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Abstract
We introduce a structure condition of parabolic type, which allowsfor the gen-
eralization to quasilinear parabolic systems of the known results of integrability,
and boundedness of |ocal solutionsto singular and degenerate quasilinear parabolic
equations.

1 Introduction

In this note, we investigate under which conditions it is possible to extend to systems
the results of local integrability and local boundedness known to hold for solutions to a
general class of degenerate and singular quasilinear parabolic equations. In particular,
we show that the results presented by DiBenedetto in [1, Chp. VIII] are true for a
larger class of problems, by providing conditions under which one can recover for weak
solutions of quasilinear parabolic systems the work contained in [5, 6]. Fundamental to
our approach is a new condition for the parabolicity of systems, which can be viewed as
the extension of an analogous notion for parabolic equations, introduced in [1, Lemma
1.1pg 19].

Generalizations of the results in [1, Chp. VIII] to initial-boundary value problems
for systems have been proven in [7].

We study systems of the general form:

0 0
L —
at ! (’)xj
fori=1,2,..,n,and (z,t) € Qr = Q x (0, T) with Q C RY; where we assume A;;
and B; to be measurable functions in  x (0,7) x R™ x RV" herei = 1,2,...,n;
j=1,2,..,N.
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Aij(z,t,u, Vu) = Bi(z,t,u, Vu) (D)
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By a weak solution of (1), we mean a function v = (u1,us,...,u,) With u €
Lo 10c(0, T5 L2,10c(2)) N Lip 10¢(0, T3 W, 1,.(€2)) for some p > 1, which verifies

// —ui% + A (z,t,u, Vu) 09 drdt = // Bi(z,t,u, Vu)p; dxdt (2)
Qr 8t 8m]- Qr

forall ¢ = (¢1,02,...,¢n) € C(2r; R™).
To the system (1), we add the following classical structure conditions (see [1, Chp.
VIII]). For ae. (z,t) € Qr, every u € R™, and v € RM™, we assume that

n

N
(HD) DN " Aij(a,t,u,v)viy > Colol? — Calul® — go(w, 1);

j=1i=1
(H2) |Ayj (2, t,u,0)] < CrlolP~ ! + Culul® =) + ¢y (2, 1);
(H3) |B;i(z,t,u,v)| < Calv|P=5) 4+ Cslul’™" + ¢o(z, 1),

N +2
for Cy > 0, C1,Cs,...,C5 > 0,withdst. 1<p<di< %)pm,and

where ¢g, ¢1, @2 are non-negative functions which satisfy

(H4) ¢0 € L1,10c(Q7), ¢1 € Lﬁ,loc(QT)a and ¢ € L_m_ 16.(Qr).

m—1"

Finally, we introduce and assume the parabolicity condition

n N
(HS) > D Aijla.t,uv)usupor, > 0.

ik=1j=1

The main result of our work is the complete recovery for systems of the form (1)
of Theorem 1 in [5]:

Theorem 1 Let u be a weak solution of (1), and suppose that the structure conditions
(H1)-(H5) hold true, together with the following additional hypotheses:

(N +2)p

H Lytoe(Q L 10c(927), wh 1 B L M L
(H6) ¢0 € Lyioc(7), ¢1,02 € L 10c(S2r), where > 1 and s > Ni2p- N

(H7) w € Ly joc(Qr), withr > 1 and N(p — 2) +rp > 0.
Ifs,p > %, then u € Lo 10c(27);
ifs=p= %, then u € L, 10.(S27) for any ¢ < oo;

if s, < %, then u € Lg 10.(Qr) for any ¢ < ¢*, where

= mm{ s(Np+p—N) 1(Np + 2p) }
SN — (s =1)(N +p)" uN — (= 1)(N + p)
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Remark We would like to point out that the parabolicity condition (H5) is a quite
natural one to consider. In fact, for the case of a single equation it reduces to the
condition

Aj(z,t,u,v)uv; >0,

which, for u # 0, is equivalent to the weak parabolicity condition presented in [1,
Lemmal.1, p.19].
Further, in the simple case where

Ou; 0 Ou;
_ Y [, — B, .
o iy (ajm(x,t,u,Vu) 8xm) (2, t, u, Vu);

our requirement is satisfied if the matrix a ., (z, t, u, Vu) is for example positive defi-
nite. Indeed, since for the above system one has the identity

n N
Z ZAij(z,t,u V) U UKV = Z Z jm (2, E, U, V) (WiVim) (WkUk; ),

i,k=1j=1 i,k=1j3,m=1

(H5) can be rewritten as

N
E E Ajj(z,t,u, v)uupvg; = E Ajm (T, T, u, V)wpw; > 0,
i,k=1j=1 jym=1

where we set wy, = >, uivgp,.
Finally, we note that (H5) is not so restrictive that the equation must have one of
these simple forms. For example, consider the perturbation

