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Abstract

Let X be an arbitrary (real or complex) Banach space, endowed with
the norm |·| . Consider the space of the continuous functions C ([0, T ] , X)
(T > 0), endowed with the usual topology, and let M be a closed subset
of it. One proves that each operator A : M → M fulfilling for all x, y ∈ M

and for all t ∈ [0, T ] the condition

|(Ax) (t) − (Ay) (t)| ≤ β |x (ν (t)) − y (ν (t))| +

+
k

tα

∫
t

0

|x (σ (s)) − y (σ (s))| ds,

(where α, β ∈ [0, 1), k ≥ 0, and ν, σ : [0, T ] → [0, T ] are continuous
functions such that ν (t) ≤ t, σ (t) ≤ t, ∀t ∈ [0, T ]) has exactly one fixed
point in M . Then the result is extended in C (IR+, X) , where IR+ :=
[0,∞).

1. Introduction

A result due to Krasnoselskii (see, e.g. [1]) ensures the existence of fixed points
for an operator which is the sum of two operators, one of them being compact
and the other being contraction. A natural question is whether the result con-
tinues to hold if the first operator is not compact. In [2] and [3] the case when
the compactity is replaced to a Lipschitz condition is considered; the result is
proved only in the space of the continuous functions.

More precisely, let X be a (real or complex) Banach space, endowed with
the norm |·| . Consider the space C ([0, T ] , X) of the continuous functions from
[0, T ] into X (T > 0) , endowed with the usual topology and M a closed subset
of C ([0, T ] , X).

Let A : M → M be an operator with the property that there exist α, β ∈
[0, 1), k ≥ 0 such that for every x, y ∈ M ,

|(Ax) (t) − (Ay) (t)| ≤ β |x (t) − y (t)| +

+
k

tα

∫ t

0

|x (s) − y (s)| ds, ∀t ∈ [0, T ] . (1.1)
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In [2] the authors resume the result contained in [3] and prove that the
condition (1.1) ensures the existence in M of a unique fixed point for A; the
result is deduced through a subtle technique. Finally, by admitting that (1.1)
is fulfilled for every t ∈ IR+, the result is generalized to the space BC (IR+, X) ,

(where IR+ := [0,∞)), i.e. the space of the bounded and continuous functions
from IR+ into X.

In the present paper we give an alternative proof of the first result contained
in [2], in a more general case, by means of a new approach; more exactly, we use
in C ([0, T ] , X) a special norm which is equivalent to the classical norm. Then
we extend the result to the space C (IR+, X) .

2. The first existence result

Consider the space C ([0, T ] , X), where (X, |·|) is a Banach space, T > 0 and
let γ ∈ (0, T ) , λ > 0.

Define for x ∈ C ([0, T ] , X) ,

‖x‖ := ‖x‖γ + ‖x‖λ ,

where we denoted

‖x‖γ := sup
t∈[0,γ]

{|x (t)|} , ‖x‖λ := sup
t∈[γ,T ]

{
e−λ(t−γ) |x (t)|

}
.

It is easily seen that ‖·‖ is a norm on C ([0, T ] , X) and it defines the same
topology as the norm ‖·‖

∞
, where

‖x‖
∞

:= sup
t∈[0,T ]

{|x (t)|} .

Theorem 2.1 Let M be a closed subset of C ([0, T ] , X) and A : M → M be an

operator. If there exist α, β ∈ [0, 1), k ≥ 0 such that for every x, y ∈ M and for

every t ∈ [0, T ],

|(Ax) (t) − (Ay) (t)| ≤ β |x (ν (t)) − y (ν (t))| +

+
k

tα

∫ t

0

|x (σ (s)) − y (σ (s))| ds, (2.1)

where ν, σ : [0, T ] → [0, T ] are continuous functions such that ν (t) ≤ t, σ (t) ≤ t,

∀t ∈ [0, T ] , then A has a unique fixed point in M.

Proof. We shall apply the Banach Contraction Principle. To this aim, we show
that A is contraction, i.e. there exists δ ∈ [0, 1) such that for any x, y ∈ M,

‖Ax − Ay‖ ≤ δ ‖x − y‖ .
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Let t ∈ [0, γ] be arbitrary. Then we have

|(Ax) (t) − (Ay) (t)| ≤ β |x (ν (t)) − y (ν (t))| +

+
k

tα

∫ t

0

|x (σ (s)) − y (σ (s))| ds ≤

≤ β ‖x − y‖γ + t1−αk ‖x − y‖γ ≤

≤
(
β + kγ1−α

)
‖x − y‖γ

and hence
‖Ax − Ay‖γ ≤

(
β + kγ1−α

)
‖x − y‖γ . (2.2)

Let t ∈ [γ, T ] be arbitrary. Then we get

|(Ax) (t) − (Ay) (t)| ≤ β |x (ν (t)) − y (ν (t))| +

+
k

tα

(∫ γ

0

|x (σ (s)) − y (σ (s))| ds+

+

∫ t

γ

|x (σ (s)) − y (σ (s))| e−λ((σ(s))−γ)eλ((σ(s))−γ)ds

)

≤ β |x (ν (t)) − y (ν (t))| +
k

γα

(
γ ‖x − y‖γ +

+ ‖x − y‖λ

∫ t

γ

eλ(σ(s)−γ)ds

)

≤ β |x (ν (t)) − y (ν (t))| +
k

γα

(
γ ‖x − y‖γ +

+ ‖x − y‖λ

∫ t

γ

eλ(s−γ)ds

)

< β |x (ν (t)) − y (ν (t))| +
k

γα

(
γ ‖x − y‖γ +

+ ‖x − y‖λ

eλ(t−γ)

λ

)
.

