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Abstract. In this article, we study the oscillation of second order forced
impulsive differential equation with γ-Laplacian and nonlinearities given by
Riemann-Stieltjes integrals of the form

`

p(t)φγ

`

x′(t)
´´′

+q0 (t) φγ (x(t))+

Z b

0
q (t, s) φα(s) (x(t)) dζ (s) = e(t), t 6= τk,

with impulsive conditions

x
“

τ+
k

”

= λk x (τk) , x′
“

τ+
k

”

= ηk x′ (τk) ,

where φγ (u) := |u|γ sgn u, γ, b ∈ (0,∞) , α ∈ C [0, b) is strictly increasing
such that 0 ≤ α (0) < γ < α (b−), and {τk}k∈N

is the the impulsive moments
sequence. Using the Riccati transformation technique, we obtain sufficient
conditions for this equation to be oscillatory.

1. Introduction

We are concerned with the oscillatory behavior of forced second order impul-
sive differential equations with γ-Laplacian and nonlinearities given by a Riemann-
Stieltjes integrals in the form of

(p(t)φγ (x′(t)))
′
+q0 (t) φγ (x(t))+

∫ b

0

q (t, s)φα(s) (x(t)) dζ (s) = e(t), t ≥ t0, t 6= τk,

(1.1)
with the impulsive conditions

x
(
τ+
k

)
= λk x (τk) , x′ (τ+

k

)
= ηk x′ (τk) ,

where

(a) φγ (u) := |u|γ sgnu, γ, b ∈ (0,∞), and t0 ∈ R;

(b) ζ : [0, b) → R is nondecreasing and
∫ b

0 f(s)dζ denotes the Riemann-Stieltjes
integral of the function f on [0, b) with respect to ζ;

(c) α ∈ C [0, b) is strictly increasing such that 0 ≤ α (0) < γ < α (b−) and
{τk}k∈N

is the the impulsive moments sequence with

t0 < τ0 < τ1 < τ2 < ... < τk < · · · , lim
k→∞

τk = ∞.
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(d) we denote

x
(
τ±
k

)
= lim

t→τ±

k

x (t) and x′ (τ±
k

)
= lim

h→0±

x (τk + h) − x (τk)

h
.

Throughout this paper and without further mention, we assume that the follow-
ing conditions hold:

(A1) p, q0, e ∈ C ([t0,∞), R) with p (t) > 0 on [t0,∞), q ∈ C ([0,∞) × [0, b));

(A2) λk, ηk ∈ R and λk 6= 0, for k ∈ N with φγ

(
ηk

λk

)
≥ 1.

By an extendible solution of Eq. (1.1), we mean a function x ∈PLC[t0,∞) := {y :
[t0,∞) → R is continuous on each interval (τk, τk+1) , y

(
τ±
k

)
exist, y (τk) = y

(
τ−
k

)

for k ∈ N} such that x′ ∈PLC[t0,∞) and x satisfies Eq. (1.1) for t ≥ t0. An
extendible solution of Eq. (1.1) is said to be oscillatory if it is not eventually
positive or negative. Eq. (1.1) is said to be oscillatory if every extendible solution
of Eq. (1.1) is oscillatory.

We note that as special cases, when ζ(s) is a step function, the integral term in
the equation reduces to a finite sum and hence Eq. (1.1) becomes the equation

(p(t)φγ (x′(t)))
′
+ q0(t)φγ(x(t)) +

n∑

j=1

qj(t)φαj (x(t)) = e(t); (1.2)

and when ζ(s) = s, the integral term in the equation reduces to a Riemann integral
and hence Eq. (1.1) becomes the equation

(p(t)φγ (x′(t)))
′
+ q0(t)φγ(x(t)) +

∫ b

0

q (t, s)φα(s) (x(t)) ds = e(t).

The oscillation of Eq. (1.1) with the impulsive conditions removed has been
studied widely. For instance, Sun and Wong [25] investigated Eq. (1.2) with γ = 1,
Hassan, Erbe, and Peterson [9] and Hassan and Kong [10] discussed Eq. (1.2) with
a general γ > 0, Sun and Kong [26] further investigated Eq. (1.1) with γ = 1, and
Hassan and Kong [11] studied Eq. (1.1) with a general γ > 0. Oscillation criteria,
especially criteria of El-Sayed-type and Kong-type, were established for the above
equations. However, no impulses were involved in any of the above papers.

Differential equations with impulses are used to characterize motions subject
to perturbations at a sequence of impulsive moments. Such motions are often
encountered in various fields of science and technology such as physics, engineering,
population dynamics, ecology, biological systems, and optimal controls, see [2, 3, 7,
16, 27–29,31] and the references therein.