Aij (2, t,u,v) = ajm('rv £, V)i + Qij (z,t,u,v)
where the matrix a;,,, is positive definite. Define

Mz, t,u,v) = |mlln jm (T, T, U, V)W Wy > 0;
ol

this exists and is obtained because
w = ajm (2, t, u, v)w;wy

is positive and continuous for each (z, t, u, v) on the compactset {w € RY : |w| = 1}.
Then for any vector w € R™,w # 0

i (T, E, Uy V)W Wer, = Qi T |w| |w| lw|* > Nwl|?.
Condition (H5) will be verified if the perturbation «;; satisfies the smallness con-

dition
N n N n
Z Z lavij (z, t,u, v)ui| < Az, t, u, v) Z Zuivij .

j=11i=1 j=1li=1

EJQTDE, 2004 No. 14, p. 3



Indeed, we have

n N n N
Z ZAij(x,t,u,v)uiukvkj = Z Z

ik=1j=1 ik=1j=1
N

= Z Ajm (Z uﬂhm) (Z uk%j) +Z (Z OéijUi) (Z ukvk]—>
j,m=1 i=1 k=1 j=1 \i=1 k=1
N n 2
> A (Z ukvkj> —
=1

J k=1

N

E (jmVim + Qj

m=1

Ui UEVEj

> 0.

n
E Q5 U;
=1

n
E UL Vkj
k=1

We follow the approach of [1, 5, 6] and start with the derivation, presented in Sec-
tion 2, of a local energy estimates for weak solutions to (1). We then outline, in Sec-
tion 3 and Section 4 how the methods in [5] can be applied to obtain local integrability
and boundedness.

We also remark that the techniques presented can be modified to handle doubly
degenerate problems, where A;;(z,t,u,v)v;; > ®(|ul)|v]P — Cslul® — ¢o(z,t) for
some @, following the same lines as the proof in [6].

2 Energy Estimatesfor u

2.1 Notation & Preiminaries

Let (zo,to) € Qr, without loss of generality we can assume (zo,to) = (0,0). For
R > 0 weset Qr = Br(0) x (—RP,0), and for —R? < 7 < 0, we define QF =
Bgr(0) x (—RP, 7). Forafixed 0 < o < 1, we consider a function ¢ € C>°(Qr) with
0<¢<1,{(=1inQly and { = 0near|z| = Rort = —RP. We also require that

pe o 2
|§t| + |v<| S RP - (1 *O’)pRP-

We denote by (i € C§°(QF%) the elements of a sequence of functions ¢, — ¢
uniformly in Q%. While, for n > 0, we let J,, be a smooth, symmetric, mollifying
kernel in space-time, and for a given function f we use the notation f, = J, x f to
represent its convolution with .J,,.

Finally, for fixed e > 0, and x > 0, we consider the function

_ (s—r)t
f(S)— (S*Iﬁ)++€. (3)

In the following, we will use the fact that 0 < f(s) < 1, and that

0 s < K,
f'(s)= €

G-ryrede * 7"
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verifies

0 s < R,

0< f'(s) < % K< s <2k, (4)
1
Sk S>2H,

provided 0 < e < 1.

We are now ready to start the derivation of our energy estimate. Fixn > 0, x > 0
and consider the test function {u; ,(x, t) f (|uy,(z,t)])¢k (z,t)}, . Because this is a C§°
function for » sufficiently small, we can substitute it into the definition of weak solution
to obtain

0
JI =y g, o
0
+ //QT Aij($7t,uyvu)a—xj {Uz,ﬁf(|un|)§£}n dz dt (5)
://Q Bi(z,t,u, Vu) {Uz’,nf(|un|)<£}n da dt.

For convenience of notation, we rewrite (5) in compact form as I; + I, = I3, and
discuss each of these terms in turn.

2.2 Estimateof I;

We begin by using the symmetry of the mollifying kernel, and integration by parts to
rewrite I; as

0
[ gy g de

0
:// (gum) Wi f(Jug|)C da dt.

We then notice that summing over the index ¢ implies

1 0 s 10 9 0
Zul,n atul,n Z ot (uiy)” = ) 8t|u7]| |un|§|“n|v (6)

Olu
I = // || |77| (lun|)CE, da dt.

