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KRASNOSELSKII'S THEOREM IN GENERALIZEDBANACH SPACES AND APPLICATIONSIOAN-RADU PETRE, ADRIAN PETRU�EL∗Abstrat. The purpose of this paper is to extend Krasnoselskii's �xedpoint theorem to the ase of generalized Banah spaes for singlevaluedand multivalued operators. As appliations, we will give some existeneresults for abstrat system of Fredholm-Volterra type di�erential equa-tions and inlusions.Keywords: ompat operator, omplete generalized metri spae, Con-tration Priniple, �xed point, generalized ontration, generalized Banahspae, generalized metri spae, integral equation, integral inlusion, iter-ative method, Krasnoselskii theorem, A-ontration, matrix onvergent tozero, multivalued operator, Piard operator, Perov theorem, relatively om-pat operator, singlevalued operator, Shauder theorem, sum of two oper-ators, vetor-valued metri, vetor-valued norm, weakly Piard operator,Fredholm-Volterra equation, Fredholm-Volterra inlusion.2010 MSC: 47H10, 54H25. 1. IntrodutionIt is well known that Perov (see [20℄) extended the lassial Banah on-tration priniple in the setting of spaes endowed with vetor-valued metris(see also Perov and Kibenko [21℄). The purpose of this paper is to extendKrasnoselskii's �xed point theorem to the ase of generalized Banah spaesfor singlevalued and multivalued operators. As appliations, we will givesome existene results for abstrat system of Fredholm-Volterra type di�er-ential equations. Perov's theorem and Krasnoselskii's theorem are importantabstrat tools for the study of di�erential and integral equation systems.There is a vast literature onerning these two important theorems in non-linear analysis, see, for example [3℄, [1℄, [11℄, [18℄, [19℄, [22℄, [23℄, [24℄, [26℄,[27℄, [28℄, [29℄, et. respetively [4℄, [5℄, [6℄, [7℄, [10℄, [16℄, [19℄, et.Reall �rst some basi results (see [11℄ and [29℄) whih are needed for themain results of this paper. Notie that in Preup [29℄ and Filip-Petru³el [11℄,are pointed out some advantages of a vetor-valued norm with respet to theusual salar norms.De�nition 1.1. ([20℄) Let X be a nonempty set and onsider the spae
Rm

+ endowed with the usual omponent-wise partial order. The mapping
d : X × X → Rm

+ whih satis�es all the usual axioms of the metri is alleda generalized metri in the Perov's sense and (X, d) is alled a generalizedmetri spae.
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Let (X, d) be a generalized metri spae in Perov's sense. Thus, if v, r ∈
Rm, v := (v1, v2,. . . , vm) and r := (r1, r2,. . . , rm), then by v ≤ r we mean
vi ≤ ri, for eah i ∈ {1, 2,. . . ,m} and by v < r we mean vi < ri, for eah
i ∈ {1, 2,. . . ,m}. Also, |v| := (|v1|, |v2|,. . . , |vm|).If u, v ∈ Rm, with u := (u1, u2,. . . , um) and v := (v1, v2,. . . , vm), then
max(u, v) := (max(u1, v1),. . . ,max(um, vm)). If c ∈ R, then v ≤ c means
vi ≤ c, for eah i ∈ {1, 2,. . . ,m}.For the sake of simpliity, we will make an identi�ation between row andolumn vetors in Rm.Notie that the generalized metri spae in the sense of Perov is a parti-ular ase of Riesz spaes (see [15℄, [38℄) and of, so-alled, one metri spaes(or K-metri spae) (see [37℄, [14℄). The advantages of this approah onsistin the possibility to obtain some nie properties of the �xed point set and togive several appliations.Let (X, d) be a generalized metri spae in Perov's sense. For r :=
(r1, · · · , rm) ∈ Rm with ri > 0 for eah i ∈ {1, 2, · · · ,m}, we will denoteby

B (x0, r) := {x ∈ X : d (x0, x) < r}the open ball entered in x0 with radius r and by
B̃ (x0, r) := {x ∈ X : d (x0, x) ≤ r}the losed ball entered in x0 with radius r.We mention that for generalized metri spaes in Perov's sense, the notionsof onvergent sequene, Cauhy sequene, ompleteness, open subset andlosed subset are similar to those for usual metri spaes.De�nition 1.2. A square matrix of real numbers is said to be onvergentto zero if and only if its spetral radius ρ(A) is stritly less than 1. In otherwords, this means that all the eigenvalues of A are in the open unit dis, i.e.,

|λ| < 1, for every λ ∈ C with det (A − λI) = 0, where I denotes the unitmatrix of Mm,m(R) (see [35℄).De�nition 1.3. ([33℄) Let (X, d) be a generalized metri spae and let f :
X → X be an operator. Then, f is alled an A-ontration if and only if
A ∈ Mm,m(R+) is a matrix onvergent to zero and

d (f (x) , f (y)) ≤ Ad (x, y) , for any x, y ∈ X.Theorem 1.4. (Perov [20℄). Let (X, d) be a omplete generalized metrispae and f : X → X be an A-ontration mapping. Then:i) there exists a unique �xed point x∗ ∈ X for f and the sequene (xn)n∈Nof suessive approximations for f (i.e., xn := fn (x0) , n ∈ N∗) is on-vergent to x∗, for all x0 ∈ X and eah n ∈ N∗.ii) d (xn, x∗) ≤ An (I − A)−1 d (x0, x1), for all n ∈ N∗.iii) d (x, x∗) ≤ (I − A)−1 d(x, f(x)), for all x ∈ X.The proof of Theorem 1.4 uses some properties of matries whih areonvergent to zero. EJQTDE, 2012 No. 85, p. 2



Lemma 1.5. (see [2℄, [35℄) Let A ∈ Mm,m (R+). Then the following state-ments are equivalent:i) A is a matrix onvergent to zero;ii) An −→ 0 as n → ∞;iii) The matrix I−A is non-singular and (I − A)−1 = I +A+ . . .+An + . . .;iv) The matrix I − A is non-singular and (I − A)−1 has nonnegative ele-ments;v) Anq −→ 0 and qAn −→ 0 as n → ∞, for any q ∈ Rm.Remark 1.6. ([29℄) Some examples of matries onvergent to zero are:
1) A =

