\prime}(t)\right\rangle+\left\langle\beta_{n}(t), x_{n}^{\prime}(t)\right\rangle=0 \quad \text { and } \quad\left\|x^{\prime}(t)\right\|^{2}+\left\langle y(t), x^{\prime}(t)\right\rangle+\left\langle\beta(t), x^{\prime}(t)\right\rangle=0 .
$$

The sequence $\left(x_{n}^{\prime}\right)_{n}$ converges weakly to x^{\prime} in $L^{2}(0, T ; X)$. The strong convergence of $\left(x_{n}^{\prime}\right)_{n}$ to x^{\prime} in $L^{2}(0, T ; X)$ is equivalent to

$$
\limsup _{n \rightarrow+\infty} \int_{0}^{T}\left\|x_{n}^{\prime}(t)\right\|^{2} d t \leqslant \int_{0}^{T}\left\|x^{\prime}(t)\right\|^{2} d t .
$$

¿From Lemma 3.6 it follows:

$$
\begin{aligned}
\limsup _{n \rightarrow+\infty} \int_{0}^{T}\left\|x_{n}^{\prime}(t)\right\|^{2} d t & \leqslant-\liminf _{n \rightarrow+\infty} \int_{0}^{T}\left\langle y_{n}(t), x_{n}^{\prime}(t)\right\rangle d t-\liminf _{n \rightarrow+\infty} \int_{0}^{T}\left\langle\beta_{n}(t), x_{n}^{\prime}(t)\right\rangle d t \\
& \leqslant-\liminf _{n \rightarrow+\infty} \int_{0}^{T}\left\langle y_{n}(t), x_{n}^{\prime}(t)\right\rangle d t-\int_{0}^{T}\left\langle\beta(t), x^{\prime}(t)\right\rangle d t
\end{aligned}
$$

Since $\int_{0}^{T}\left\langle\beta(t), x^{\prime}(t)\right\rangle d t=-\int_{0}^{T}\left\|x^{\prime}(t)\right\|^{2} d t+\int_{0}^{T}\left\langle y(t), x^{\prime}(t)\right\rangle d t$, it suffices to show that

$$
\begin{equation*}
\int_{0}^{T}\left\langle y(t), x^{\prime}(t)\right\rangle d t \leqslant \liminf _{n \rightarrow+\infty} \int_{0}^{T}\left\langle y_{n}(t), x_{n}^{\prime}(t)\right\rangle d t \tag{7}
\end{equation*}
$$

Step 2. - Under the assumption on Φ, it follows by lower semicontinuity of f^{T} :
$\liminf _{k \rightarrow+\infty} \int_{0}^{T}\left\langle y_{n_{k}}(t), x_{n_{k}}^{\prime}(t)\right\rangle d t \geqslant f^{T}(x(T))-f^{0}\left(u_{0}\right)+\liminf _{k \rightarrow+\infty} \Phi\left(x_{n_{k}}, y_{n_{k}}\right) \geqslant \int_{0}^{T}\left\langle y(t), x^{\prime}(t)\right\rangle d t$.
Step 3. - Let \mathcal{N} be the negligeable subset of $[0, T]$ such that, for any $t \in[0, T] \backslash \mathcal{N}$, we $\overline{\text { have } x_{n}^{\prime}}(t)+\partial f^{t}\left(x_{n}(t)\right)+\beta_{n}(t) \ni 0, \beta_{n}(t) \in B\left(\theta_{n}(t), u_{n}(t)\right)$ and $\left(x_{n}^{\prime}(t)\right)_{n}$ converges to $x^{\prime}(t)$. Since each f^{t} are of compact type, the sets $X(t):=\operatorname{cl}\left\{x_{n}(t) \mid n \in \mathbb{N}^{\star}\right\}$ and $U(t):=\operatorname{cl}\left\{u_{n}(t) \mid n \in \mathbb{N}^{\star}\right\}$ are compact in $\operatorname{Dom}\left(\partial f^{t}\right)$. Let $r \geqslant M \vee\left(\rho+\left\|u_{0}\right\|\right)$. Under the assumption (B)(iv), for each $n \geqslant N$ and $t \in[0, T]$ with $t \neq \theta_{n}(t)$, there exists $z_{n}^{t} \in \operatorname{Dom} B(t,$.$) and \alpha_{n}^{t} \in B\left(t, z_{n}^{t}\right)$ satisfying

$$
\left\|z_{n}^{t}-u_{n}(t)\right\| \vee\left\|\alpha_{n}^{t}-\beta_{n}(t)\right\| \leqslant g_{r}\left(\theta_{n}(t), t\right) .
$$