If we now let & — oo, thanks to the uniform convergence of (;, — ¢, and the smooth-
ness of the mollified functions we obtain

(’)

and we derive
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Proceeding in a standard fashion, we rewrite the integral on the right hand side as

// % (/Olun|sf(s) ds) P da dt
:// %{(/Omsf(s)ds> gp} da dt
(e

and applying integration by parts, since ¢ = 0 ont = —RP, we gather

lim I, = /BR (/Ounsf(s) ds) s
“p ‘un‘sf(s) ds | "¢, da dt. "
I,

We would like to take the limit for | 0 in (7), and we are able to do so, since from

/ " fe) ds - / "t ds / " o t(s) ds

ul
with y; = £ (max | f]), we can conclude

/BR </Ou sf(s) ds — /Oul sf(s) ds) ¢P de B

gvl/ |[un|? = [ul?| dz
Br

< [Jug|* = Jul?

)

nl0
— 0

t=1

fora.e. 7, and

|//T </Oun| sf(s)ds — /OU| sf(s) d5> P da di
<o [ llt i doe "o,

where -, is a constant that depends on o, R and p. (Note that the above limits are zero
due to the fact that u € Lo 10c(0,T'; L2,10c(€2)).) In conclusion, we have the following
estimate

|l
1771%;5120 I, = /BR </0 sf(s) ds) ¢P dx .
lul
—p//T </0 sf(s) ds) PTG dedt.  (8)
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2.3 Estimateof [,

We start as in Section 2.2, and use the symmetry of the mollifying kernel to rewrite I5:

L

We then take the limit for & — oo, and by the smoothness of the mollified functions
we obtain

0
Aijn(,t,u, VU)% {win f(Juy|)CE} da dt.
j

-
R

0
lim I, = // Ajjn(x,t,u, VU)% {winf(Juyl)¢P} da dt. 9)
IS J

k—oo

As done while deriving the estimate for 7;, we would like to consider the limit
forn | 0 as well. To do so, we notice that the structure condition (H2) implies the
inequality

// |Aij(x,t,u,Vu)|ﬁ do dt < 'y// [|Vu|p + |ul® +¢)fj} dx dt.
QR QR

From which, we have that A;;(z,t,u, Vu) € Lﬁ(Qg{), since 6 < m and since by
the classical embedding theorems for parabolic spaces we know

u € Loo,loc(oa T; L2,loc(Q)) N Lp,loc(oa T; Wpl_,loc(Q)) — Lm,loc(QT)- (10)

Therefore, we obtain A;; ,,(z,t,u, Vu) LR ij(z,t,u, Vu)in L (QR)-
On the other hand,
0 ou;
o py _ YUin P
g (S (D7 = )¢

o

.o M D . p—1_ 75
+u%nf (|un|) amj ¢ +pul7nf(|u77|)< amja

hence from u; ,, — u; and Vu; ,, — Vu,; almost everywhere [3, Appendix C, Theorem
6] we conclude that

0 0
— {us Py s L P e.
5 (Winf ()67} = 5w (ul)?} - ae
If next we use our estimates for f and f’, we have the upper bound
P 1
< {9l 4 20 9 +

a P
o ()7} V| +C|un|}

1
K|y
< C{|Vugl? + |uy|P},

which, applying a slight generalization of Lebesgue’s Dominated Convergence Theo-
rem [4, §1.8], gives

0 0 .
3, (i (ua)C7} s 5 Lt (uDe?} i Ly(QR)
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We then have that equation (9) yields

. . ou;
1771%16151;10[2 //T UxtuVu)a

/ / Ayt 0, Vs f(ful) 2 'cpd dt

F(lul)¢? d dt

+//gAia‘(fcatvuaVU)uif(luI)pcp1% drdt. (11)

The first integral above can be estimated with the help of (H1) as follows:

// Aii(z,t,u, Vu) g;%
& J

—C3 //Q}_% lul® f(Jul)C? da dt — / o bo(z,t) f(ju))CP dz dt.  (12)

F(lul)C? d dt > Co / /Q IVl S (ul)C? e di

To handle the second integral, we use the parabolicity assumption (H5), and the equal-

Olu| _ Oug uy,
y — oz, 8% | i’ true for u # 0:

// Aij(z,t,u,Vu)uif’(|u|)%cp dx dt
R J

= 895]- | |

For the last integral, we need (H2) to derive

/ / Ay tyu, Vayus f(jul)p 125 da o

> pCy [ VUl 9G] de e

*p/ / (CalalP O f(Jul) ¢ VC + (s Dlul £ (ul)P V) dadt.
R (14)
Finally, we combine (11), (12), (13), and (14) so to obtain the inequality:

E%klijgo I, > Cy //Q;2 |Vul? f(|u])CP da dt — Cs //% lul® f(Ju|)CP dx dt
- / / g0, ) f(Jul)CP da dt — pC,y / / IVl ul £(jul)¢PHVC] de dt
QR QR
G / / P05+ f(ul) P~ V¢ da dt

“p / o1 () ul £ ()P~ |VC| dar dt. (15)
Q%
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24 Estimateof I3
Once again, our first step is to rewrite I3 in the form
I3 = // Bi (2, t,u, Vu) {uin f(Jug|)¢h} de dt,
QR

and to consider the limit for k& — oc:

lim I3 = // B n(x, t,u, Vu) {ui o f(Juy|)(P} do dt.
R

k—o0

To justify taking the limit for » | 0 in this case, we proceed by noticing that (H3)
implies

m

|Bi(z, t,u, V)| 721 < Co|VauP(1=5) (727) 4 C5lu™o=r + 677 (2, 1).

Which yields B;,, — B; in L_n_(Q%), in view of the embedding (10), and the

m—1

relations § < m, p (1 — 1) (%) =p (11_’11//7‘;) < p. Moreover, since we know that

i f ([ug|)P — wif(Jul)¢P forae. (z,t),and  fuiy f(Juy[)C"[™ < Cluy|™;

we can apply the same generalization of Lebesgue’s Dominated Convergence Theorem
to see that

i f ([ug|)" — wif ([u[)CP N L (QR)-
Thus,
lim lim I3 = // Bi(z,t,u, Vu)u, f(Ju|)¢? dx dt, (16)

nl0 k—oco

and we can use (H3) once more to conclude
lim lim I3 < Cy // (VPO ) | £ (|u])CP da dt
nl0 k—oco QT

+Cs //Q}% ul® f (|u|)CP da dt + //Q% Gz, )|l f(Ju)CP dx dt.  (17)

2.5 TheEnergy Estimate

To derive our energy estimate (presented in Proposition 3 below), we use the interme-
diate result stated as Lemma 2. This is a direct consequence of equations (8), (15)
and (17): starting from (5), one can use the bounds given in the previous sections, and
then apply Young’s inequality to treat the terms involving |Vu|P~t, |Vu|p(1_%), and
fufp(5).
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Lemma2 Let p > 1, let f be defined by (3), and let v € L 10¢(0,T; La,10c(£2)) N
Lp106(0, T Wlloc(Q)) be a weak solution of (1). If the assumptions (H1)-(H5) are
verified, then for any Q% (zo,to) = Br(xo) X (to — RP,7) CC Q1 we have

/BR (/M sf(s)d )@p dx // |VulP f(|ul)¢P de dt
<7(// Jul® f(Jul) dexdt—i-// lu|P f(|u])|VC|P da dt
// (/u| dS) PG| dae dt+/ dolx,t) f(Ju])¢P d dt+

[/ ¢mw¢nuvuuM?-HVdeﬁ+i[/ ¢ﬂx¢ﬂwfﬂwxpdmm>
QR QR
(18)

for some constant v = ~(Cy, C1, Ca, Cs, Cy, Cs, p).

To extract useful information from Lemma 2, we need to substitute our choice of
f(s),and then let e | 0. We first note that

. I R G P B Gl S
/o sf(s)ds-/o G, te d Z/O (S*R)JrJred

Jul — k)2 (lul=r)+ 42
zx[|u|>n]/ &dsz/ = ds
. (s—K)+e 0 s+e
1
> S(jul = r)% —ellul = w) + Em(jul = 8)1 + € = e, (19)

and hence

Jul
131%1 . (/0 sf(s) ds) ¢P dx

. . (s —kK)s K —€

By remarkingthatife < k < sthen ———— =s—¢ |1+ —— | < s,0necan
S—K+E€ S—K+tE€

see that

|l B el (s — k)4 B Ul (s — k)s
/0 sf(s)ds/o 7(8_&')_‘__’_65(15XHU>H]/’<a 78—,“&—"-6(18

[l 1
<nw>@/‘swsgwnw>@.

>5[ - wierds

t=1
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Moreover, since

MT

Tl =)y e | Xl >w] asel 0.

f(lul) =

we can use the Monotone Convergence Theorem to pass to the limit as ¢ | 0 in the
remaining terms of (18), and gather the bound
1

§/BR(|U|—/€ dex // \VulPy[[u| > K]¢P dz dt

<7 (// |u|5x[|u| > K] dx dt+// ulPx[lu| > K]|VCIP da dt
Q% Qr

2
+ //% lul*x[|u| > &) da dt + / o ¢o(z, t)x[|u| > k] dz dt

4 / /Q onCaDlullul > w1V dedi+ / /Q a0l > ) da dt) .