(

a a

b b

) , where a, b ∈ R+ and a + b < 1;
2) A =

(

a b

a b

) , where a, b ∈ R+ and a + b < 1;
3) A =

(

a b

0 c

) , where a, b, c ∈ R+ and max {a, c} < 1.In partiular, if E is a linear spae, then ‖ · ‖ : E → Rm
+ is a vetor-valuednorm if (in a similar way to the vetor-valued metri) it satis�es the lassialaxioms of a norm. In this ase, the pair (E, ‖ · ‖) is alled a generalizednormed spae. If the generalized metri generated by the norm ‖ · ‖ (i.e.,

d(x, y) := ‖x−y‖) is omplete then the spae (E, ‖·‖) is alled a generalizedBanah spae.As a onsequene of Perov's Theorem we have the following result.Theorem 1.7. Let (E, ‖·‖) be a generalized Banah spae and f : E → E bean A-ontration. Then 1E−f is a homeomor�sm, i.e., 1E−f is ontinuous,bijetive and its inverse (1E − f)−1 is ontinuous too.Proof. The ontinuity of 1E −f is obvious, sine f is ontinuous. In order toprove the bijetivity of 1E − f , let us onsider any y ∈ E and the equation
(1E − f)(x) = y, x ∈ E. If we de�ne the operator g : E → E by g(x) :=
f(x)+y, then the above equation an be re-written as a �xed point problemfor g, i.e., x = g(x). Sine f is an A-ontration, we get that that g is an
A-ontration too. Hene g has a unique �xed point x∗ ∈ E. Thus 1E − f isbijetive. The ontinuity of (1E − f)−1 follows in a similar way to the aseof usual Banah spae. �Another onsequene of Perov's Theorem is the following loal variantwhih improves Theorem 2.1 in [1℄.Theorem 1.8. Let (X, d) be a omplete generalized metri spae, let x0 ∈
X \ Fix(f) and f : X → X be an A-ontration mapping around x0.Then there exists R := (I − A)−1d(x0, f(x0)) suh that B̃(x0, R) is invari-ant with respet to f . Morover, in this ase f has a unique �xed point in
B̃(x0, R). EJQTDE, 2012 No. 85, p. 3



Proof. Let x ∈ B̃(x0, R). Then we have:
d(f(x), x0) ≤ d(f(x), f(x0)) + d(f(x0), x0) ≤ Ad(x, x0) + d(f(x0), x0) ≤

AR + d(f(x0), x0) = A(I − A)−1d(x0, f(x0)) + d(x0, f(x0)) = R.For the seond onlusion we apply Perov's Theorem on B̃(x0, R). �For our main results, we also need some onepts in generalized metrispaes (see, for example, [12℄, [38℄, [39℄).De�nition 1.9. ([38℄) Let (X, d) be a generalized metri spae. A subset
C of X is alled ompat if every open over of C has a �nite subover. Aset C of a topologial spae is said to be relatively ompat if its losure isompat.De�nition 1.10. ([32℄) Let X,Y be two normed generalized spaes, K ⊂ Xand f : K → Y an operator. Then f is alled:i) ompat, if for any bounded subset A ⊂ K we have that f (A) is rela-tively ompat (or equivalently f (A) is ompat);ii) omplete ontinuous, if f is ontinuous and ompat;iii) with relatively ompat range, if f is ontinuous and f (K) is relativelyompat.We reall now the following Shauder type theorem (see, for example,Theorem (3.2) in [12℄).Theorem 1.11. Let (X, ‖·‖) be a generalized Banah spae, let Y ∈ Pcv (X)and g : Y → Y be a ontinuous operator with relatively ompat range. Then
g has at least one �xed point in Y .For the multivalued ase, in the ontext of a generalized metri spae
(X, d), we will use the following notations and de�nitions.

P (X) - the set of all nonempty subsets of X;
P (X) = P (X) ∪ {∅};
Pcl (X) - the set of all nonempty losed subsets of X;
Pb,cl (X) - the set of all nonempty bounded and losed subsets of X;If (X, ‖ · ‖) is a generalized normed spae, then:
Pb,cl,cv (X) - the set of all nonempty bounded, losed and onvex subsetsof X;
Pcp,cv (X) - the set of all nonempty ompat and onvex subsets of X.Let (X, d) be a metri spae. Then we introdue the following funtionals.
Dd : P (X) × P (X) → R+,Dd (A,B) = inf {d (a, b) : a ∈ A, b ∈ B} - thegap funtional;
ρd : P (X) × P (X) → R+ ∪ {+∞}, ρd (A,B) = sup {D (a,B) : a ∈ A} -the exess funtional;
Hd : P (X)×P (X) → R+ ∪ {+∞},Hd (A,B) = max{ρ(A,B), ρ(B,A)} -the Pompeiu-Hausdor� funtional. EJQTDE, 2012 No. 85, p. 4



If (X, d) is a generalized metri spae with d(x, y) :=





d1(x, y)
· · ·

dm(x, y)



, thenwe denote by
D(A,B) :=





Dd1
(A,B)
· · ·

Ddm
(A,B)



 the vetor gap funtional on P (X),by
ρ(A,B) :=





ρd1
(A,B)
· · ·

ρdm
(A,B)



 the vetor exess funtional,and by
H(A,B) :=





Hd1
(A,B)
· · ·

Hdm
(A,B)



 the vetor Pompeiu-Hausdor� funtional.Notie that, throughout this paper, we will make an identi�ation betweenrow and olumn vetors in Rm.We reall the following known result (see for example ([33℄)).Lemma 1.12. Let (X, ‖·‖) be a generalized Banah spae. Then:
H (Y + Z, Y + W ) ≤ H (Z,W ) , for eah Y,Z,W ∈ Pb (X) .De�nition 1.13. ([3℄) Let (X, d) be a generalized metri spae, Y ⊂ X and