Recently, progress has been made for oscillation of impulsive differential equa-
tions. In particular, Özbekler and Zafer [21] studied





(p(t)φγ (x′(t)))′ + q0 (t)φγ (x(t)) +
n∑

k=1

qk (t)φαk
(x (t)) = e(t), t 6= τk,

x
(
τ+
k

)
= λk x (tk) , x′ (τ+

k

)
= ηk x′ (τk) ,

(1.3)
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where α1 > α2 > ..... > αm > γ > αm+1 > ... > αn > 0, and in [22, 23], they
discussed{

(p(t)φγ (x′(t)))′ + q0 (t)φγ (x′(t)) + q (t)φα (x (t)) = e(t), t 6= τk,
∆(p(t)φγ (x′(t))) + qiφα (x (t)) = ei, t = τk,

(1.4)

where α > γ. Oscillation criteria of the El-Sayed-type were derived for both Eqs.
(1.3) and (1.4). Muthulakshmi and Thandapani [20] obtained oscillation criteria of
the Philos and Kong type for the equation




(p(t)x′(t))′ + r (t) (x′(t)) + q0 (t)x(t) +

n∑
k=1

qk (t)φαk
(x (t)) = e(t), t 6= τk,

x
(
τ+
k

)
= λk x (tk) , x′ (τ+

k

)
= ηk x′ (τk) ,

(1.5)
Motivated by above, in this paper, we will establish interval oscillation criteria of

both the El-Sayed-type and the Kong-type for the more general equation (1.1). Our
work is of significance because Eq. (1.1) not only contains a γ-Laplacian term but
also allows an infinite number and even a continuum of nonlinearities determined
by the function ζ together with a sequence of impulses.

This paper is organized as follows: after this introduction, we state our main
results for Eq. (1.1) in section 2, followed by a demonstrating example. All proofs
are given in section 3.

2. Main Results

We denote by Lζ (0, b) the set of Riemann-Stieltjes integrable functions on [0, b)
with respect to ζ. Let a ∈ (0, b) such that α (a) = γ, and let α−1 be the reciprocal
of α. We further assume that

α−1 ∈ Lζ (0, b) and

∫ a

0

dζ (s) > 0 and

∫ b

a

dζ (s) > 0.

We see that the condition α−1 ∈ Lζ (0, b) is satisfied if either α (0) > 0 or α (s) → 0
”slowly” as s → 0+ (for example, α(s) ≥ sl for some l ∈ (0, 1) when ζ(s) = s), or
ζ (s) is constant in a right neighborhood of 0.

We denote

m := γ

(∫ b

a

dζ (s)

)−1 ∫ b

a

α−1 (s) dζ (s)

and

n := γ

(∫ a

0

dζ (s)

)−1 ∫ a

0

α−1 (s) dζ (s) .

Then it is easy to see that m < 1 < n. In fact, since α(s) is strictly increasing,
α−1(s) is strictly decreasing. Hence

m < γ

(∫ b

a

dζ (s)

)−1

α−1 (a)

∫ b

a

dζ (s) = 1

and

n > γ

(∫ a

0

dζ (s)

)−1

α−1 (a)

∫ a

0

dζ (s) = 1.
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The following lemma, which is a generalization of [26, Lemma 1] and is established
in [11, Lemma 1], will be used in the statement of our main results.

Lemma 2.1. For any δ ∈ (m, n), there exists η ∈ Lζ (0, b) such that η (s) > 0 on

[0, b) , and
∫ b

0

α (s) η (s) dζ (s) = γ and

∫ b

0

η (s) dζ (s) = δ. (2.1)

To present our main results, we denote

ŝ := max {k : t0 < τk < s} .

Let ρ(t) be a positive continuous function on [t0,∞) given later. Then for any

a, b ∈ T with a < b and k = â + 1, . . . , b̂ we denote

(ρp)k := max{ρ(t) : t ∈ [τk−1, τk] ∩ [a, b]}max{p(t) : t ∈ [τk−1, τk] ∩ [a, b]};
and define an operator Φ : C ([a, b] , R) → R as

Φ [u; a, b] :=





0, â = b̂,

u (τba+1) (ρp)
ba+1 (τba+1 − a)−γ

[
φγ

(
ηba+1

λba+1

)
− 1
]

+
∑

bb

k=ba+2u (τk) (ρp)k (τk − τk−1)
−γ
[
φγ

(
ηk

λk

)
− 1
]
,

â < b̂;

with the convention that
∑n

k=m ck = 0 when m > n.
Our first result provides an oscillation criterion of the El-Sayed-type.

