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ASYMPTOTIC AND OSCILLATORY BEHAVIOR OF

HIGHER ORDER QUASILINEAR DELAY DIFFERENTIAL

EQUATIONS

B. BACULÍKOVÁ AND J. DŽURINA1

Abstract. In the paper, we offer such generalization of a lemma due
to Philos (and partially Staikos), that yields many applications in the
oscillation theory. We present its disposal in the comparison theory and
we establish new oscillation criteria for n−th order delay differential
equation

(E)
`

r(t)
ˆ

x
′(t)

˜

γ
´(n−1)

+ q(t)xγ(τ (t)) = 0.

The presented technique essentially simplifies the examination of the
higher order differential equations.

1. Introduction

In this paper, we shall study the asymptotic and oscillation behavior of the
solutions of the higher order delay differential equations

(E)
(

r(t)
[

x′(t)
]γ)(n−1)

+ q(t)xγ(τ(t)) = 0.

Throughout the paper, we will assume q, τ, r ∈ C([t0,∞)), and

(H1) n ≥ 3, γ is the ratio of two positive odd integers,
(H2) r(t) > 0, q(t) > 0, τ(t) ≤ t, lim

t→∞

τ(t) = ∞.

Whenever, it is assumed

(1.1) R(t) =

∫ t

t0

r−1/γ(s) ds → ∞ as t → ∞.

By a solution of Eq. (E) we mean a function x(t) ∈ C1([Tx,∞)), with
Tx ≥ t0, which has the property r(t)(x′(t))γ ∈ Cn−1([Tx,∞)) and satisfies
Eq. (E) on [Tx,∞). We consider only those solutions x(t) of (E) which
satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. We assume that (E) possesses
such a solution. A solution of (E) is called oscillatory if it has arbitrarily
large zeros on [Tx,∞) and otherwise it is called to be nonoscillatory. An
equation itself is said to be oscillatory if all its solutions are oscillatory.

The problem of the oscillation of higher order differential equations has
been widely studied by many authors, who have provided many techniques
for obtaining oscillatory criteria for studied equations (see e.g. [1] - [19]).

Philos in [16] and [17] presented the following lemma.
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Lemma A. Assume that z(i)(t), i = 1, 2, . . . , ℓ are of constant signs such

that z(ℓ−1)(t)z(ℓ)(t) ≤ 0 and lim
t→∞

z(t) 6= 0. Then for any λ ∈ (0, 1)

z(t) ≥
λ

(ℓ − 1)!
tℓ−1z(ℓ)(t),

eventually.

This lemma essentially simplifies the examination of n − th order differ-
ential equations of the form

(1.2) y(n)(t) + q(t)yγ(τ(t)) = 0

since it provides needed relationship between y(t) and y(n−1)(t) and this
fact permit us to establish just one condition for oscillation of (1.2). This
lemma is not applicable to differential equation (E). In this paper we offer
a generalization of Lemma A, which works for (E) and permits to establish
new oscillation criteria for it.

2. Main Results

The following result is a well-known lemma of Kiguradze see e.g. [6] or
[14].

Lemma 1. Let z(t) ∈ C1([t0,∞)), and r(t)(z′(t))γ ∈ Ck−1([t0,∞)) with

z(t) > 0, (r(t)(z′(t))γ)(k−1) ≤ 0 and not identically zero on a subray of

[t0,∞). Then there exist a t1 ≥ t0 and an integer ℓ, 0 ≤ ℓ ≤ k − 1, with

k + ℓ odd so that

(

r(t)(z′(t))γ
)(i)

(t) > 0, i = 0, . . . , ℓ − 1, when ℓ ≥ 1,

(−1)ℓ+j−1
(

r(t)(z′(t))γ
)(j)

(t) > 0, j = ℓ, . . . , k − 2,
(2.1)

on [t1,∞).

Now we are prepared to provide a generalization of Lemma A.