F : Y → P (X) be a multivalued operator. Then, F is alled a multivalued
A-ontration if and only if A ∈ Mm,m (R+) is a matrix onvergent to zeroand for any x, y ∈ Y and for eah u ∈ F (x), there exists v ∈ T (y) suh that

d (u, v) ≤ Ad (x, y) .De�nition 1.14. ([3℄) Let (X, d) be a generalized metri spae. Then
F : X → P (X) is a multivalued weakly Piard operator (brie�y MWPoperator), if for eah x ∈ X and y ∈ F (x), there exists a sequene (xn)n∈Nsuh that:i) x0 = x, x1 = y;ii) xn+1 ∈ F (xn);iii) the sequene (xn)n∈N

is onvergent to a �xed point of F .A sequene (xn)n∈N
satisfying (i) and (ii) in the above de�nition is saidto be a sequene of suessive approximations for F starting from (x0, x1) ∈

Graph(F ).For examples of MWP operators see [31℄ and [25℄, while for some �xedpoint results for multivalued A-ontrations, see [25℄ and [11℄.Notie now that using the generalized Pompeiu-Hausdor� funtional on
Pb,cl (X) the onept of multivalued ontration mapping introdued by S.B.Nadler Jr. an be extended to generalized metri spaes in the sense ofPerov. EJQTDE, 2012 No. 85, p. 5



De�nition 1.15. ([3℄) Let (X, d) be a generalized metri spae, Y ⊆ X andlet F : Y → Pb,cl (X) be a multivalued operator. Then, F is alled a multi-valued A-ontration in the sense of Nadler if and only if A ∈ Mm,m (R+)is a matrix onvergent to zero and
H (F (x) , F (y)) ≤ Ad (x, y) , for any x, y ∈ Y .Notie that if F : X → Pcl (X) is a multivalued A -ontration in Nadler'ssense, then F is a multivalued A-ontration too, but, in general, the reverseimpliation does not hold.In the last part of this setion, we will present several ontinuity resultsfor multivalued operators.If X, Y are two generalized metri spaes, we reall that a multivaluedoperator F : X → P (Y ) is said to be:a) lower semi-ontinuous (brie�y l.s..) in x0 ∈ X if and only if for anyopen set U ⊂ X suh that F (x0) ∩ U 6= ∅, there exists a neighborhood Vfor x0 suh that for any x ∈ V , we have that F (x) ∩ U 6= ∅.b) upper semi-ontinuous (brie�y u.s..) in x0 ∈ X if and only if for anyopen set U ⊂ X suh that F (x0) ⊂ U there exists a neighborhood V for x0suh that for any x ∈ V , we have that F (x) ⊂ U .) ontinuous in x0 ∈ X if and only if it is both l.s.. and u.s..The multivalued operator F : X → P (Y ) is alleda) Hausdor� lower semi-ontinuous (brie�y H-l.s..) in x0 ∈ X if andonly if for any ε = (ε1, · · · , εm) ∈ Rm

+ with εi > 0 for eah i ∈ {1, · · · ,m},there exists η = (η1, · · · , ηm) ∈ Rm
+ with ηi > 0 for eah i ∈ {1, · · · ,m},suh that for any x ∈ B (x0, η), we have F (x0) ⊂ V (F (x) ; ε), where

V (F (x) ; ε) = {x ∈ X : D (x, F (x)) ≤ ε} .b) Hausdor� upper semi-ontinuous (brie�y H-u.s..) in x0 ∈ X ifand only if for eah ε = (ε1, · · · , εm) ∈ Rm
+ with εi > 0 there exists η =

(η1, · · · , ηm) ∈ Rm
+ with ηi > 0 for eah i ∈ {1, · · · ,m}, suh that for all

x ∈ B(x0; η) we have F (x) ⊂ V (F (x0); ǫ).) Hausdor� ontinuous (brie�y H-.) n x0 ∈ X if and only if it both
H-l.s.. and H-u.s..Notie that, if the multivalued operator F : X → P (Y ) has ompatvalues, then the ontinuity and the H-ontinuity of F are equivalent.Reall also the fat that the image of a ompat set through an u.s..multivalued operator with ompat values is ompat too.2. Main resultsIn this setion, we will prove Krasnoselskii type �xed point theorems ingeneralized Banah spaes for singlevalued and multivalued operators.Theorem 2.1. Let (X, ‖·‖) be a generalized Banah spae and Y ∈ Pcl,cv (X).Assume that the operators f, g : Y → X satis�es the properties:i) f is an A-ontration;ii) g is ontinuous; EJQTDE, 2012 No. 85, p. 6



iii) g (Y ) is relatively ompat and f (x) + g (y) ∈ Y for any x, y ∈ Y .Then f + g has a �xed point in Y .Proof. We show that for any x ∈ Y , the operator ux : Y → Y , ux (y) =
f (y) + g (x) is an A-ontration. Notie �rst that, from the seond part of(iii), the operator ux is well-de�ned. Next let us observe that
‖ux (y1) − ux (y2)‖ = ‖f (y1) − f (y2)‖ ≤ A ‖y1 − y2‖ , for any y1, y2 ∈ Y .Thus, ux is an A-ontration. By Theorem 1.4, it follows that there existsa unique ȳx ∈ Y suh that f (yx) + g (x) = ȳx. Next we de�ne c : Y → Y ,

c (x) = ȳx, i.e.,(1) c (x) = f [c (x)] + g (x) , for any x ∈ Y .We prove that c is ontinuous. Indeed, sine
∥

∥c (x) − c
(

x′
)∥

∥ =
∥

∥f [c (x)] + g (x) − f
[

c
(

x′
)]

− g
(

x′
)∥

∥

≤
∥

∥f [c (x)] − f
[

c
(

x′
)]∥

∥+
∥

∥g (x) − g
(

x′
)∥

∥

≤ A
∥

∥c (x) − c
(

x′
)∥

∥+
∥

∥g (x) − g
(

x′
)∥

∥ ,we obtain that(2) ∥

∥c (x) − c
(

x′
)∥

∥ ≤ (I − A)−1
∥

∥g (x) − g
(

x′
)∥

∥ .Thus, by the ontinuity of g, we have
∥

∥c (x) − c
(

x′
)∥

∥

‖·‖
−→ 0, as x′ ‖·‖

−→ x.Notie now that, from (1) and Theorem 1.7, we have that c = (1Y −f)−1 ◦g.Sine g (Y ) is relatively ompat and c is ontinuous, we have that c (Y )is relatively ompat too and, thus, by Theorem 1.11, there exists x ∈ Ywith c (x) = x, i.e., f (x) + g (x) = x. Hene, the proof is omplete. �Remark 2.2. For a similar result see Viorel [36℄.In the ase of multivalued operators, �rst we give the multivalued formof Theorem 1.4 for multivalued A-ontrations in the sense of Nadler whihwas quoted as an open question in [3℄.Lemma 2.3. Let (X, d) be a generalized metri spae, A,B ⊂ X, q > 1.Then, for any a ∈ A, there exists b ∈ B suh that
d (a, b) ≤ qH (A,B) .Proof. Suppose �rst that A = B. Then we an hoose b = a suh thatthe property holds. Next, suppose A 6= B. Then Hi (A,B) 6= 0 for all

