Fixed points for some non-obviously contractive operators defined in a space of continuous functions

Cezar Avramescu and Cristian Vladimirescu

Abstract

Let X be an arbitrary (real or complex) Banach space, endowed with the norm $|\cdot|$. Consider the space of the continuous functions $C([0, T], X)$ ($T>0$), endowed with the usual topology, and let M be a closed subset of it. One proves that each operator $A: M \rightarrow M$ fulfilling for all $x, y \in M$ and for all $t \in[0, T]$ the condition $$
\begin{aligned} |(A x)(t)-(A y)(t)| \leq & \beta|x(\nu(t))-y(\nu(t))|+ \\ & +\frac{k}{t^{\alpha}} \int_{0}^{t}|x(\sigma(s))-y(\sigma(s))| d s, \end{aligned}
$$ (where $\alpha, \beta \in[0,1), k \geq 0$, and $\nu, \sigma:[0, T] \rightarrow[0, T]$ are continuous functions such that $\nu(t) \leq t, \sigma(t) \leq t, \forall t \in[0, T])$ has exactly one fixed point in M. Then the result is extended in $C\left(\mathbb{R}_{+}, X\right)$, where $\mathbb{R}_{+}:=$ $[0, \infty)$.

1. Introduction

A result due to Krasnoselskii (see, e.g. [1]) ensures the existence of fixed points for an operator which is the sum of two operators, one of them being compact and the other being contraction. A natural question is whether the result continues to hold if the first operator is not compact. In [2] and [3] the case when the compactity is replaced to a Lipschitz condition is considered; the result is proved only in the space of the continuous functions.

More precisely, let X be a (real or complex) Banach space, endowed with the norm $|\cdot|$. Consider the space $C([0, T], X)$ of the continuous functions from $[0, T]$ into $X(T>0)$, endowed with the usual topology and M a closed subset of $C([0, T], X)$.

Let $A: M \rightarrow M$ be an operator with the property that there exist $\alpha, \beta \in$ $[0,1), k \geq 0$ such that for every $x, y \in M$,

$$
\begin{align*}
|(A x)(t)-(A y)(t)| \leq & \beta|x(t)-y(t)|+ \\
& +\frac{k}{t^{\alpha}} \int_{0}^{t}|x(s)-y(s)| d s, \forall t \in[0, T] . \tag{1.1}
\end{align*}
$$

In [2] the authors resume the result contained in [3] and prove that the condition (1.1) ensures the existence in M of a unique fixed point for A; the result is deduced through a subtle technique. Finally, by admitting that (1.1) is fulfilled for every $t \in \mathbb{R}_{+}$, the result is generalized to the space $B C\left(\mathbb{R}_{+}, X\right)$, (where $\mathbb{R}_{+}:=[0, \infty)$), i.e. the space of the bounded and continuous functions from \mathbb{R}_{+}into X.

In the present paper we give an alternative proof of the first result contained in [2], in a more general case, by means of a new approach; more exactly, we use in $C([0, T], X)$ a special norm which is equivalent to the classical norm. Then we extend the result to the space $C\left(\mathbb{R}_{+}, X\right)$.

2. The first existence result

Consider the space $C([0, T], X)$, where $(X,|\cdot|)$ is a Banach space, $T>0$ and let $\gamma \in(0, T), \lambda>0$.

Define for $x \in C([0, T], X)$,

$$
\|x\|:=\|x\|_{\gamma}+\|x\|_{\lambda},
$$

where we denoted

$$
\|x\|_{\gamma}:=\sup _{t \in[0, \gamma]}\{|x(t)|\},\|x\|_{\lambda}:=\sup _{t \in[\gamma, T]}\left\{e^{-\lambda(t-\gamma)}|x(t)|\right\}
$$

It is easily seen that $\|\cdot\|$ is a norm on $C([0, T], X)$ and it defines the same topology as the norm $\|\cdot\|_{\infty}$, where

$$
\|x\|_{\infty}:=\sup _{t \in[0, T]}\{|x(t)|\}
$$

Theorem 2.1 Let M be a closed subset of $C([0, T], X)$ and $A: M \rightarrow M$ be an operator. If there exist $\alpha, \beta \in[0,1), k \geq 0$ such that for every $x, y \in M$ and for every $t \in[0, T]$,

$$
\begin{align*}
|(A x)(t)-(A y)(t)| \leq & \beta|x(\nu(t))-y(\nu(t))|+ \\
& +\frac{k}{t^{\alpha}} \int_{0}^{t}|x(\sigma(s))-y(\sigma(s))| d s \tag{2.1}
\end{align*}
$$

where $\nu, \sigma:[0, T] \rightarrow[0, T]$ are continuous functions such that $\nu(t) \leq t, \sigma(t) \leq t$, $\forall t \in[0, T]$, then A has a unique fixed point in M.