Lemma 2. Let z(t) be as in Lemma 1 and numbers t1 and ℓ be assigned to

z(t) by Lemma 1. Then for 2 ≤ ℓ ≤ k − 1

(2.2) z(t) ≥

[

(r(t)(z′(t))γ)(k−2)
]1/γ

(

(k − 2)!
)1/γ

∫ t

t1

r−1/γ(s)(s − t1)
(k−2)/γ ds,

for ℓ = 1

(2.3) z(t) ≥

[

(r(t)(z′(t))γ)(k−2)
]1/γ

(

(k − 2)!
)1/γ

∫ t

t1

r−1/γ(s)(t − s)(k−2)/γ ds,

for t ≥ t1.
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Proof. Let ℓ be the integer assigned to function z(t) as in Lemma 1. Assume
that ℓ < k − 1, then for any s, t with t ≥ s ≥ t1, we have

−
(

r(s)(z′(s))γ
)(k−3)

≥

∫ t

s

(

r(u)(z′(u))γ
)(k−2)

du ≥
(

r(t)(z′(t))γ
)(k−2)

(t−s).

Repeated integration in s from s to t yields

(2.4)
(

r(s)(z′(s))γ
)(ℓ−1)

≥
(

r(t)(z′(t))γ
)(k−2) (t − s)k−ℓ−1

(k − ℓ − 1)!
.

It is easy to see that (2.4) holds also for ℓ = k − 1.
On the other hand, if ℓ ≥ 2, then for every t ≥ t1, we have

(

r(t)(z′(t))γ
)(ℓ−2)

≥

∫ t

t1

(

r(s)(z′(s))γ
)(ℓ−1)

ds.

Repeated integration from t1 to t leads to

(2.5) r(t)(z′(t))γ ≥
1

(ℓ − 2)!

∫ t

t1

(

r(s)(z′(s))γ
)(ℓ−1)

(t − s)ℓ−2 ds.

Setting (2.4) into (2.5), one gets

(

r(t)(z′(t))γ
)

≥
(r(t)(z′(t))γ)(k−2)

(ℓ − 2)!(k − ℓ − 1)!

∫ t

t1

(t − s)k−3 ds

≥
(r(t)(z′(t))γ)(k−2)

(k − 2)!
(t − t1)

k−2.

or simply

z′(t) ≥

[

(r(t)(z′(t))γ)(k−2)
]1/γ

(

(k − 2)!
)1/γ

r−1/γ(t)(t − t1)
(k−2)/γ .

Integrating the last inequality from t1 to t, we get (2.2). We have verified
the first part of the lemma.

Now assume that ℓ = 1. It follows from (2.4) that

(2.6) r(s)(z′(s))γ ≥
(

r(t)(z′(t))γ
)(k−2) (t − s)k−2

(k − 2)!
.

On the other hand,

(2.7) z(t) ≥

∫ t

t1

z′(s) ds =

∫ t

t1

r1/γ(s)z′(s)r−1/γ(s) ds.

Combining (2.6) together with (2.7), we get (2.3). The proof is complete
now. �

Imposing additional condition, we are able to joint (2.4) and (2.5) to just
one estimate.
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Lemma 3. Let z(t) be as in Lemma 1 and lim
t→∞

z(t) 6= 0. Let r′(t) ≥ 0.Then

for any λ ∈ (0, 1) there exists some tλ ≥ t1 such that

(2.8) z(t) ≥
γλt(k−2+γ)/γ

(

(k − 2)!
)1/γ

(k − 2 + γ)
r−1/γ(t)

[

(

r(t)(z′(t))γ
)(k−2)

]1/γ

for t ≥ tλ.

Proof. Note that r′(t) ≥ 0 implies that r−1/γ(t) is nonincreasing. Assume
that ℓ is the integer associated with z(t) in Lemma 1. If 2 ≤ ℓ ≤ k− 2, then
using (2.2), we have

(2.9) z(t) ≥

[

(r(t)(z′(t))γ)(k−2)
]1/γ

(

(k − 2)!
)1/γ

r−1/γ(t)γ
(t − t1)

(k−2+γ)/γ

k − 2 + γ

It is easy to see that for any λ ∈ (0, 1) there exists a tλ ≥ t1 such that

t − t1 ≥ λγ/(k−2+γ)t for t ≥ tλ, which in view of (2.9) yields (2.8).
If ℓ = 1, then proceeding similarly as above it can be shown that (2.3)

implies (2.8).
If ℓ = 0, then for any s, t with t ≥ s ≥ t1

−
(

r(s)(z′(s))γ
)(k−3)

≥
(

r(t)(z′(t))γ
)(k−2)

(t − s).