i ∈ {1, . . . ,m}. We will prove the onlusion by ontradition. Thus, wesuppose that there exists a ∈ A, for any b ∈ B suh that
d (a, b) � qH (A,B) .It follows that there exists j ∈ {1, . . . ,m} suh that

dj (a, b) > qHj (A,B) .EJQTDE, 2012 No. 85, p. 7



Passing to inf
b∈B

, we get the ontradition
Hj (A,B) ≥ Dj (A,B) ≥ qHj (A,B) > Hj (A,B) ,whih ompletes the proof. �Lemma 2.4. Let (X, d) be a generalized metri spae. Then D (x,A) = 0 ifand only if x ∈ Ā.Proof. We show that Ā = {x ∈ X | D (x,A) = 0}.Let x ∈ Ā, equivalent, for any r ∈ Rm

+ with r > 0 we have A ∩ B (x, r) 6= ∅,equivalent, for any r ∈ Rm
+ with r > 0, there exists a ∈ A suh that d (x, a) <

r, equivalent, D (x,A) = 0. �Lemma 2.5. Let A ∈ Mm,m (R+) be a matrix onvergent to zero. Then,there exists Q > 1 suh that for any q ∈ (1, Q) we have that qA is onvergentto 0.Proof. Sine A is onvergent to zero, we have that the spetral radius ρ (A) <

1. Next, sine qρ (A) = ρ (qA) < 1, we an hoose Q := 1
ρ(A) > 1 and hene,the onlusion follows. �Theorem 2.6. Let (X, d) be a omplete generalized metri spae and F :

X → Pcl (X) be a multivalued A-ontration in Nadler's sense. Then, foreah x ∈ X and y ∈ F (x) there exists a sequene (xn)n∈N
of suessiveapproximations for F starting from (x, y) ∈ Graph(F ) whih onverge to a�xed point x∗ ∈ X of F and we have the following estimations:(a) d(xn, x∗) ≤ An (I − A)−1 d (x0, x1) , for any n ∈ N∗.(b) d (x0, x

∗) ≤ (I − A)−1 d (x0, x1).Proof. Let x0 ∈ X and x1 ∈ F (x0). Let q ∈ (1, Q), where Q is de�ned bythe above lemma. Then, by Lemma 2.3, there exists x2 ∈ F (x1) suh that
d (x1, x2) ≤ qH (F (x0) , F (x1)) ≤ qAd (x0, x1) .For x2 ∈ F (x1), there exists x3 ∈ F (x2) suh that

d (x2, x3) ≤ qH (F (x1) , F (x2)) ≤ qAd (x1, x2) ≤ (qA)2 d (x0, x1) .Indutively, there exists xn+1 ∈ F (xn) suh that
d (xn, xn+1) ≤ (qA)n d (x0, x1) , for any n ∈ N∗.We have

d (xn, xn+p) ≤ d (xn, xn+1) + . . . + d (xn+p−1, xn+p)

≤ (qA)n d (x0, x1) + . . . + (qA)n+p−1 d (x0, x1)

= (qA)n
[

I + qA + . . . + (qA)p−1
]

d (x0, x1)

≤ (qA)n
[

I + qA + . . . + (qA)p−1 + . . .
]

d (x0, x1)

= (qA)n (I − qA)−1 d (x0, x1) .EJQTDE, 2012 No. 85, p. 8



Thus(3) d (xn, xn+p) ≤ (qA)n (I − qA)−1 d (x0, x1) , for n ∈ N∗ and p ∈ N∗.Letting n → ∞, by Lemma 2.5, it follows that (xn) is a Cauhy sequenein X. Sine X is omplete, it follows that there exists x∗ ∈ X suh that
xn

d
−→ x∗, n → ∞. Thus,

D (x∗, F (x∗)) =





D1 (x∗, F (x∗))
· · ·

Dm (x∗, F (x∗))





≤





d1 (x∗, xn+1) + D1 (xn+1, F (x∗))
· · ·

dm (x∗, xn+1) + Dm (xn+1, F (x∗))





= d (x∗, xn+1) + D (xn+1, F (x∗))

≤ d (x∗, xn+1) + H (F (xn) , F (x∗))

≤ d (x∗, xn+1) + Ad (xn, x∗)and letting n → ∞, we get that D (x∗, F (x∗)) = 0. By Lemma 2.4, it followsthat x∗ ∈ F (x∗). Hene, x∗ ∈ F (x∗). Moreover, letting p → ∞ in (3), weobtain
d (xn, x∗) ≤ (qA)n (I − qA)−1 d (x0, x1) , for any n ∈ N∗.Thus,

d (x0, x
∗) ≤ d (x0, x1) + d (x1, x

∗)

≤ d (x0, x1) + qA (I − qA)−1 d (x0, x1)

=
[

I + qA (I − qA)−1
]

d (x0, x1)

= [I + qA (I + qA + . . . + (qA)n + . . .)] d (x0, x1)

=
[

I + qA + (qA)2 + . . .
]

d (x0, x1)

= (I − qA)−1 d (x0, x1)and letting q ց 1, we get that d (x0, x
∗) ≤ (I − A)−1 d (x0, x1). �A loal result in the multivalued ase is the following.Theorem 2.7. Let (X, d) be a generalized omplete metri spae, x0 ∈ X \

Fix(F ) and F : Y → Pb,cl (X) be a multivalued A-ontration in the senseof Nadler around x0. Then, there exists R := (I − A)−1δ(x0, F (x0)) suhthat B̃(x0, R) is invariant with respet to F . Moreover, in this ase F hasat least one �xed point in B̃(x0, R).Proof. Let x ∈ B̃(x0, R). Then, for any y ∈ F (x) we have:
d(x0, y) ≤ δ(x0, F (x0)) + H(F (x0), F (x)) ≤ δ(x0, F (x0)) + Ad(x0, x) ≤