When $t=\theta_{n}(t)$, we simply take $z_{n}^{t}=u_{n}(t)$ and $\alpha_{n}^{t}=\beta_{n}(t)$. Then, $\left(z_{n}^{t}\right)_{n}$ converges to $x(t)$ and $Z(t):=\operatorname{cl}\left\{z_{n}^{t} \mid n \in \mathbb{N}^{\star}\right\}$ is compact in $\operatorname{Dom}\left(\partial f^{t}\right)$.
The restriction of $B(t,$.$) to \operatorname{Dom}\left(\partial f^{t}\right)$ being usc, the set $\{B(t, z) \mid z \in Z(t)\}$ is compact in X. Hence, $\Gamma(t):=\operatorname{cl}\left\{\alpha_{n}^{t} \mid n \in \mathbb{N}^{\star}\right\}$, and thus $\operatorname{cl}\left\{\beta_{n}(t) \mid n \in \mathbb{N}^{\star}\right\}$, are compact. So, $Y(t):=\operatorname{cl}\left\{y_{n}(t) \mid n \in \mathbb{N}^{\star}\right\}$ is compact in X.

Let us set $F^{t}(x)=\partial f^{t}(x) \cap Y(t)$ and $G^{t}(x)=B(t, x) \cap \Gamma(t)$ for any $x \in \operatorname{Dom}\left(\partial f^{t}\right)$ and $t \in[0, T]$. The multimaps F^{t} and G^{t} are upper semicontinuous on $\operatorname{Dom}\left(\partial f^{t}\right)$ with compact values in X. Let us denote by e the excess between two sets. We have:

$$
\begin{aligned}
d\left(-x_{n}^{\prime}(t), F^{t}(x(t))+G^{t}(x(t))\right) & \leqslant d\left(y_{n}(t), F^{t}(x(t))\right)+d\left(\beta_{n}(t), G^{t}(x(t))\right) \\
& \leqslant e\left(F^{t}\left(x_{n}(t)\right), F^{t}(x(t))\right)+\left\|\beta_{n}(t)-\alpha_{n}^{t}\right\|+d\left(\alpha_{n}^{t}, G^{t}(x(t))\right) \\
& \leqslant e\left(F^{t}\left(x_{n}(t)\right), F^{t}(x(t))\right)+g_{r}\left(\theta_{n}(t), t\right)+e\left(G^{t}\left(z_{n}^{t}\right), G^{t}(x(t))\right) .
\end{aligned}
$$

The upper-semicontinuity of F^{t} and G^{t} assures that

$$
\lim _{n \rightarrow+\infty} d\left(-x_{n}^{\prime}(t), F^{t}(x(t))+G^{t}(x(t))\right)=0 .
$$

Since $\left(x_{n}^{\prime}\right)_{n}$ converges to x^{\prime} a.e. on $[0, T]$, the equality $d\left(-x^{\prime}(t), F^{t}(x(t))+G^{t}(x(t))\right)=0$ holds for a.e. $t \in[0, T]$ and we obtain by closedness of $F^{t}(x(t))+G^{t}(x(t))$:

$$
-x^{\prime}(t) \in F^{t}(x(t))+G^{t}(x(t)) \quad \text { for a.e. } \quad t \in[0, T] .
$$

Consequently, x is a local solution to $x^{\prime}+\partial f^{t}(x)+B(t, x) \ni 0$ with $x(0)=u_{0}$.

4.2 Two particular cases

We consider two particular cases for which we can apply Theorem 4.1. These cases contains those of f^{t} not depending on t.
First,
Corollary 4.1 Let $\left(f^{t}\right)_{t \in[0, T]}$ be a family of proper convex lsc functions on X with each f^{t} of compact type. Let $u_{0} \in \operatorname{dom} f^{0}$. Assume that $f^{t}=g \circ F^{t}$ where g is a proper convex lsc function on a Hilbert space Y and $\left(F^{t}\right)_{t \in[0, T]}$ is a family of differentiable maps from X to Y such that $\left(D F^{t}\right)_{t}$ is equilipschitz continuous on a neighborhood of u_{0} and such that:

1. for each $r \geqslant 0$, there is absolutely continuous real-valued function b_{r} on $[0, T]$ such that:
(a) $b_{r}^{\prime} \in L^{2}(0, T)$,
(b) for each $s, t \in[0, T], \sup _{\|x\| \leqslant r}\left\|F^{t}(x)-F^{s}(x)\right\| \leqslant\left|b_{r}(t)-b_{r}(s)\right|$,
2. the qualification condition $\mathbb{R}_{+}\left[\operatorname{dom} g-F^{0}\left(u_{0}\right)\right]-D F^{0}\left(u_{0}\right) X=Y$ holds,
3. for each $r \geqslant 0$, there exists a negligible subset N of $[0, T]$ such that the mapping $t \mapsto F^{t}(x)$ admits a derivative $\Delta^{t}(x)$ on $[0, T] \backslash N$ for any $x \in r \mathbb{B}_{X}$ and Δ^{t} is continuous on $r \mathbb{B}_{X}$ for any $t \in[0, T] \backslash N$,
4. the mapping $(t, x) \mapsto D F^{t}(x)$ is bounded on $[0, T] \times r \mathbb{B}_{X}$ for each $r>0$ and it is continuous at t for each x.