Repeated integration in s from s to t yields

−r(s)(z′(s))γ ≥
(

r(t)(z′(t))γ
)(k−2) (t − s)k−2

(k − 2)!

or

−z′(s) ≥
[

(

r(t)(z′(t))γ
)(k−2)

]1/γ
r−1/γ(s)

(t − s)(k−2)/γ

(

(k − 2)!
)1/γ

.

An integration from s to t, yields

z(s) ≥
[

(

r(t)(z′(t))γ
)(k−2)

]1/γ
∫ t

s
r−1/γ(s)

(t − s)(k−2)/γ

(

(k − 2)!
)1/γ

ds

≥
[

(

r(t)(z′(t))γ
)(k−2)

]1/γ
r−1/γ(t)

γ (t − s)(k−2+γ)/γ

(

(k − 2)!
)1/γ

(k − 2 + γ)
.

Setting s =
(

1 − λγ/2(k−2−γ)
)

t, we have

z
((

1 − λγ/2(k−2−γ)
)

t
)

≥
[

(

r(t)(z′(t))γ
)(k−2)

]1/γ γλ1/2 r−1/γ(t) t(k−2+γ)/γ

(

(k − 2)!
)1/γ

(k − 2 + γ)
.

Moreover,

lim
t→∞

z(t)

z
((

1 − λγ/2(k−2−γ)
)

t
) = 1 > λ1/2.

Therefore,

z(t) ≥ λ1/2z
((

1 − λγ/2(k−2−γ)
)

t
)

,
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and consequently,

z(t) ≥
γλt(k−2+γ)/γ

(

(k − 2)!
)1/γ

(k − 2 + γ)
r−1/γ(t)

[

(

r(t)(z′(t))γ
)(k−2)

]1/γ

The proof is complete now. �

Remark 1. For r(t) ≡ 1 and γ = 1, Lemma 3 reduces to Lemma A.

3. Applications

To present usefulness of Lemma 2 and Lemma 3, we apply both to estab-
lish new oscillatory results for (E), based also on comparison principles.

Theorem 1. Assume that the first order delay differential equation

(E1) y′(t) +
q(t)

(n − 2)!

(

∫ τ(t)

t1

r−1/γ(s)(s − t1)
(n−2)/γ ds

)γ

y(τ(t)) = 0

is oscillatory. Moreover, for n-even the first order delay differential equation

(E2) y′(t) +
q(t)

(n − 2)!

(

∫ τ(t)

t1

r−1/γ(s)(τ(t) − s)(n−2)/γ ds

)γ

y(τ(t)) = 0

is oscillatory and for n-odd condition

(P0)

∫

∞

t0

r−1/γ(u)

(
∫

∞

u
q(s)(s − u)n−2 ds

)1/γ

du = ∞.

holds. Then

(i) for n even, (E) is oscillatory;

(ii) for n odd, each nonoscillatory solution of (E) satisfies lim
t→∞

x(t) = 0.

Proof. Assume that x(t) is a nonoscillatory solution of (E), let say positive.

Then (r(t) [x′(t)]γ)
(n−1)

< 0 and there exist a t1 ≥ t0 and an integer ℓ with
n + ℓ odd such that (2.1) holds.

If 2 ≤ ℓ ≤ n − 1, Then by Lemma 2

x(t) ≥

[

(r(t)(x′(t))γ)(n−2)
]1/γ

(

(n − 2)!
)1/γ

∫ t

t1

r−1/γ(s)(s − t1)
(n−2)/γ ds,

Then y(t) = (r(t)(x′(t))γ)(n−2) is positive and

xγ(τ(t)) ≥
y(τ(t))

(n − 2)!

(
∫ t

t1

r−1/γ(s)(s − t1)
(n−2)/γ ds

)γ

,

Setting to (E), we see that y(t) is a positive solution of the delay differential
inequality

y′(t) +
q(t)

(n − 2)!

(

∫ τ(t)

t1

r−1/γ(s)(s − t1)
n−2 ds

)γ

y(τ(t)) ≤ 0.
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By Theorem 1 in [15] the corresponding equation (E1) has also a positive
solution. A contradiction.