δ(x0, F (x0)) + AR = δ(x0, F (x0)) + A(I − A)−1δ(x0, F (x0)) =

(I − A)−1δ(x0, F (x0)) = R.EJQTDE, 2012 No. 85, p. 9



This shows that F (x) ⊂ B̃(x0, R). For the seond onlusion we applyTheorem 2.6. �Another useful result is the following data dependene theorem.Lemma 2.8. Let (X, d) be a omplete generalized metri spae and F1, F2 :
X → Pb,cl (X) be two multivalued A-ontrations in Nadler's sense. Then:

ρ (Fix (F1) , F ix (F2)) ≤ (I − A)−1









sup
x∈X

ρd1
(F1(x), F2(x))

· · ·
sup
x∈X

ρdm
(F1(x), F2(x))









.Proof. Let x0 ∈ Fix (F1) arbitrary hosen. Then, there exists f∞
2 (x0, x1) ∈

Fix (F2) suh that
d [x0, f

∞
2 (x0, x1)] ≤ (I − A)−1 d (x0, x1) , for any x1 ∈ F2 (x0) .Let q ∈ (1, 1

ρ(A)). For x0 ∈ F1(x0), there exists x1 ∈ F2 (x0) suh that
d (x0, x1) ≤ qρ [F1 (x0) , F2 (x0)] .Then, we obtain

d (x0, f
∞
2 (x0, x1)) ≤ (I − A)−1 qρ (F1 (x0) , F2 (x0))

≤ q (I − A)−1





ρd1
(F1 (x0) , F2 (x0))

· · ·
ρdm

(F1 (x0) , F2 (x0))





≤ q (I − A)−1









sup
x∈X

ρd1
(F1 (x0) , F2 (x0))

· · ·
sup
x∈X

ρdm
(F1 (x0) , F2 (x0))









.Letting q ց 1, we get that
ρ (Fix (F1) , F ix (F2)] ≤ (I − A)−1









sup
x∈X

ρd1
(F1 (x) , F2 (x))

· · ·
sup
x∈X

ρdm
(F1 (x) , F2 (x))









,whih ompletes the proof. �We extend now, to the ase of a generalized Banah spae, a result givenin L. Rybinski [30℄.Theorem 2.9. Let (X, d) be a generalized metri spae and Y be a losedsubset of a generalized Banah spae (Z, ‖·‖). Assume that the multivaluedoperator F : X × Y → Pcl,cv (Y ) satis�es the following onditions:i) A is a matrix onvergent to zero and
H (F (x, y1) , F (x, y2)) ≤ A ‖y1 − y2‖ , for eah (x, y1) , (x, y2) ∈ X × Y ;ii) for every y ∈ Y , F (·, y) is H-l.s.. on X.EJQTDE, 2012 No. 85, p. 10



Then there exists a ontinuous mapping f : X × Y → Y suh that:
f (x, y) ∈ F (x, f (x, y)) , for eah (x, y) ∈ X × Y .Proof. Let us onsider the sequene of ontinuous operators fn : X×Y → Ywith property: there exists a matrix onvergent to zero M ∈ Mm,m (R+),

M > A and q ∈
(

1, 1
ρ(M)

) suh that for any (x, y) ∈ X × Y and for n =

2, 3, . . . we have
1◦) |fn (x, y) − fn−1 (x, y)| ≤ qM |fn−1 (x, y) − fn−2 (x, y)| ,and for n ∈ N∗ we have

2◦) D (fn (x, y) , F (x, fn (x, y))) ≤ M |fn (x, y) − fn−1 (x, y)| .Indutively, we get that
|fn (x, y) − fn−1 (x, y)| ≤ (qM)n−1 |f1 (x, y) − f0 (x, y)| ,for any n ∈ N∗. Thus, it is easy to observe that

|fn+p (x, y) − fn (x, y)| ≤ (qM)n (I − qM)−1 |f1 (x, y) − f0 (x, y)| ,for any n ∈ N∗ and p ∈ N∗. Letting n → ∞ it follows that (fn) is a Cauhysequene în X ×Y and also, onvergent. We denote f (x, y) = lim
n→∞

fn (x, y).Thus,
D (f (x, y) , F (x, f (x, y)))

≤ |f (x, y) − fn (x, y)| + D (fn (x, y) , F (x, f (x, y)))

≤ |f (x, y) − fn (x, y)| + M |fn (x, y) − fn−1 (x, y)|and then, f (x, y) ∈ F (x, f (x, y)) for any (x, y) ∈ X × Y .Sine, for n large enough, the operator fn is ontinuous and the operator
(x, y) → |f1 (x, y) − f0 (x, y)| is ontinuous. Then, by the inequality

|f (x, y) − f (x0, y0)| ≤ |f (x, y) − fn (x, y)| + |fn (x, y) − fn (x0, y0)|

+ |fn (x0, y0) − f (x0, y0)|

≤ (qM)n (I − qM)−1 |f1 (x, y) − f0 (x, y)|

+ |fn (x, y) − fn (x0, y0)|

+ (qM)n (I − qM)−1 |f1 (x0, y0) − f0 (x0, y0)| ,we onlude that f is ontinuous, for any (x, y) ∈ X × Y .We suppose that the operators f1, . . . , fn satisfying 1◦) and 2◦) are de�ned.We hoose a ontinuous seletion fn−1 for the multivalued operator F . Let
fn (x, y) ∈ F (x, fn−1 (x, y)), then

D (fn (x, y) , F (x, fn (x, y))) ≤ H (F (x, fn−1 (x, y)) , F (x, fn (x, y)))