Assume that (H) and (B) are satisfied. Then, there exists $\left.\left.T_{0} \in\right] 0, T\right]$ such that $u^{\prime}+\partial f^{t}(u)+$ $B(t, u) \ni 0$ has at least a strong solution $u:\left[0, T_{0}\right] \rightarrow X$ with $u(0)=u_{0}$.

Remark under assumption 1., the mapping $t \mapsto F^{t}(x)$ is absolutely continuous and admits a derivative at a.e. $t \in[0, T]$ for each x. With the uniformly inequality 1 .(b), we can hope that the almost derivability of $t \mapsto F^{t}(x)$ at t is uniform in $x \in r \mathbb{B}_{X}$ thanks to the regularity of F^{t} at x. Illustrate the importance of differentiability of F^{t} by the following example : $F(t, x)=h(t-x)$ where $X=Y=\mathbb{R}$ and the real function h is convex, Lipschitz continuous and non differentiable on $[0, T]$.

Proof of Corollary 4.1. Consider $x:[0, T] \rightarrow X$ an approximate solution. Let us set $y_{n}(t)=-x_{n}^{\prime}(t)-\beta_{n}(t)$ and $y(t)=-x^{\prime}(t)-\beta(t)$ for a.e. t in $[0, T], z_{n}(t)=F^{t}\left(x_{n}(t)\right)$ and $z(t)=F^{t}(x(t))$ for a.e. $t \in[0, T]$. Then, z_{n} and z are absolutely continuous on $[0, T]$, thus are derivable at a.e. $t \in[0, T]$ and

$$
z_{n}^{\prime}(t)=\Delta^{t}\left(x_{n}(t)\right)+D F^{t}\left(x_{n}(t)\right) x_{n}^{\prime}(t) \quad, \quad z^{\prime}(t)=\Delta^{t}(x(t))+D F^{t}(x(t)) x^{\prime}(t)
$$

Under the qualification condition, we have for any $x \in X$

$$
\partial f^{t}(x)=D F^{t}(x)^{\star} \partial g\left(F^{t}(x)\right)
$$

Let us write $y_{n}(t)=D F^{t}\left(x_{n}(t)\right)^{\star} w_{n}(t)$ and $y(t)=D F^{t}(x(t))^{\star} w(t)$ where $w_{n}(t) \in \partial g\left(z_{n}(t)\right)$ and $w(t) \in \partial g(z(t))$ for almost all $t \in[0, T]$. Hence, $g \circ z_{n}$ and $g \circ z$ are absolutely continuous with $\left\langle w_{n}(t), z_{n}^{\prime}(t)\right\rangle=\left(g \circ z_{n}\right)^{\prime}(t)$ for almost all $t \in[0, T]$. So,

$$
\left\langle y_{n}(t), x_{n}^{\prime}(t)\right\rangle=\frac{d}{d t}\left(f^{t} \circ x_{n}\right)(t)-\left\langle w_{n}(t), \Delta^{t}\left(x_{n}(t)\right)\right.
$$

and $\Phi\left(x_{n}, y_{n}\right)=-\int_{0}^{T}\left\langle w_{n}(t), \Delta^{t}\left(x_{n}(t)\right)\right\rangle d t$.
Let $r \geqslant\left\|x_{n}(t)\right\| \vee\|x(t)\|$ for any $n \in \mathbb{N}$ and $t \in[0, T]$. By continuity of Δ^{t} on $r \mathbb{B}_{X}$, $\left(\Delta^{t}\left(x_{n}(t)\right)\right)_{n}$ converges to $\Delta^{t}(x(t))$ for a.e $t \in[0, T]$. Next, for a.e. t and any $x \in r \mathbb{B}_{X}$, we have $\left\|\Delta^{t}(x)\right\| \leqslant\left|b_{r}^{\prime}(t)\right|$. By Lebesgue's theorem $\Delta \cdot\left(x_{n}().\right)$ converges to $\left.\Delta x().\right)$ in $L^{2}(0, T, Y)$. Since a subsequence of $\left(w_{n}\right)_{n}$ converges weakly to w, we can apply Theorem 4.1.