It follows that

|(Ax) (t) − (Ay) (t)| e−λ(t−γ) < β |x (ν (t)) − y (ν (t))| e−λ(t−γ) +

+kγ1−α ‖x − y‖γ +
k

λ
γ−α ‖x − y‖λ

and therefore

‖Ax − Ay‖λ ≤ β sup
t∈[γ,T ]

{
|x (ν (t)) − y (ν (t))| e−λ(t−γ)

}
+ (2.3)

+kγ1−α ‖x − y‖γ +
k

λ
γ−α ‖x − y‖λ

≤ β sup
t∈[γ,T ]

{
|x (ν (t)) − y (ν (t))| e−λ(ν(t)−γ)

}
+
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+kγ1−α ‖x − y‖γ +
k

λ
γ−α ‖x − y‖λ

≤

(
β +

k

λ
γ−α

)
‖x − y‖λ + kγ1−α ‖x − y‖γ .

By (2.2) and (2.3) we obtain

‖Ax − Ay‖ ≤
(
β + 2kγ1−α

)
‖x − y‖γ +

(
β +

k

λ
γ−α

)
‖x − y‖λ . (2.4)

Since β ∈ [0, 1), for γ ∈

(
0,

(
1−β
2k

) 1

1−α

)
we deduce β + k

λ
γ1−α < 1 and for

λ > k
1−β

γ−α we deduce γ + k
λ
γ−α < 1. Let δ := max

{
β + k

λ
γ1−α, γ + k

λ
γ−α

}
.

It follows that δ < 1 and, since (2.4),

‖Ax − Ay‖ ≤ δ
(
‖x − y‖γ + ‖x − y‖λ

)
= δ ‖x − y‖ .

Hence, A is contraction.
From the Banach Contraction Principle we conclude that A has exactly one

fixed point in M.

Remark 2.1 We remark that if ν (t) = t and σ (t) = t, ∀t ∈ [0, T ] , then the

conditions (1.1) and (2.1) are identical.

3. The second existence result

As we mentioned in Section 1, in [2] is presented a generalization in the space
BC (IR+, X) if (1.1) is fulfilled for every t ∈ IR+. We shall prove that result
under slightly more general assumptions.

Consider the space C (IR+, X) and for every n ∈ IN∗ let γn ∈ (0, n), λn > 0.

Define the numerable family of seminorms {‖·‖n}n∈IN∗
, where ‖x‖n := ‖x‖γn

+
‖x‖λn

, for every x ∈ C (IR+, X) , and

‖x‖γn

:= sup
t∈[0,γn]

{|x (t)|} , ‖x‖λn

:= sup
t∈[γn,T ]

{
e−λ(t−γn) |x (t)|

}
.

As it is known, C (IR+, X) endowed with this numerable family of seminorms
becomes a Fréchet space, i.e. a metrisable complete linear space. Also, the most
natural metric which can be defined is

d (x, y) :=

∞∑

n=1

1

2n
·

‖x − y‖n

1 + ‖x − y‖n

, ∀x, y ∈ C (IR+, X) .

Notice that a sequence {xm}m∈IN ⊂ C (IR+, X) converges to x if and only if

∀n ∈ IN∗, lim
m→∞

‖xm − x‖n = 0.
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In addition, a sequence {xm}m∈IN ⊂ C (IR+, X) is fundamental if and only
if

∀n ∈ IN∗, ∀ε > 0, ∃m0 ∈ IN, ∀p, q ≥ m0, ‖xp − xq‖n
< ε

or, more easily, if and only if

∀n ∈ IN∗, lim
p,q→∞

‖xp − xq‖n
= 0.

Theorem 3.1 Let M be a closed subset of C (IR+, X) and A : M → M be an

operator. If for every n ∈ IN∗ there exist αn, βn ∈ [0, 1), kn ≥ 0 such that for

every x, y ∈ M and for every t ∈ [0, n],

|(Ax) (t) − (Ay) (t)| ≤ βn |x (ν (t)) − y (ν (t))| +

+
k

tαn

∫ t

0

|x (σ (s)) − y (σ (s))| ds, (3.1)

where ν, σ : IR+ → IR+ are continuous functions such that ν (t) ≤ t, σ (t) ≤ t,

∀t ∈ IR+, then A has a unique fixed point in M.

Proof. As we have seen within the proof of Theorem 2.1, by choosing con-
veniently γn ∈ (0, n) and λn > 0, there exists δn ∈ [0, 1) such that for any
x, y ∈ M,

‖Ax − Ay‖n ≤ δn ‖x − y‖n , ∀n ∈ IN∗. (3.2)

The proof of Theorem 3.1 is similar to the proof of the Banach Contraction
Principle. We build the iterative sequence xm+1 = Axm, ∀m ∈ IN, where
x0 ∈ M is arbitrary.