≤ A |fn (x, y) − fn−1 (x, y)| ,for any (x, y) ∈ X × Y . Thus,
F (x, fn (x, y)) ∩ {fn (x, y) + M |fn (x, y) − fn−1 (x, y)|} 6= ∅,EJQTDE, 2012 No. 85, p. 11



for any (x, y) ∈ X×Y and the inequality 2◦) is satis�ed by fn. Sine F (·, y)is H-l.s.. on X, via Lemma 1 from L. Rybinski [30℄, we have that themultivalued operator
G : (x, y) → F (x, fn (x, y)) ∩ {fn (x, y) + qM |fn (x, y) − fn−1 (x, y)|}is H-l.s.. and admits a ontinuous seletion. Finally, we get the ontinuousoperator fn+1 whih satis�es inequalities 1◦) and 2◦). �For proving a multivalued version of Krasnoselskii's theorem in generalizedBanah spaes we need some auxiliary results.Lemma 2.10. (X, ‖·‖) be a generalized Banah spae. Assume that theoperator F : X → Pb,cl (X) is a multivalued A-ontration in Nadler's sense.Then, the multivalued operator 1X − F is ontinuous with respet to theHausdor�-Pompeiu generalized metri on Pcl(X)., surjetive and (1X −F )−1has losed graph.Proof. Sine F is an A-ontration, we get immediately get that F is ontin-uous with respet to the Hausdor�-Pompeiu generalized metri on Pcl(X).Thus, 1X − F is ontinuous with respet to the Hausdor�-Pompeiu general-ized metri on Pcl(X). Let us show now that 1X − F is surjetive. For eah

y ∈ X, we are looking for an element x̄y ∈ X suh that (1Y − F )(x̄y) = y.The problem is equivalent with a �xed point problem for the multivaluedoperator T (x) = y + F (x). Sine
H(T (x1), T (x2)) = H(y+F (x1), y+F (x2)) = H(F (x1), F (x2)) ≤ Ad(x1, x2),we get that T is a multivalued A-ontration. Hene, by Theorem 2.6, T hasat least one �xed point x̄y ∈ X. This proves the surjetivity of 1X − F . Forthe last onlusion of this lemma, notie �rst that (1X −F )−1 : X → P (X).In order to prove that the graph of (1X −F )−1 is losed, onsider a sequene
(yn)n∈N whih onverges in X to y and a sequene xn ∈ (1X − F )−1(yn)whih onverges in X to x. We will prove that x ∈ (1X − F )−1(y). For thispurpose, it is enough to prove that y ∈ x − F (x). Then we have:

D(y, x − F (x)) = D(x, y + F (x)) ≤

d(x, xn) + D(xn, yn + F (xn)) + H(yn + F (xn), y + F (x)) ≤

d(x, xn) + H(yn + F (xn), yn + F (x)) + H(yn + F (x), y + F (x)) =

d(x, xn) + H(F (xn), F (x)) + d(yn, y) ≤ d(x, xn) + Ad(xn, x) + d(yn, y) → 0,as n → +∞. �Reall now a well-known fat, whih also takes plae in generalized normedspaes.Lemma 2.11. Let X be a generalized normed spae. Then for x, y ∈ X andfor A ∈ Pcl(X) we have: D(x,A + y) = D(y, x − A).Another version of the above lemma involves the so-alled metrially reg-ularity of a multivalued operator. EJQTDE, 2012 No. 85, p. 12



Lemma 2.12. (X, ‖·‖) be a generalized Banah spae. Assume that theoperator F : X → Pb,cl (X) is a multivalued A-ontration in Nadler's sense.Then, the multivalued operator 1X − F is ontinuous with respet to theHausdor�-Pompeiu generalized metri on Pcl(X), surjetive. If additionally,we suppose that 1X −F is metrially regular at eah x ∈ X for y0 ∈ X, i.e.,
(x, y0) ∈ Graph(1X −F ) and there exists a onstant k > 0 and neighborhoods
U of x and V of y0 suh that

D(u, (1X − F )−1(v)) ≤ kD(v, (1X − F )(u)), for all u ∈ U and v ∈ V,then (1X − F )−1 is u.s.. in y0.Proof. We will prove the upper semiontinuity of (1X − F )−1 in arbitrary
y0 ∈ X. For this purpose, we have to show that for eah ε = (ε1, · · · , εm) ∈
Rm

+ with εi > 0 for every i ∈ {1, · · · ,m} there exists η = (η1, · · · , ηm) ∈ Rm
+with ηi > 0 for every i ∈ {1, · · · ,m}, suh that the following impliationholds

y ∈ B(y0; η) ⇒ (1X − F )−1(y) ⊂ V ((1X − F )−1(y0); ǫ).Let y ∈ B(y0; η) and x ∈ (1X − F )−1(y). We will show that
D(x, (1X − F )−1(y0)) < ε.Sine x ∈ (1X − F )−1(y) we get that y ∈ x − F (x). Then

D(x, (1X − F )−1(y0)) ≤ kD(y0, (1X − F )(x))

≤ k [d(y0, y) + D(y, x − F (x))] ≤ kη.If we hose η < ǫ
k
, then we get the onlusion. �We will present now a Krasnoselskii type theorem for multivalued opera-tors in generalized Banah spaes.Theorem 2.13. Let (X, ‖·‖) be a generalized Banah spae and Y ∈ Pcp,cv (X).Assume that the operators F : Y → Pb,cl,cv (X) , G : Y → Pcp,cv (X) satisfythe properties:i) F (y1) + G (y2) ⊂ Y , for eah y1, y2 ∈ Y ;ii) F is a multivalued A-ontration mapping in Nadler's sense;iii) G is l.s. and G (Y ) is relatively ompat.Then F + G has a �xed point in Y .Proof. We show that for any x ∈ Y , the operator

Tx : Y → Pcp,cv (Y ) Tx (y) := F (y) + G (x)is a multivalued A-ontration. We have that
H (Tx (y1) , Tx (y2)) = H (F (y1) + G (x) , F (y2) + G (x))

≤ H (F (y1) , F (y2)) ≤ A ‖y1 − y2‖ , for any y1, y2 ∈ Y .Thus, Tx is a multivalued A-ontration. By Theorem 2.6, it follows that forany x ∈ Y the �xed point set of the multivalued operator Tx, namely
Fix (Tx) = {y ∈ Y : y ∈ F (y) + G (x)}EJQTDE, 2012 No. 85, p. 13



is nonempty and losed. Moreover, sine Tx has ompat values, by a similarargument to [26℄ we get that Fix (Tx) is ompat.Sine, the multivalued operator
U : Y × Y → Pcp,cv (Y ) , U(x, y) = F (y) + G (x)satis�es the hypothesis of Theorem 2.9, there exists a ontinuous mapping u :