Proof. We shall apply the Banach Contraction Principle. To this aim, we show that A is contraction, i.e. there exists $\delta \in[0,1)$ such that for any $x, y \in M$,

$$
\|A x-A y\| \leq \delta\|x-y\|
$$

Let $t \in[0, \gamma]$ be arbitrary. Then we have

$$
\begin{aligned}
|(A x)(t)-(A y)(t)| \leq & \beta|x(\nu(t))-y(\nu(t))|+ \\
& +\frac{k}{t^{\alpha}} \int_{0}^{t}|x(\sigma(s))-y(\sigma(s))| d s \leq \\
\leq & \beta\|x-y\|_{\gamma}+t^{1-\alpha} k\|x-y\|_{\gamma} \leq \\
\leq & \left(\beta+k \gamma^{1-\alpha}\right)\|x-y\|_{\gamma}
\end{aligned}
$$

and hence

$$
\begin{equation*}
\|A x-A y\|_{\gamma} \leq\left(\beta+k \gamma^{1-\alpha}\right)\|x-y\|_{\gamma} . \tag{2.2}
\end{equation*}
$$

Let $t \in[\gamma, T]$ be arbitrary. Then we get

$$
\begin{aligned}
|(A x)(t)-(A y)(t)| \leq & \beta|x(\nu(t))-y(\nu(t))|+ \\
& +\frac{k}{t^{\alpha}}\left(\int_{0}^{\gamma}|x(\sigma(s))-y(\sigma(s))| d s+\right. \\
& \left.+\int_{\gamma}^{t}|x(\sigma(s))-y(\sigma(s))| e^{-\lambda((\sigma(s))-\gamma)} e^{\lambda((\sigma(s))-\gamma)} d s\right) \\
\leq & \beta|x(\nu(t))-y(\nu(t))|+\frac{k}{\gamma^{\alpha}}\left(\gamma\|x-y\|_{\gamma}+\right. \\
& \left.+\|x-y\|_{\lambda} \int_{\gamma}^{t} e^{\lambda(\sigma(s)-\gamma)} d s\right) \\
\leq & \beta|x(\nu(t))-y(\nu(t))|+\frac{k}{\gamma^{\alpha}}\left(\gamma\|x-y\|_{\gamma}+\right. \\
& \left.+\|x-y\|_{\lambda} \int_{\gamma}^{t} e^{\lambda(s-\gamma)} d s\right) \\
< & \beta|x(\nu(t))-y(\nu(t))|+\frac{k}{\gamma^{\alpha}}\left(\gamma\|x-y\|_{\gamma}+\right. \\
& \left.+\|x-y\|_{\lambda} \frac{e^{\lambda(t-\gamma)}}{\lambda}\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
|(A x)(t)-(A y)(t)| e^{-\lambda(t-\gamma)}< & \beta|x(\nu(t))-y(\nu(t))| e^{-\lambda(t-\gamma)}+ \\
& +k \gamma^{1-\alpha}\|x-y\|_{\gamma}+\frac{k}{\lambda} \gamma^{-\alpha}\|x-y\|_{\lambda}
\end{aligned}
$$

and therefore

$$
\begin{align*}
\|A x-A y\|_{\lambda} \leq & \beta \sup _{t \in[\gamma, T]}\left\{|x(\nu(t))-y(\nu(t))| e^{-\lambda(t-\gamma)}\right\}+ \tag{2.3}\\
& +k \gamma^{1-\alpha}\|x-y\|_{\gamma}+\frac{k}{\lambda} \gamma^{-\alpha}\|x-y\|_{\lambda} \\
\leq & \beta \sup _{t \in[\gamma, T]}\left\{|x(\nu(t))-y(\nu(t))| e^{-\lambda(\nu(t)-\gamma)}\right\}+
\end{align*}
$$

$$
\begin{aligned}
& +k \gamma^{1-\alpha}\|x-y\|_{\gamma}+\frac{k}{\lambda} \gamma^{-\alpha}\|x-y\|_{\lambda} \\
\leq & \left(\beta+\frac{k}{\lambda} \gamma^{-\alpha}\right)\|x-y\|_{\lambda}+k \gamma^{1-\alpha}\|x-y\|_{\gamma}
\end{aligned}
$$