Let n ∈ IN∗ be arbitrary. One has

‖xm+1 − xm‖n = ‖Axm − Axm−1‖n ≤ δn ‖xm − xm−1‖n , ∀m ∈ IN∗

and therefore
‖xm+1 − xm‖n ≤ δm

n ‖x1 − x0‖n , ∀m ∈ IN.

Similarly,

‖xm+p − xm‖
n

≤
(
δm+p
n + ... + δm

n

)
‖x1 − x0‖n <

<
δm
n

1 − δn

‖x1 − x0‖n , ∀m ∈ IN, p ∈ IN∗.

So, {xm}m∈IN is fundamental and hence it will be convergent. Let x∗ :=
lim

m→∞

xm ∈ M. By (3.2) it follows that Axm → Ax∗ or, equivalently, xm → Ax∗.

Therefore, x∗ = Ax∗.

If A would have another fixed point in M, say x∗∗, it would follow that

‖x∗ − x∗∗‖n = ‖Ax∗ − Ax∗∗‖n ≤ δn ‖x∗ − x∗∗‖n

and so ‖x∗ − x∗∗‖n (1 − δn) ≤ 0, ∀n ∈ IN∗. But δn ∈ [0, 1). It follows that
x∗ = x∗∗.

The proof of Theorem 3.1 is now complete.
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Remark 3.1 If the relation (1.1) holds for all t ∈ IR+, then the relation (3.1)
holds.

In particular, the condition (3.1) is fulfilled if for every x, y ∈ M and t ∈
[0, n],

|(Ax) (t) − (Ay) (t)| ≤ β (t) |x (ν (t)) − y (ν (t))| +

+
k (t)

tα(t)

∫ t

0

|x (σ (s)) − y (σ (s))| ds,

where α : IR+ → [0, 1), β : IR+ → [0, 1), and k : IR+ → IR+, are continuous

functions.

Indeed, in this case we can set

βn := sup
t∈[0,n]

{β (t)} , kn := sup
t∈[0,n]

{k (t)} , αn := inf
t∈[0,n]

{α (t)} , ∀n ∈ IN∗.

Remark 3.2 Within the proof of Theorem 3.1 we have get the fixed point of A

as limit of the iterative sequence. It is interesting to remark that the fixed point

of A can be obtained as limit of other sequences.

We present in the sequel an example.
Consider the space C ([0, n] , X) and let

Mn :=
{
x |[0,n], x ∈ M

}

i.e. Mn is the set of the restrictions of x ∈ M to [0, n] , ∀n ∈ IN∗.

Let n ∈ IN∗ be arbitrary. One has obviously AMn ⊂ Mn. By applying
Theorem 2.1, A has a unique fixed point xn ∈ Mn. We extend xn to IR+ by
continuity: for example, one could set

x̃n (t) :=

{
xn (t) , if t ∈ [0, n]
xn (n) , if t ≥ n

and hence x̃n ∈ C (IR+, X) .

By the uniqueness property of the fixed point we have

x̃n (t) = x̃m (t) , ∀m ≤ n, ∀t ∈ [0, m] , (3.3)

which allows us to conclude that {x̃n}n∈IN∗ converges in C (IR+, X) to the func-
tion x∗ : IR+ → X defined by

x∗ (t) = x̃n (t) , ∀t ∈ [0, n] . (3.4)

Notice that x∗ is well defined due to (3.3) .

Let t ∈ IR+ be arbitrary. Then there exists n0 ∈ IN∗ such that t ∈ [0, n0] .
But

x∗ (t) = x̃n0
(t) = (Ax̃n0

) (t) = (Ax∗) (t) ,

and so x∗ (t) = (Ax∗) (t) . Since t was arbitrary in IR+, it follows x∗ = Ax∗.
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4. Applications

A particular case when the previous existence results can be applied is the
following.

Consider an integral equation of the type

x (t) = F (t, x (ν (t))) +
1

tα(t)

∫ t

0

K (t, s, x (σ (s))) ds, (4.1)

where α ∈ [0, 1) and F : J × IRN → IRN , K : ∆ → IRN , α : J → [0, 1) are
continuous functions. Here,

J = [0, T ] or J = IR+, ∆ =
{
(t, s, x) | t, s ∈ J, 0 ≤ s ≤ t, x ∈ IRN

}

and ν, σ : J → J are continuous functions such that ν (t) ≤ t, σ (t) ≤ t, ∀t ∈ J.

Consider the continuous functions β : J → [0, 1), γ : J → IR+. If

|F (t, x) − F (t, y)| ≤ β (t) |x − y| , ∀x, y ∈ IRN , t ∈ J,

|K (t, s, x) −K (t, s, y)| ≤ k (t) |x − y| , ∀ (t, s, x) , (t, s, y) ∈ ∆,

then the equation (4.1) has exactly one solution.
Indeed, it is easily checked the hypotheses of Theorem 2.1 and Theorem 3.1.
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