For example, if F^{t} is the affine mapping $x \mapsto A(t) x+b(t)$ where $A(t): X \rightarrow Y$ is linear continuous and $b(t) \in Y$, the assumption of Corollary 4.1 becomes :

1. b is absolutely continuous on $[0, T]$ and there is absolutely continuous real-valued function a on $[0, T]$ such that:
(a) $a^{\prime} \in L^{2}(0, T)$,
(b) for each $s, t \in[0, T],\|A(t)-A(s)\| \leqslant|a(t)-a(s)|$.
2. the qualification condition $\mathbb{R}_{+} \operatorname{dom} g-A(0) X=Y$ holds.
3. for each $r \geqslant 0$, there exists a negligible subset N of $[0, T]$ such that $A^{\prime}(t)$ is continuous on $r \mathbb{B}_{X}$ for any $t \in[0, T] \backslash N$.

Second, we use the conjugate of f^{t}.
Lemma 4.1 Let $\left(f^{t}\right)_{t \in[0, T]}$ be a family of proper convex lsc functions on X satisfying (H). Assume that :
for each $r \geqslant 0$, there exists a negligible subset N of $[0, T]$ such that for any $t \in[0, T] \backslash N$, the mapping $s \mapsto\left(f^{s}\right)^{\star}(y)$ admits a derivative $\dot{\gamma}(t, y)$ at t for any $y \in \operatorname{Dom} \partial\left(f^{t}\right)^{\star}$.

Let $x:[0, T] \rightarrow X$ be an absolutely continuous function and $y:[0, T] \rightarrow Y$ be such that $y(t) \in \partial f^{t}(x(t))$ for a.e. $t \in[0, T]$. For almost all $t \in[0, T]$, we have

$$
\begin{equation*}
\dot{\gamma}(t, y(t))+\frac{d}{d t} f^{t}(x(t))=\left\langle y(t), x^{\prime}(t)\right\rangle . \tag{8}
\end{equation*}
$$

Proof. Let s and t be in $[0, T] \backslash N$ where N is a suitable negligible subset of $[0, T]$. We have :

$$
\left(f^{s}\right)^{\star}(y(s))-\left(f^{t}\right)^{\star}(y(s)) \leqslant\left(f^{s}\right)^{\star}(y(s))-\left(f^{t}\right)^{\star}(y(t))-\langle y(s)-y(t), x(t)\rangle
$$

since $x(t) \in \partial\left(f^{t}\right)^{\star}(y(t))$. From $f^{t}(x(t))+\left(f^{t}\right)^{\star}(y(t))=\langle y(t), x(t)\rangle$, we deduce

$$
\left(f^{s}\right)^{\star}(y(s))-\left(f^{t}\right)^{\star}(y(s)) \leqslant f^{t}(x(t))-f^{s}(x(s))+\langle y(s), x(s)-x(t)\rangle .
$$

In the same way, for almost every t, s in $[0, T]$ we have

$$
\left(f^{s}\right)^{\star}(y(s))-\left(f^{t}\right)^{\star}(y(s)) \leqslant f^{t}(x(t))-f^{s}(x(s))+\langle y(s), x(s)-x(t)\rangle .
$$

Changing the role of s and t, we also have:

$$
\begin{aligned}
\left(f^{t}\right)^{\star}(y(t)) & -\left(f^{s}\right)^{\star}(y(t)) \leqslant f^{s}(x(s))-f^{t}(x(t))+\langle y(t), x(t)-x(s)\rangle \\
& \leqslant\left(f^{t}\right)^{\star}(y(s))-\left(f^{s}\right)^{\star}(y(s))+\langle y(t)-y(s), x(t)-x(s)\rangle .
\end{aligned}
$$

The function $t \mapsto f^{t}(x(t))$ being absolutely continuous on [0,T], see [11, Chapter 1], we obtain (8).

The existence of $\dot{\gamma}$ implies some regularity on the domain of $\left(f^{t}\right)^{\star}$. For example, consider $\left(f^{t}\right)^{\star}(y)=h(t-y)$ where $X=Y=\mathbb{R}$ and the real function h is convex, Lipschitz continuous and non differentiable on $[0, T]$. Then, we can not apply above lemma. The domain of $\left(f^{t}\right)^{\star}$ changes with t. But, we can apply Corollary 4.1 since $f^{t}(x)=t x+h^{\star}(-x)$. However, we have the absolutely continuity of $s \mapsto\left(f^{s}\right)^{\star}(y)$ in the following sense :

Proposition 4.1 Let $t \in[0, T], y \in Y, \eta>0$ and $r>0$ such that if $|t-s| \leqslant \eta$, the set $\partial\left(f^{s}\right)^{\star}(y) \cap r \mathbb{B}_{X}$ is nonempty. Then, $s \mapsto\left(f^{s}\right)^{\star}(y)$ is absolutely continuous on $] t-\eta, t+\eta[$.