By (2.2) and (2.3) we obtain

$$
\begin{equation*}
\|A x-A y\| \leq\left(\beta+2 k \gamma^{1-\alpha}\right)\|x-y\|_{\gamma}+\left(\beta+\frac{k}{\lambda} \gamma^{-\alpha}\right)\|x-y\|_{\lambda} \tag{2.4}
\end{equation*}
$$

Since $\beta \in[0,1)$, for $\gamma \in\left(0,\left(\frac{1-\beta}{2 k}\right)^{\frac{1}{1-\alpha}}\right)$ we deduce $\beta+\frac{k}{\lambda} \gamma^{1-\alpha}<1$ and for $\lambda>\frac{k}{1-\beta} \gamma^{-\alpha}$ we deduce $\gamma+\frac{k}{\lambda} \gamma^{-\alpha}<1$. Let $\delta:=\max \left\{\beta+\frac{k}{\lambda} \gamma^{1-\alpha}, \gamma+\frac{k}{\lambda} \gamma^{-\alpha}\right\}$. It follows that $\delta<1$ and, since (2.4),

$$
\|A x-A y\| \leq \delta\left(\|x-y\|_{\gamma}+\|x-y\|_{\lambda}\right)=\delta\|x-y\|
$$

Hence, A is contraction.
From the Banach Contraction Principle we conclude that A has exactly one fixed point in M.

Remark 2.1 We remark that if $\nu(t)=t$ and $\sigma(t)=t, \forall t \in[0, T]$, then the conditions (1.1) and (2.1) are identical.

3. The second existence result

As we mentioned in Section 1, in [2] is presented a generalization in the space $B C\left(\mathbb{R}_{+}, X\right)$ if (1.1) is fulfilled for every $t \in \mathbb{R}_{+}$. We shall prove that result under slightly more general assumptions.

Consider the space $C\left(\mathbb{R}_{+}, X\right)$ and for every $n \in \mathbb{N}^{*}$ let $\gamma_{n} \in(0, n), \lambda_{n}>0$. Define the numerable family of seminorms $\left\{\|\cdot\|_{n}\right\}_{n \in \mathbb{N}^{*}}$, where $\|x\|_{n}:=\|x\|_{\gamma_{n}}+$ $\|x\|_{\lambda_{n}}$, for every $x \in C\left(\mathbb{R}_{+}, X\right)$, and

$$
\|x\|_{\gamma_{n}}:=\sup _{t \in\left[0, \gamma_{n}\right]}\{|x(t)|\},\|x\|_{\lambda_{n}}:=\sup _{t \in\left[\gamma_{n}, T\right]}\left\{e^{-\lambda\left(t-\gamma_{n}\right)}|x(t)|\right\}
$$

As it is known, $C\left(\mathbb{R}_{+}, X\right)$ endowed with this numerable family of seminorms becomes a Fréchet space, i.e. a metrisable complete linear space. Also, the most natural metric which can be defined is

$$
d(x, y):=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \cdot \frac{\|x-y\|_{n}}{1+\|x-y\|_{n}}, \forall x, y \in C\left(\mathbb{R}_{+}, X\right)
$$

Notice that a sequence $\left\{x_{m}\right\}_{m \in \mathbb{N}} \subset C\left(\mathbb{R}_{+}, X\right)$ converges to x if and only if

$$
\forall n \in \mathbb{N}^{*}, \quad \lim _{m \rightarrow \infty}\left\|x_{m}-x\right\|_{n}=0
$$

if

In addition, a sequence $\left\{x_{m}\right\}_{m \in \mathbb{N}} \subset C\left(\mathbb{R}_{+}, X\right)$ is fundamental if and only

$$
\forall n \in \mathbb{N}^{*}, \forall \varepsilon>0, \exists m_{0} \in \mathbb{N}, \forall p, q \geq m_{0},\left\|x_{p}-x_{q}\right\|_{n}<\varepsilon
$$

or, more easily, if and only if

$$
\forall n \in \mathbb{N}^{*}, \lim _{p, q \rightarrow \infty}\left\|x_{p}-x_{q}\right\|_{n}=0
$$

Theorem 3.1 Let M be a closed subset of $C\left(\mathbb{R}_{+}, X\right)$ and $A: M \rightarrow M$ be an operator. If for every $n \in \mathbb{N}^{*}$ there exist $\alpha_{n}, \beta_{n} \in[0,1), k_{n} \geq 0$ such that for every $x, y \in M$ and for every $t \in[0, n]$,

$$
\begin{align*}
|(A x)(t)-(A y)(t)| \leq & \beta_{n}|x(\nu(t))-y(\nu(t))|+ \\
& +\frac{k}{t^{\alpha_{n}}} \int_{0}^{t}|x(\sigma(s))-y(\sigma(s))| d s \tag{3.1}
\end{align*}
$$

where $\nu, \sigma: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$are continuous functions such that $\nu(t) \leq t, \sigma(t) \leq t$, $\forall t \in \mathbb{R}_{+}$, then A has a unique fixed point in M.