If ℓ = 1, which is possible only when n is even, Lemma 2 implies

x(t) ≥

[

(r(t)(x′(t))γ)(n−2)
]1/γ

(

(n − 2)!
)1/γ

∫ t

t1

r−1/γ(s)(t − s)(n−2)/γ ds,

and proceeding as above, we find out that (E2) has a positive solution. A
contradiction and the proof is finished for n even.

Assume that ℓ = 0, note that it is possible only of n is odd. Since
x′(t) < 0, then there exists a finite lim

t→∞

x(t) = c ≥ 0. We claim that c = 0.

If not, that x(τ(t)) ≥ c > 0, eventually, let us say for t ≥ t2. An integration
of (E) from t to ∞ yields

(

r(t)
(

x′(t)
)γ)(n−2)

≥

∫

∞

t
q(s)xγ(τ(s)) ds

Integrating n − 2 times from t to ∞, we get

−r(t)
(

x′(t)
)γ

≥

∫

∞

t
q(s)xγ(τ(s))

(s − t)n−2

(n − 2)!
ds

or equivalently

(3.1) −x′(t) ≥ r−1/γ(t)

(
∫

∞

t
q(s)xγ(τ(s))

(s − t)n−2

(n − 2)!
ds

)1/γ

Integrating again from t2 to ∞, we get

x(t2) ≥ c

∫

∞

t2

r−1/γ(u)

(
∫

∞

u
q(s)

(s − u)n−2

(n − 2)!
ds

)1/γ

du

which contradicts (P0). The proof is complete. �

Employing any result (e.g. Theorem 2.1.1 in [14]) for the oscillation of
(E1) and (E2), we immediately obtain criteria for studied properties of (E).

Corollary 1. Assume that

lim inf
t→∞

∫ t

τ(t)
q(u)

(

∫ τ(u)

t1

r−1/γ(s)(s − t1)
(n−2)/γ ds

)γ

du >
(n − 2)!

e

and

lim inf
t→∞

∫ t

τ(t)
q(u)

(

∫ τ(u)

t1

r−1/γ(s)(τ(s) − t)(n−2)/γ ds

)γ

du >
(n − 2)!

e
,

Moreover, for n-odd assume that (P0) hold. Then

(i) for n even, (E) is oscillatory;

(ii) for n odd, each nonoscillatory solution of (E) satisfies lim
t→∞

x(t) = 0.

The results of Theorem 1 and Corollary 1 can be simplified provided that
we impose additional condition on the function r(t).
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Theorem 2. Let r′(t) ≥ 0. Assume that for some λ ∈ (0, 1) the first order

delay differential equation

(E3) y′(t) +
γγλγ

(n − 2)!(n − 2 + γ)γ
q(t)τn−2+γ(t)

r(τ(t))
y(τ(t)) = 0

is oscillatory. Then

(i) for n even, (E) is oscillatory;

(ii) for n odd, each nonoscillatory solution of (E) satisfies lim
t→∞

x(t) = 0.

Proof. Assume that x(t) is an eventually positive solution of (E). Then

(r(t) [x′(t)]γ)(n−1) < 0 and there exist a t1 ≥ t0 and an integer ℓ with n + ℓ
odd such that (2.1) holds. If n is odd suppose that lim

t→∞

x(t) 6= 0 (for n is

even this is obvious). Then it follows from Lemma 3 that

x(t) ≥
γλt(n−2+γ)/γ

(

(n − 2)!
)1/γ

(n − 2 + γ)
r−1/γ(t)

[

(

r(t)(x′(t))γ
)(n−2)

]1/γ
,

that is, y(t) = (r(t)(x′(t))γ)(n−2) satisfies

xγ(τ(t)) ≥
γγλγτn−2+γ(t)

(n − 2)!(n − 2 + γ)γ
y(τ(t))

r(τ(t))
.

Setting to (E), we see that y(t) is a positive solution of the differential
inequality

y′(t) +
γγλγ

(n − 2)!(n − 2 + γ)γ
q(t)τn−2+γ(t)

r(τ(t))
y(τ(t)) ≤ 0.