Proof. 1) Lemma 3.1 with $\beta=\rho_{o}$ assures that $\left(f^{t}\right)^{\star}(y) \geqslant\left\langle y, z_{t}\right\rangle-f^{t}\left(z_{t}\right) \geqslant-\|y\| \beta-\beta$ for any $t \in[0, T]$ and $y \in X$. For $y \in \partial f^{t}(x)$, it follows

$$
-\alpha(\|x\|+1) \leqslant f^{t}(x)=\langle y, x\rangle-\left(f^{t}\right)^{\star}(y) \leqslant\|y\|[\|x\|+\beta]+\beta .
$$

So, there is a nonnegative constant β such that $\left(f^{t}\right)^{\star}(y) \geqslant-\beta(\|y\|+1)$ for all $y \in X$ and $t \in[0, T]$.
Furthermore, for each $r>0$, there is a nonnegative constant c such that $\left|f^{t}(x)\right| \leqslant$ $c(\|y\|+1)$ for all $x \in r \mathbb{B}_{X}, t \in[0, T]$ and $y \in \partial f^{t}(x)$.
2) Let t be fixed in $[0, T]$ and $y \in \partial f^{t}(x)$. Let $r \geqslant\|x\|$ and $s \in[t, T]$. Under the assumption $\left(\mathrm{H}_{0}\right)$, there exists $x_{s} \in \operatorname{dom} f^{s}$ satisfying

$$
\left\{\begin{array}{l}
\left\|x-x_{s}\right\| \leqslant\left|h_{r}(t)-h_{r}(s)\right|\left(1+\left|f^{t}(x)\right|^{1 / 2}\right) \\
f^{s}\left(x_{s}\right) \leqslant f^{t}(x)+\left|k_{r}(t)-k_{r}(s)\right|\left(1+\left|f^{t}(x)\right|\right)
\end{array}\right.
$$

By definition of conjugate of a convex function, it follows

$$
\begin{aligned}
\left(f^{t}\right)^{\star}(y)-\left(f^{s}\right)^{\star}(y) & \leqslant\left\langle y, x-x_{s}\right\rangle+f^{s}\left(x_{s}\right)-f^{t}(x) \\
& \leqslant\|y\|\left|h_{r}(t)-h_{r}(s)\right|\left(1+\left|f^{t}(x)\right|^{1 / 2}\right)+\left|k_{r}(t)-k_{r}(s)\right|\left(1+\left|f^{t}(x)\right|\right) .
\end{aligned}
$$

We conclude thanks to 1):

$$
\begin{aligned}
\left(f^{t}\right)^{\star}(y)-\left(f^{s}\right)^{\star}(y) & \leqslant\|y\|| | h_{r}(t)-h_{r}(s)\left|\left(1+\left|f^{t}(x)\right|^{1 / 2}\right)+\left|k_{r}(t)-k_{r}(s)\right|\left(1+\left|f^{t}(x)\right|\right)\right. \\
& \leqslant\|y\|| | h_{r}(t)-h_{r}(s)\left|(1+\sqrt{c}+\sqrt{c\|y\|})+\left|k_{r}(t)-k_{r}(s)\right|(1+c+c\|y\|)\right.
\end{aligned}
$$

3) Let $y \in Y, r>0$ and $s, t \in[0, T]$. If the intersections of $\partial\left(f^{t}\right)^{\star}(y)$ and $\partial\left(f^{s}\right)^{\star}(y)$ with $r \mathbb{B}_{X}$ are non empty, let $x_{s} \in \partial\left(f^{s}\right)^{\star}(y)$ and $x_{t} \in \partial\left(f^{t}\right)^{\star}(y)$ with $r \geqslant\left\|x_{s}\right\| \vee\left\|x_{t}\right\|$. Step 2) implies

$$
\begin{array}{r}
\left|\left(f^{s}\right)^{\star}(y)-\left(f^{t}\right)^{\star}(y)\right| \leqslant \\
\|y\|\left|\left|h_{r}(t)-h_{r}(s)\right|\left(1+\left|f^{s}\left(x_{s}\right)\right|^{1 / 2} \vee\left|f^{t}\left(x_{t}\right)\right|^{1 / 2}\right)+\left|k_{r}(t)-k_{r}(s)\right|\left(1+\left|f^{s}\left(x_{s}\right)\right| \vee\left|f^{t}\left(x_{t}\right)\right|\right) .\right.
\end{array}
$$

By 1) we conlude:

$$
\left|\left(f^{s}\right)^{\star}(y)-\left(f^{t}\right)^{\star}(y)\right| \leqslant\|y\|\left|h_{r}(t)-h_{r}(s)\right|\left(1+c^{1 / 2}+(c\|y\|)^{1 / 2}\right)+\left|k_{r}(t)-k_{r}(s)\right|(1+c+c\|y\|) .
$$

Corollary 4.2 Let $\left(f^{t}\right)_{t \in[0, T]}$ be a family of proper convex lsc functions on X with each f^{t} of compact type. Assume that (H) and (B) are satisfied and that:

1. for each $r \geqslant 0$, there exists a negligible subset N of $[0, T]$ such that for any t in $[0, T] \backslash N$, the mapping $s \mapsto\left(f^{s}\right)^{\star}(y)$ admits a derivative $\dot{\gamma}(t, y)$ at t for any $y \in \operatorname{Dom} \partial\left(f^{t}\right)^{\star}$.
2. for any $\left(y_{n}\right)_{n}$ which converges weakly to y in $L^{2}(0, T ; X)$ with $y_{n}(t) \in \partial f^{t}\left(x_{n}(t)\right)$ where $\left(x_{n}\right)_{n}$ converges uniformly, there exists $n_{k} \rightarrow+\infty$ such that

$$
\liminf _{k \rightarrow+\infty} \int_{0}^{T} \dot{\gamma}\left(t, y_{n_{k}}(t)\right) d t \geqslant \int_{0}^{T} \dot{\gamma}(t, y(t)) d t
$$

Then, for each $u_{0} \in \operatorname{dom} f^{0}$, there exists $\left.\left.T_{0} \in\right] 0, T\right]$ such that $u^{\prime}+\partial f^{t}(u)+B(t, u) \ni 0$ has at least a strong solution $u:\left[0, T_{0}\right] \rightarrow X$ with $u(0)=u_{0}$.

The assumption 2. is true when $\dot{\gamma}(t,$.$) is lsc and convex on \operatorname{Dom} \partial\left(f^{t}\right)^{\star}$.
Proof. Lemma 4.1 implies $\Phi(x, y)=\int_{0}^{T} \dot{\gamma}(t, y(t)) d t$. By assumption 2., we can apply Theorem 4.1.

5 Examples of families $\left(f^{t}\right)_{t}$

5.1 Rafle

See Castaing, Valadier and Moreau $[4,17,13]$. Let $(C(t))_{t \in[0, T]}$ a family of nonempty closed convex subsets of X whose intersection with bounded closed sets is compact. Consider the indicator function $f^{t}=\delta_{C(t)}$ of $C(t)$. Assume that for each $r \geqslant 0$, there is an absolutely continuous real-valued function a_{r} on $[0, T]$ such that:
(i) $a_{r}^{\prime} \in L^{2}(0, T)$;
(ii) for each s, t in $[0, T]$, we have $e\left(C(s) \cap r \mathbb{B}_{X}, C(t)\right) \leqslant\left|a_{r}(s)-a_{r}(t)\right|$.

Under the assumption (B), we can apply Theorem 4.1: Assume that for any sequence $\left(x_{n}\right)_{n}$ in $H^{1}(0, T ; X)$ which converges uniformly to the absolutely continuous function x with the weak convergence of $\left(x_{n}^{\prime}\right)_{n}$ to x^{\prime} in L^{2}, and for any $\left(y_{n}\right)_{n}$ which converges weakly to y in L^{2} with $y_{n}(t) \in N_{C(t)}\left(x_{n}(t)\right)$ for almost all t, there exists $n_{k} \rightarrow+\infty$ such that

$$
\liminf _{k \rightarrow+\infty} \int_{0}^{T}\left\langle x_{n_{k}}^{\prime}(t), y_{n_{k}}(t)\right\rangle d t \geqslant \int_{0}^{T}\left\langle x^{\prime}(t), y(t)\right\rangle d t
$$

Then, for each $u_{0} \in C(0)$, there exists $\left.\left.T_{0} \in\right] 0, T\right]$ such that $u^{\prime}+N_{C(t)}(u)+B(t, u) \ni 0$ has at least a strong solution $u:\left[0, T_{0}\right] \rightarrow X$ with $u(0)=u_{0}$.

Corollary 4.1 becomes:
Corollary 5.1 Let $u_{0} \in C(0)$ and $\left(F^{t}\right)_{t \in[0, T]}$ be a family of differentiable maps from X to an other Hilbert space Y such that $\left(D F^{t}\right)_{t}$ is equilipschitz continuous on a neighborhood of u_{0}. Assume that $C(t)=\left(F^{t}\right)^{-1}(C), C$ being a nonempty closed convex set. Under the assumptions (B) and:

1. for each $r \geqslant 0$, there is absolutely continuous real-valued function b_{r} on $[0, T]$ such that:
(a) $b_{r}^{\prime} \in L^{2}(0, T)$,
(b) for each $s, t \in[0, T], \sup _{\|x\| \leqslant r}\left\|F^{t}(x)-F^{s}(x)\right\| \leqslant\left|b_{r}(t)-b_{r}(s)\right|$,
2. the qualification condition $\mathbb{R}_{+}\left[C-F^{0}\left(u_{0}\right)\right]-D F^{0}\left(u_{0}\right) X=Y$ holds,
3. for each $r \geqslant 0$, there exists a negligible subset N of $[0, T]$ such that the mapping $t \mapsto F^{t}(x)$ admits a derivative $\Delta^{t}(x)$ on $[0, T] \backslash N$ for any $x \in r \mathbb{B}_{X}$ and Δ^{t} is continuous on $r \mathbb{B}_{X}$ for any $t \in[0, T] \backslash N$,
4. the mapping $(t, x) \mapsto D F^{t}(x)$ is bounded on $[0, T] \times r \mathbb{B}_{X}$ for each $r>0$ and it is continuous at t for each x,
there exists $\left.\left.T_{0} \in\right] 0, T\right]$ such that $u^{\prime}+N_{C(t)}(u)+B(t, u) \ni 0$ has at least a strong solution $u:\left[0, T_{0}\right] \rightarrow X$ with $u(0)=u_{0}$.

On the other hand, $\left(f^{t}\right)^{\star}$ is the support function of $C(t)$, denoted by $\sigma_{C(t)}$. Moreau have proved in [13] that when C is absolutely continuous, the map $t \mapsto \sigma_{C(t)}(y)$ is absolutely continuous on $[0, T]$ for any $y \in D$, where D is the domain of $\sigma_{C(t)}$ which is not dependent of t. Corollary 4.2 becomes:

Corollary 5.2 Assume that (B) is satisfied and that:

1. for each $r \geqslant 0$, there exists a negligible subset N of $[0, T]$ such that for any t in $[0, T] \backslash N$, the mapping $s \mapsto \sigma_{C(s)}(y)$ admits a derivative $\dot{\gamma}(t, y)$ at t for any $y \in \operatorname{Dom} \partial \sigma_{C(t)}$.
2. for any $\left(y_{n}\right)_{n}$ which converges weakly to y in $L^{2}(0, T ; X)$ with $y_{n}(t) \in N_{C(t)}\left(x_{n}(t)\right)$ where $\left(x_{n}\right)_{n}$ converges uniformly, there exists $n_{k} \rightarrow+\infty$ such that

$$
\liminf _{k \rightarrow+\infty} \int_{0}^{T} \dot{\gamma}\left(t, y_{n_{k}}(t)\right) d t \geqslant \int_{0}^{T} \dot{\gamma}(t, y(t)) d t
$$

Then, for each $u_{0} \in \operatorname{dom} f^{0}$, there exists $\left.\left.T_{0} \in\right] 0, T\right]$ such that $u^{\prime}+N_{C(t)}(u)+B(t, u) \ni 0$ has at least a strong solution $u:\left[0, T_{0}\right] \rightarrow X$ with $u(0)=u_{0}$.

By example, consider the affine map $F^{t}(x)=a(t) x+b(t)$ where $a(t) \in \mathbb{R}_{+}^{\star}$ is derivable nonincreasing at $t \in[0, T]$ and $b(t) \in Y$ is absolutely continuous at $t \in[0, T]$. We can apply both corollary 4.1 and 4.2 since

$$
\dot{\gamma}(t, y)=\frac{-1}{a(t)^{2}}\left[a(t)\left\langle y, b^{\prime}(t)\right\rangle+a^{\prime}(t)\left(\sigma_{C}(y)-\langle y, b(t)\rangle\right)\right]
$$

for a.e. $t \in[0, T]$ and any $y \in Y$. So, $\dot{\gamma}(t,$.$) is convex l.s.c. on X$ and

$$
\lim _{n \rightarrow+\infty} \int_{0}^{T} \dot{\gamma}\left(t, y_{n}(t)\right) d t=\int_{0}^{T} \dot{\gamma}(t, y(t)) d t
$$

5.2 Viscosity

Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a convex lsc proper function of compact type. Consider $f^{t}(x)=f(x)+\frac{\varepsilon(t)}{2}\|x\|^{2}$ where ε is an absolutely continuous real-valued function on $[0, T]$ with nonnegative values and $\varepsilon^{\prime} \in L^{1}(0, T)$.
We can write $f^{t}=g \circ F^{t}$ with $g(x, r)=f(x)+r$ for any $(x, r) \in X \times \mathbb{R}$ and $F^{t}(x)=$ $\left(x, \frac{\varepsilon(t)}{2}\|x\|^{2}\right)$ for any $x \in X$. By absolutely continuity of ε, Δ^{t} exists and is continuous on X for a.e. $t \in[0, T]$ and

$$
\Delta^{t}(x)=\left(0, \frac{\varepsilon^{\prime}(t)}{2}\|x\|^{2}\right)
$$

Furthermore,

$$
D F^{t}(x) y=(y, \varepsilon(t)\langle x, y\rangle)
$$

and $D F^{t}$ satifies assumption 5 . We can apply Corollary 4.1.
On the other hand, $\left(f^{t}\right)^{\star}=\left(f^{\star}\right)_{\varepsilon(t)}$ is a \mathcal{C}^{1}-function on X and, for any $y \in X$, the map $t \mapsto\left(f^{t}\right)^{\star}(y)$ is absolutely continuous on $[0, T]$ with for a.e. $t \in[0, T]$

$$
\dot{\gamma}(t, y)=-\frac{\varepsilon^{\prime}(t)}{2}\left\|D\left(f^{t}\right)^{\star}(y)\right\|^{2} .
$$