Y ×Y → Y suh that u (x, y) ∈ F (u (x, y))+G (x), for eah (x, y) ∈ Y ×Y .We onsider now the singlevalued operator c : Y → Y , c (x) = u (x, x),for eah x ∈ Y . Then c(x) ∈ F (c(x)) + G(x), for eah x ∈ Y and thus
c(x) ∈ Fix(Tx), for eah x ∈ Y . The above relation is equivalent with

c(x) ∈ (1Y − F )−1(G(x)), for eah x ∈ Y.Now, we prove that c (Y ) is relatively ompat. Notie that, sine G (Y )is relatively ompat, it is enough to show that the multivalued operator
(1Y − F )−1 is u.s.. and has ompat values. The upper semiontinuityfollows by Lemma 2.10, by taking into aount that Y is ompat, while theompatness of the values of (1Y − F )−1 is a onsequene of the fat thatit has losed values in the ompat set Y . Thus, the operator c : Y → Ysatis�es the assumptions of Theorem 1.11. Let x∗ ∈ Y be a �xed point for c.Hene, we have that x∗ = c (x∗) ∈ F (c (x∗)) + G (x∗) = F (x∗)+ G (x∗). �Using an idea of T.A. Burton (see [5℄), let us observe that the ondition
i) in the previous result (Theorem 2.13) an be relaxed as follows.Theorem 2.14. Let (X, ‖·‖) be a generalized Banah spae and Y ∈ Pcp,cv (X).Assume that the operators F : Y → Pb,cl,cv (X) , G : Y → Pcp,cv (X) satisfythe properties:i) y ∈ F (y) + G (x) , x ∈ Y then y ∈ Y ;ii) F is a multivalued A-ontration mapping in Nadler's sense;iii) G is l.s. and G (Y ) is relatively ompat.Then F + G has a �xed point in Y .Remark 2.15. Let us suppose that the onditions ii) and iii) of Theorem2.14 holds. If there exists r ∈ Rm

+ suh that for Y = {x ∈ X : ‖x‖ ≤ r}we have G (Y ) ⊂ Y and ‖y‖ ≤ D (y, F (y)), y ∈ Y , then the onlusion ofTheorem 2.14 holds.Indeed, let y ∈ F (y) + G (x) , x ∈ Y . Then there exists u ∈ F (y) suhthat y − u ∈ G (x) , x ∈ Y . Sine
‖y‖ ≤ D (y, F (y)) ≤ ‖y − u‖ ≤ ‖G (x)‖ ≤ rwe have that y ∈ Y . Hene, the onlusion of Theorem 2.14 holds.Another Krasnoselskii type �xed point theorem for the sum of two multi-valued operator more appropiate for appliations is given now below.Theorem 2.16. Let (X, ‖·‖) be a generalized Banah spae and Y ∈ Pb,cl,cv (X).Assume that the operators F : Y → Pb,cl,cv (X) , G : Y → Pcp,cv (X) satisfythe properties:i) F (y1) + G (y2) ⊂ Y , for eah y1, y2 ∈ Y ; EJQTDE, 2012 No. 85, p. 14



ii) F is a multivalued A-ontration mapping in Nadler's sense;iii) G is l.s. and G (Y ) is relatively ompat;iv) the multivalued operator 1Y − F is metrially regular on Y .Then F + G has a �xed point in Y .Proof. The proof is similar to the proof of Theorem 2.13. The only modi�a-tion onsist in the fat that this time we are using the property of metriallyregularity of 1Y − F (instead of the ompatness of Y ) to get that c (Y ) isrelatively ompat. �3. An appliationIt is known that the lassial form of Krasnoselskii's Theorem has a lotof interesting appliations. See, for example, T.A. Burton [4℄, [5℄, [6℄, [7℄, L.Collatz [8℄ A. Petru³el [24℄, R. Preup-A. Viorel [27℄, [28℄, M. Zuluaga [40℄,et.Our purpose is to give some appliations of our Krasnoselskii type �xedpoint theorems in a generalized Banah spaes.Theorem 3.1. Let I = [0, a] (with a > 0) be an interval of the real axis andonsider the following system of integral equations
{

x1 (t) = λ11

∫ t

0 k1 (t, s, x1 (s) , x2 (s)) ds + λ12

∫ a

0 l1 (t, s, x1 (s) , x2 (s)) ds

x2 (t) = λ21

∫ t

0 k2 (t, s, x1 (s) , x2 (s)) ds + λ22

∫ a

0 l2 (t, s, x1 (s) , x2 (s)) dsfor t ∈ I, where λij ∈ R, for i, j ∈ {1, 2}.We assume that:i) k1, l1 ∈ C
(

I2 × Rn × Rp, Rn
) and k2, l2 ∈ C

(

I2 × Rn × Rp, Rp
);ii) there exists the matrix A =

(

a11 a12

a21 a22

)

∈ M2,2 (R+) suh that
|ki (t, s, u1, u2) − ki (t, s, v1, v2)| ≤ ai1 |u1 − v1| + ai2 |u2 − v2| , for eah
(t, s, , u1, u2) , (t, s, v1, v2) ∈ I2 × Rn × Rp, i ∈ {1, 2};iii) ( |λ12|

|λ22|

)

≤

(

r1

2Ml1
r2

2Ml2

), where Mli = max
t∈[0,a]

∫ a

0 |li (t, s, x1 (s) , x2 (s)) |ds,for i ∈ {1, 2} and r :=

(

r1

r2

), with r1, r2 > 0;iv) ( |λ11|
|λ21|

)

≤

(

r1

2a(a11r1+a12r2)
r2

2a(a21r1+a22r2)

).Then, there exists (x0
1, x

0
2

)

∈ C (I, Rn) × C (I, Rp) suh that the system(3.1) has at least one solution x∗ := (x∗
1, x

∗
2) ∈ B̃

(

x0
1, r1

)

× B̃
(

x0
2, r2

)

⊂
C (I, Rn) × C (I, Rp). EJQTDE, 2012 No. 85, p. 15



Proof. For the sake of simpliity let us denote X1 := Rn and X2 := Rp. For
i ∈ {1, 2} and x :=

(

x1

x2

)