Proof. As we have seen within the proof of Theorem 2.1, by choosing conveniently $\gamma_{n} \in(0, n)$ and $\lambda_{n}>0$, there exists $\delta_{n} \in[0,1)$ such that for any $x, y \in M$,

$$
\begin{equation*}
\|A x-A y\|_{n} \leq \delta_{n}\|x-y\|_{n}, \forall n \in \mathbb{N}^{*} . \tag{3.2}
\end{equation*}
$$

The proof of Theorem 3.1 is similar to the proof of the Banach Contraction Principle. We build the iterative sequence $x_{m+1}=A x_{m}, \forall m \in \mathbb{N}$, where $x_{0} \in M$ is arbitrary.

Let $n \in \mathbb{N}^{*}$ be arbitrary. One has

$$
\left\|x_{m+1}-x_{m}\right\|_{n}=\left\|A x_{m}-A x_{m-1}\right\|_{n} \leq \delta_{n}\left\|x_{m}-x_{m-1}\right\|_{n}, \forall m \in \mathbb{N}^{*}
$$

and therefore

$$
\left\|x_{m+1}-x_{m}\right\|_{n} \leq \delta_{n}^{m}\left\|x_{1}-x_{0}\right\|_{n}, \forall m \in \mathbb{N} .
$$

Similarly,

$$
\begin{aligned}
\left\|x_{m+p}-x_{m}\right\|_{n} & \leq\left(\delta_{n}^{m+p}+\ldots+\delta_{n}^{m}\right)\left\|x_{1}-x_{0}\right\|_{n}< \\
& <\frac{\delta_{n}^{m}}{1-\delta_{n}}\left\|x_{1}-x_{0}\right\|_{n}, \forall m \in \mathbb{N}, p \in \mathbb{N}^{*}
\end{aligned}
$$

So, $\left\{x_{m}\right\}_{m \in \mathbb{N}}$ is fundamental and hence it will be convergent. Let $x_{*}:=$ $\lim _{m \rightarrow \infty} x_{m} \in M$. By (3.2) it follows that $A x_{m} \rightarrow A x_{*}$ or, equivalently, $x_{m} \rightarrow A x_{*}$. Therefore, $x_{*}=A x_{*}$.

If A would have another fixed point in M, say $x_{* *}$, it would follow that

$$
\left\|x_{*}-x_{* *}\right\|_{n}=\left\|A x_{*}-A x_{* *}\right\|_{n} \leq \delta_{n}\left\|x_{*}-x_{* *}\right\|_{n}
$$

and so $\left\|x_{*}-x_{* *}\right\|_{n}\left(1-\delta_{n}\right) \leq 0, \forall n \in \mathbb{N}^{*}$. But $\delta_{n} \in[0,1)$. It follows that $x_{*}=x_{* *}$.

The proof of Theorem 3.1 is now complete.

EJQTDE, 2004 No. 3, p. 5

Remark 3.1 If the relation (1.1) holds for all $t \in \mathbb{R}_{+}$, then the relation (3.1) holds.

In particular, the condition (3.1) is fulfilled if for every $x, y \in M$ and $t \in$ $[0, n]$,

$$
\begin{aligned}
|(A x)(t)-(A y)(t)| \leq & \beta(t)|x(\nu(t))-y(\nu(t))|+ \\
& +\frac{k(t)}{t^{\alpha(t)}} \int_{0}^{t}|x(\sigma(s))-y(\sigma(s))| d s
\end{aligned}
$$

where $\alpha: \mathbb{R}_{+} \rightarrow[0,1), \beta: \mathbb{R}_{+} \rightarrow[0,1)$, and $k: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, are continuous functions.

Indeed, in this case we can set

$$
\beta_{n}:=\sup _{t \in[0, n]}\{\beta(t)\}, k_{n}:=\sup _{t \in[0, n]}\{k(t)\}, \alpha_{n}:=\inf _{t \in[0, n]}\{\alpha(t)\}, \forall n \in \mathbb{N}^{*}
$$

Remark 3.2 Within the proof of Theorem 3.1 we have get the fixed point of A as limit of the iterative sequence. It is interesting to remark that the fixed point of A can be obtained as limit of other sequences.