By definition of $y_{n}, x_{n}(t)=D\left(f^{t}\right)^{\star}\left(y_{n}(t)\right)$ holds for a.e. $t \in[0, T]$ and any $n \in \mathbb{N}$, hence

$$
\dot{\gamma}\left(t, y_{n}(t)\right)=-\frac{\varepsilon^{\prime}(t)}{2}\left\|x_{n}(t)\right\|^{2}
$$

In the same way,

$$
\dot{\gamma}(t, y(t))=-\frac{\varepsilon^{\prime}(t)}{2}\|x(t)\|^{2}
$$

By uniform convergence of $\left(x_{n}\right)_{n}$ to x on $[0, T]$ it follows

$$
\lim _{n \rightarrow+\infty} \int_{0}^{T} \dot{\gamma}\left(t, y_{n}(t)\right) d t=\int_{0}^{T} \dot{\gamma}(t, y(t)) d t
$$

We can apply Corollary 4.2.

References

[1] H. Attouch and A. Damlamian, On multivalued evolution equations in Hilbert spaces, Israel J. Math., Vol. 12 (1972), 373-390.
[2] H. Attouch and A. Damlamian, Problèmes d'évolution dans les Hilbert et applications, J. Math. pures et appl. 54 (1975), 53-74.
[3] H. Brezis, Opérateurs maximaux et semi-groupes de contractions dans les espaces de Hilbert, Lecture Notes $n^{\circ} 5$, North Holland, 1973.
[4] C. Castaing, Truong Xuan Duc Ha and M. Valadier, Evolution equations governed by the sweeping process, Set-valued Analysis 1 (1993), 109-139.
[5] C. Castaing and A. Syam, On class of evolutions governed by a nonconvex sweeping process, preprint, 2003.
[6] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes, Springer Verlag, no 580, 1977.
[7] A. Cellina and V. Staicu, On evolution equations having monotonicities of opposite sign, International School for Advanced Studied, ref. SISSA 142M, 1989.
[8] S. Guillaume, Time dependent subdifferential evolution equations in nonconvex analysis, Adv. Math. Sci. Appl. Vol.10, No. 2 (2000), 873-898.
[9] S. Hu and N. S. Papageorgiou, Time-dependent subdifferential evolution inclusions and optimal control, Memoirs AMS, 1998.
[10] N. Kenmochi, Nonlinear evolution equations with variable domains in Hilbert spaces, Proceedings of the Japan Academy, Vol. 53, Ser. A, $n^{o} 5$ (1977), 163-166.
[11] N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Ed. Chiba Univ. 30 (1981), 1-87.
[12] J.J. Moreau, Rafle par un convexe variable, Séminaire d'Analyse Convexe, Montpellier 1971, exposé $\mathrm{n}^{\circ} 15$.
[13] J.J. Moreau, Evolution problem associated with a moving set in Hilbert space, J. Diff. Eq. 26 (1977), 347-374.
[14] M. Otani, On existence of strong solutions for $\frac{d u}{d t}(t)+\partial \psi^{1}(u(t))-\partial \psi^{2}(u(t)) \ni f(t), J$. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 575-605.
[15] M. Otani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, J. Differential Equations 46 (1982), 268-299.
[16] A. Syam, Contribution aux inclusions différentielles, Thèse de doctorat, Université Montpellier II, 1993.
[17] M. Valadier, Lipschitz approximation of the sweeping (or Moreau) process, J. Differential Equations, Vol 88, $n^{o} 2$ (décembre 1990), 248-264.
[18] Y. Yamada, On evolution equations generated by subdifferential operators, Journal of the faculty of science, the university of Tokyo, Sec. IA, Vol. 23, no 3 (décembre 1976), 491-515.
[19] S. Yotsutani, Evolution equations associated with the subdifferentials, Journal of Math. Soc. Japan, 31 (1978), 623-646.
(Received January 22, 2004)

[^0]: ${ }^{1}$ As usual, $\left.\left.L^{r}(0, T ; X)(T \in] 0, \infty\right]\right)$ denotes the space of X-valued measurable functions on $[0, T)$ which are $r^{t h}$ power integrable (if $r=\infty$, then essentially bounded). For $r=2, L^{2}(0, T ; X)$ is a Hilbert space, in which $\|.\|_{L^{2}(0, T ; X)}$ and $\langle., .\rangle_{L^{2}(0, T ; X)}$ are the norm and the scalar product.