By Theorem 1 in [15] the corresponding equation (E3) has also a positive
solution. A contradiction. �

Corollary 2. Let r′(t) ≥ 0. If

(P1) lim inf
t→∞

∫ t

τ(t)

q(s)τn−2+γ(s)

r(τ(s))
ds >

(n − 2)!

e

(

n − 2 + γ

γ

)γ

.

Then

(i) for n even, (E) is oscillatory;

(ii) for n odd, every nonoscillatory solution x(t) of (E) satisfies lim
t→∞

x(t) =

0.

Proof. It is easy to see from (P1) that there exist some λ ∈ (0, 1) such that

lim inf
t→∞

∫ t

τ(t)

γγλγ

(n − 2)!(n − 2 + γ)γ
q(s)τn−2+γ(s)

r(τ(s))
ds >

1

e
,

But according to Theorem 2.1.1 in [14] this condition guarantees oscillation
of (E3). the assertion now follows from Theorem 2. �
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Example 1. We consider the fourth order delay differential equation

(E3)
(

t
(

x′(t)
)3
)

′′′

+
a

t5
x3(λt) = 0, a > 0, 0 < λ < 1, t ≥ 1.

Condition (P1) reduces to

(3.2) aλ4 ln

(

1

λ

)

>
2

e

(

5

3

)3

,

which by Corollary 2 guarantees oscillation of (E3). On the other hand, it

is easy to see that for aλ3/2 = 15/26 condition (3.2) fails and (E3) has a

nonoscillatory solution x(t) = t1/2.

If we enforce condition (P0), we can obtain oscillation of (E) even if n is
odd.

Theorem 3. Let τ ′(t) ≥ 0. Assume that both first order delay differential

equations (E1) and (E2) are oscillatory. Moreover, for n-odd assume that

(P2) lim sup
t→∞

∫ t

τ(t)
r−1/γ(u)

(
∫ t

u
q(s)(s − u)n−2 ds

)1/γ

du >
((

n − 2
)

!
)1/γ

.

Then (E) is oscillatory.

Proof. Assume that x(t) is a positive solution of (E). Then there exist a
t1 ≥ t0 and an integer ℓ with n + ℓ odd such that (2.1) holds. Taking into
account the proof of Theorem 1, it is sufficient to eliminate the case ℓ = 0.
If we admit that ℓ = 0, then we are led to (3.1). Integrating it from t to ∞,
we get

x(t) ≥

∫

∞

t
r−1/γ(u)

(
∫

∞

u
xγ(τ(s))q(s)

(s − u)n−2

(n − 2)!
ds

)1/γ

du,

which implies

x(τ(t)) ≥

∫ t

τ(t)
r−1/γ(u)

(
∫ t

u
xγ(τ(s))q(s)

(s − u)n−2

(n − 2)!
ds

)1/γ

du

≥ x(τ(t))

∫ t

τ(t)
r−1/γ(u)

(
∫ t

u
q(s)

(s − u)n−2

(n − 2)!
ds

)1/γ

du,

which contradicts (P2). �

Corollary 3. Let τ ′(t) ≥ 0 and r′(t) ≥ 0. If (P1) and (P2) hold, then (E)
is oscillatory.

Proof. Assume that x(t) is a positive solution of (E). Then there exist a
t1 ≥ t0 and an integer ℓ with n + ℓ odd such that (2.1) holds. It follows
from Theorem 2 and Corollary 2 that ℓ = 0, but this case is eliminated by
(P1). �
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Example 2. We consider the third order delay differential equation

(E4)
(

t
(

x′(t)
)3
)

′′

+
a

t4
x3(λt) = 0, a > 0, 0 < λ < 1, t ≥ 1.

Condition (P1) simplifies to

aλ3 ln

(

1

λ

)

>
1

e

(

4

3

)3

,

which by Corollary 2 guarantees that every nonoscillatory solution x(t) of

(E4) tends to zero. Note that for a = α3(3α + 2)(3α + 3)λ3α, with α > 0
one such solution is x(t) = t−α. On the other hand, (P2) takes the form

a

(

ln
1

λ

)3

> 6,

which according to Corollary 3 yields oscillation of (E4).
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[4] B. Bacuĺıková, J. Džurina, Oscillation of third-order functional differential equations

, EJQTDE, 43 (2010), 1–10.
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