∈ C (I,X1) × C (I,X2), we de�ne
fi, gi : C (I,X1) × C (I,X2) → C (I,Xi) ,

x 7−→ fix, x 7−→ gix,
fix (t) := λi1

∫ t

0
ki (t, s, x1 (s) , x2 (s)) ds, for any t ∈ I,

gix (t) := λi2

∫ a

0
li (t, s, x1 (s) , x2 (s)) ds, for any t ∈ I.By i), the operators fi and gi are well de�ned, for i ∈ {1, 2}. Morover, thesystem 3.1 an be re-written as a �xed point equation of the following form

x = (f + g)(x),where f :=

(

f1

f2

) and g :=

(

g1

g2

). Obviously, x∗ :=

(

x∗
1

x∗
2

) is a solutionfor our system of integral equations if and only if x∗ is a �xed point for theoperator f + g.Let us show that f and g satis�es the assumptions of Theorem 2.1. Let
x := (x1, x2), y := (y1, y2) ∈ C (I,X1) × C (I,X2). We have
|fi (x) (t) − fi (y) (t)|Xi

≤ |λi1|

∫ t

0
|ki (t, s, x1 (s) , x2 (s)) − ki (t, s, y1 (s) , y2 (s))|Xi

ds

≤ |λi1|

∫ t

0

(

ai1 |x1 (s) − y1 (s)|X1
+ ai2 |x2 (s) − y2 (s)|X2

)

ds

= |λi1|

(

ai1 ||x1 − y1||B1

∫ t

0
eτsds + ai2 ||x2 − y2||B2

∫ t

0
eτsds

)

≤
|λi1|

τ
eτt
(

ai1 ||x1 − y1||B1
+ ai2 ||x2 − y2||B2

) , for i ∈ {1, 2},where ||u||B :=

(

||u1||B1

||u2||B2

)

=







sup
t∈[0,a]

e−τt |u1 (t)|X1

sup
t∈[0,a]

e−τt |u2 (t)|X2






, τ > 0 denotes theBieleki-type norm on the generalized Banah spae C (I,X1) × C (I,X2).Thus, we obtain that

||fi (x) − fi (y)||Bi
≤

|λi1|

τ

(

ai1 ||x1 − y1||B1
+ ai2 ||x2 − y2||B2

) , for i ∈ {1, 2}.These inequalities an be written in a vetorial form
||f (x) − f (y)||B ≤ M ||x − y||B ,where

M =

(

|λi1| aij

τ

)

i,j=1,2

.EJQTDE, 2012 No. 85, p. 16



Taking τ large enough it follows that the matrix M is onvergent to zeroand thus, f is an A-ontration. By Theorem 2.6, we have that there existsa unique �xed point x0 =
(

x0
1, x

0
2

)

∈ C (I,X1) × C (I,X2) for f = (f1, f2).Let Y := B̃(x0
1; r1) × B̃(x0

2; r2) ⊂ C (I,X1) × C (I,X2).The operator g is ontinuous and, by a lassial argument, we get that
g (Y ) is relatively ompat.We will show that we an hoose r =

(

r1

r2

) (with r1, r2 > 0), suh that
f (Y ) ⊂ B̃

(

x0
1,

r1

2

)

× B̃
(

x0
2,

r2

2

)

.Let x ∈ Y , i.e., (x1, x2) ∈ B̃(x0
1; r1) × B̃(x0

2; r2). We will show that
‖f(x) − x0‖C :=

(

‖f1(x) − x0
1‖C1

‖f2(x) − x0
2‖C2

)

≤

(

r1

2
r2

2

)

,where ‖ · ‖C denotes the Cebîsev norm in the spae of ontinuous funtionon I.We have
∣

∣f1 (x) (t) − x0
1 (t)

∣

∣

X1

=
∣

∣f1 (x) (t) − f1(x
0) (t)

∣

∣

X1

≤

|λ11|

∫ t

0
|k1 (t, s, x1 (s) , x2 (s)) ds − k1

(

t, s, x0
1 (s) , x0

2 (s)
)

|X1
ds ≤

≤ |λ11|

∫ t

0
(a11|x1(s) − x0

1(s)|X1
+ a12|x2 (s) − x0

2 (s) |X2
)ds

≤ |λ11|

∫ t

0
(a11‖x1 − x0

1‖C1
+ a12‖x2 − x0

2‖C2
)ds

≤ |λ11|(a11r1 + a12r2)a.Taking max
t∈I

, we have that
‖f1 (x) − x0

1‖C1
≤ |λ11|a(a11r1 + a12r2) ≤

r1

2
.In a similar manner, we get

‖f2 (x) − x0
2‖C2

≤ |λ21|a(a21r1 + a22r2) ≤
r2

2
.Thus, we get(4) ∣

∣

∣

∣f (x) − x0
∣

∣

∣

∣

C
≤

(

r1

2
r2

2

) .We will show now that
g(Y ) ⊂ B̃(0;

r1

2
) × B̃(0;

r2

2
),i.e.,

‖g(x)‖C :=

(

‖g1(x)‖C1

‖g2(x)‖C2

)

≤

(

r1

2
r2

2

)
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Indeed, for x = (x1, x2) ∈ Y , we have
|g1 (x) (t)| ≤ |λ12|

∫ a

0
|l1 (t, s, x1 (s) , x2 (s))| ds ≤ |λ12|Ml1 .Taking max

t∈I
and using iii), we have

‖g1 (x) ‖C1
≤ |λ12|Ml1 ≤

r1

2
.By a similar approah we get

‖g2 (x) ‖C2
≤ |λ22|Ml2 ≤

r2

2
.Thus

g (x) ⊂ B̃(0,
r1

2
) × B̃(0,

r2

2
), for eah x ∈ Y .Then, the operator f + g has the property (f + g)(Y ) ⊂ Y . Hene, theonlusion follows by Theorem 2.1. �Remark 3.2. In a similar way, using a multivalued version of Krasnosel-skii's theorem in generalized metri spaes, existene results for the followingintegral inlusion system in C (I, Rn) × C (I, Rp):

{

x1 (t) ∈ λ11

∫ t

0 K1 (t, s, x1 (s) , x2 (s)) ds + λ12

∫ a

0 L1 (t, s, x1 (s) , x2 (s)) ds

x2 (t) ∈ λ21

∫ t

0 K2 (t, s, x1 (s) , x2 (s)) ds + λ22

∫ a
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