We present in the sequel an example.
Consider the space $C([0, n], X)$ and let

$$
M_{n}:=\left\{\left.x\right|_{[0, n]}, x \in M\right\}
$$

i.e. M_{n} is the set of the restrictions of $x \in M$ to $[0, n], \forall n \in \mathbb{N}^{*}$.

Let $n \in \mathbb{N}^{*}$ be arbitrary. One has obviously $A M_{n} \subset M_{n}$. By applying Theorem 2.1, A has a unique fixed point $x_{n} \in M_{n}$. We extend x_{n} to \mathbb{R}_{+}by continuity: for example, one could set

$$
\widetilde{x}_{n}(t):=\left\{\begin{array}{l}
x_{n}(t), \text { if } t \in[0, n] \\
x_{n}(n), \text { if } t \geq n
\end{array}\right.
$$

and hence $\widetilde{x}_{n} \in C\left(\mathbb{R}_{+}, X\right)$.
By the uniqueness property of the fixed point we have

$$
\begin{equation*}
\widetilde{x}_{n}(t)=\widetilde{x}_{m}(t), \forall m \leq n, \forall t \in[0, m], \tag{3.3}
\end{equation*}
$$

which allows us to conclude that $\left\{\widetilde{x}_{n}\right\}_{n \in \mathbb{N}^{*}}$ converges in $C\left(\mathbb{R}_{+}, X\right)$ to the function $x^{*}: \mathbb{R}_{+} \rightarrow X$ defined by

$$
\begin{equation*}
x^{*}(t)=\widetilde{x}_{n}(t), \forall t \in[0, n] . \tag{3.4}
\end{equation*}
$$

Notice that x^{*} is well defined due to (3.3).
Let $t \in \mathbb{R}_{+}$be arbitrary. Then there exists $n_{0} \in \mathbb{N}^{*}$ such that $t \in\left[0, n_{0}\right]$. But

$$
x^{*}(t)=\widetilde{x}_{n_{0}}(t)=\left(A \widetilde{x}_{n_{0}}\right)(t)=\left(A x^{*}\right)(t),
$$

and so $x^{*}(t)=\left(A x^{*}\right)(t)$. Since t was arbitrary in \mathbb{R}_{+}, it follows $x^{*}=A x^{*}$.

4. Applications

A particular case when the previous existence results can be applied is the following.

Consider an integral equation of the type

$$
\begin{equation*}
x(t)=F(t, x(\nu(t)))+\frac{1}{t^{\alpha(t)}} \int_{0}^{t} \mathcal{K}(t, s, x(\sigma(s))) d s \tag{4.1}
\end{equation*}
$$

where $\alpha \in[0,1)$ and $F: J \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}, K: \Delta \rightarrow \mathbb{R}^{N}, \alpha: J \rightarrow[0,1)$ are continuous functions. Here,

$$
J=[0, T] \text { or } J=\mathbb{R}_{+}, \Delta=\left\{(t, s, x) \mid t, s \in J, 0 \leq s \leq t, x \in \mathbb{R}^{N}\right\}
$$

and $\nu, \sigma: J \rightarrow J$ are continuous functions such that $\nu(t) \leq t, \sigma(t) \leq t, \forall t \in J$.
Consider the continuous functions $\beta: J \rightarrow[0,1), \gamma: J \rightarrow \mathbb{R}_{+}$. If

$$
\begin{aligned}
|F(t, x)-F(t, y)| & \leq \beta(t)|x-y|, \forall x, y \in \mathbb{R}^{N}, t \in J, \\
|\mathcal{K}(t, s, x)-\mathcal{K}(t, s, y)| & \leq k(t)|x-y|, \forall(t, s, x),(t, s, y) \in \Delta
\end{aligned}
$$

then the equation (4.1) has exactly one solution.
Indeed, it is easily checked the hypotheses of Theorem 2.1 and Theorem 3.1.

References

[1] M.A. Krasnoselskii, Some problems of nonlinear analysis, Amer. Math. Soc. Translations, 10(2) 345-409 (1958).
[2] E. De Pascale, L. De Pascale, Fixed points for some non-obviously contractive operators, Proc. Amer. Math. Soc., 130(11), 3249-3254 (2002).
[3] B. Lou, Fixed points for operators in a space of continuous functions and applications, Proc. Amer. Math. Soc., 127, 2259-2264 (1999).

Authors' addresses:
Cezar AVRAMESCU and Cristian Vladimirescu Department of Mathematics, University of Craiova
Al.I. Cuza Street, No. 13, Craiova RO-200585, Romania Tel. \& Fax: $(+40) 251412673$
E-mail: cezaravramescu@hotmail.com, zarce@central.ucv.ro vladimirescucris@hotmail.com, cvladi@central.ucv.ro