In turn, the above inequality leads to the classical local energy estimate stated in Propo-
sition 3 below, if one takes in account the relation |V |u||” < [VulP.

Proposition 3 (Local Energy Estimate) Under the hypotheses (H1)-(H5), if u is a weak
solution of (1) then for Qr(xo,to) = Br(zo) X (to — RP,t9) CC Qr, 0 < o < 1,
ess sup / (lu| — &)

andk >0
// V(|u| — &) 4|P ¢P dz dt
—Rr<7T<0

<7~ <// lulx[|u| > k] da dt+ — U)PRP //QR lulPy[|u| > K] da dt
+ m // |u|2x[|u| > k] dx dt + / on do(x, t)x[|u| > K] dx dt

+ (1_70/ ¢1 x, t)u|x[|u| > k] dx dt

+/Q 6o (@, 8)ulx[u] > K] do dt).
’ (20)

for some constant v = ~(Cy, C1, Ca, C5, Cy, Cs, p).

3 Higher Integrability of «

Owing to Proposition 3, we can proceed as in [5] to show higher integrability properties
for u, that is the first part of Theorem 1. In fact, thanks to the Sobolev embedding for
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parabolic spaces [1, Chap. 1], and hypotheses (H6) for the functions ¢g, ¢1, and ¢s,
we have

1

<// C,R(M B H)i( NJZ)OH dz dt> < 7//3 lul’x[Ju| > ] dz dt
+ m//% [ulPx[lu] > &] dz dt

i _1
g [, 1 > 3 ol o (meas{] > )
R

I,
+7( CIITPRTA [@ fulxlful > ] da dt.
R

(1-0)R
Inequality (21) is the key link needed to obtain for our systems exactly the same
higher integrability result proven in [5, Proposition 3] for single equations:

+ ll¢2|

(21)

Proposition 4 Under the hypotheses and notation of Theorem 1, we have that

if s, > (N%p), then u € Ly 10.(Qr) for any ¢ < oo;

if s, < (N%p), then u € L 10.(2r) forany ¢ < ¢*.

Indeed, suppose u € Lg j0c. Then we can use (21) to see that

1
1+p/N
{FL( )P meas||u| > 2}@‘]}
Qor

3 1 B=9d 1 B—p 1 B—2
<Cnnitiliant () +(2) +(3)

1 ﬁ(l_L) 1 B(l_%)_l
B 1= 1 # B(l-= 1
romiilan (5)  remilal (7))

Therefore, if

a(ﬁ)=¥p+(1+%)min{ﬁ—2,ﬁ—5,ﬁ(1—1) —1,5(1—%)}

S

then u € Lgtggk),loc. Thus u € Ly 10.(Qr) for all ¢ < «(5), and we can iterate this

. N +2 . .
process starting from 5, = max{2, Ter, r} to obtain the result. The details can be
found in [5].

4 Boundedness of u

The L local estimate part of Theorem 1 is a straightforward application of DeGiorgi’s
technique; again the details can be found in [5]. In particular, we fix p > 0, ¢ > 0, SO
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that @), CC Q7. For each integer n, we define

(1-o0)
2n

and set Q" = @,,,,. Next we fix x > 0 to be chosen later, and set

1
Rnp =K 1— W .
For &2p > 2, we consider

1
Y, = 7// |u — K |™ dx dt,
meas Q" J Jon

while for 222 p < 2, we take

1 .
Y, = 7// |u — kp | dz dt,
meas Q™ J Jon

for X sufficiently large. This is well defined thanks to the local integrability proven in
Section 3. We then apply the local energy estimate (21)in a standard way to obtain an
estimate of the form

Pn=0p+ P

Yoir Sy(BYY, ™ + B3Y, " + ByY, "),

for positive constants ~, By, Bs, Bs, €1, €2 and es. As final step, we choose « suffi-
ciently large so to have Y;, — 0 as n — oo which implies |u| < & in Q4.

It should be clear from the above presentation how the crucial roles in the gener-
alization of the results in [5] to system of the form (1) are played by the local energy
estimate of Proposition 3, and by the fact that the techniques in [5] really depend just
on |u|. Ina similar fashion, it is an easy exercise to check that the same ingredients
(Proposition 3 and replacement of u by |u|) lead to the more general results of [6] .
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