Theorem 2.1. Suppose that for any T ≥ 0 and for i = 1, 2, there exist constants

ai and bi with T ≤ ai < bi and (a1, b1) ∩ (a2, b2) = ∅ such that for i = 1, 2

q0 (t) ≥ 0 and q (t, s) ≥ 0 and (−1)
i
e (t) ≥ 0 (2.2)

for t ∈ [ai, bi] \ {τk} and s ∈ [0, b). Assume further that for i = 1, 2, there exists

ui ∈ C1 [ai, bi] satisfying ui (ai) = ui (bi) = 0 and ui (t) 6≡ 0 on [ai, bi] and a positive

continuous function ρ such that

sup
δ∈(m,1]

∫ bi

ai

[
Q (t) |ui (t)|γ+1 − p(t)ũi (t)

]
dt > Φ

[
|ui|γ+1 ; ai, bi

]
, (2.3)

where

Q (t) := (ρq0) (t) +

[ |e(t)|
1 − δ

]1−δ

ρ (t) exp

(∫ b

0

η (s) ln
q (t, s)

η (s)
dζ (s)

)
(2.4)

and

ũi (t) :=
ρ (t)

(γ + 1)
γ+1

∣∣∣∣(γ + 1)u′
i (t) +

ρ′ (t)

ρ (t)
ui (t)

∣∣∣∣
γ+1

(2.5)

with η (s) defined as in Lemma 2.1 based on δ. Here we use the convention that

ln 0 = −∞, e−∞ = 0, and 01−δ = 1 and (1 − δ)
1−δ

= 1 for δ = 1. Then Eq. (1.1)
is oscillatory.
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Following Philos [17], Kong [12], and Kong [13], we say that for any a, b ∈ R

such that a < b, a function H (t, s) belongs to a function class H(a, b), denoted by
H ∈ H(a, b), if H ∈ C (D, R), where D := {(t, s) : b ≥ t ≥ s ≥ a}, which satisfies

H (t, t) = 0, H (b, s) > 0 and H (s, a) > 0 for b > s > a, (2.6)

and H (t, s) has continuous partial derivatives ∂H (t, s) /∂t and ∂H(t, s)/∂s on
[a, b] × [a, b] such that

∂H (t, s)

∂t
+

ρ′ (t)

ρ (t)
H (t, s) = (γ + 1)h1 (t, s)H

γ
γ+1 (t, s) (2.7)

and
∂H (t, s)

∂s
+

ρ′ (s)

ρ (s)
H (t, s) = (γ + 1)h2 (t, s)H

γ
γ+1 (t, s) , (2.8)

where h1, h2 ∈ Lloc (D, R). Next, we use the function class H(a, b) to establish an
oscillation criterion for Eq. (1.1) of the Kong-type.

Theorem 2.2. Suppose that for any T ≥ 0 and for i = 1, 2, there exist constants

ai and bi with T ≤ ai < bi such that (2.2) holds. Assume further that for i = 1, 2,
there exists ci ∈ (ai, bi) and Hi ∈ H(ai, bi) and a positive continuous function ρ
such that

sup
δ∈(m,1]

{
1

Hi (ci, ai)

∫ ci

ai

[
Q (s)Hi (s, ai) − (ρp) (s) |hi1 (s, ai)|γ+1

]
ds

+
1

Hi (bi, ci)

∫ bi

ci

[
Q (s)Hi (bi, s) − (ρp) (s) |hi2 (bi, s)|γ+1

]
ds

}

>
1

H1 (ci, ai)
Φ [H1 (·, ai) ; ai, ci] +

1

H1 (bi, ci)
Φ [H1 (bi, ·) ; ci, bi] , (2.9)

where Q (t) is defined by (2.4). Then Eq. (1.1) is oscillatory.

The example below is to demonstrate the application of Theorem 2.1, especially,
how the non-constant function ρ plays a role in the determination of oscillation.
Similar example can be constructed to demonstrate the application of Theorem 2.2,
but we leave it to interested readers.

Example 2.1. Consider Eq.

((2 + cos 4t) x′(t))
′
+ sin t x(t) +

∫ 1

0

sin t φ3s (x(t)) ds = −ret cos 2t, t ≥ 0, t 6= τk,

where τk = (2k − 1)π/16 with the impulsive condition

x
(
τ+
k

)
= (−1)kσ1x (tk) , x′ (τ+

k

)
= (−1)kσ2x

′ (τk)

for some σ1, σ2 > 0 such that σ2/σ1 ≥ 1. Here we have

(i) α (s) = 3s, ξ (s) = s, γ = 1, and b = 1;
(ii) p (t) = 2 + cos 4t, q0 (t) = q (t, s) = sin t, and e (t) = −ret cos 2t for r > 0;

(iii) λk = (−1)
k
σ1 and ηk = (−1)

k
σ2.
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Note that

m =

(∫ 1

1
3

ds

)−1(∫ 1

1
3

1

3s
ds

)
= ln

√
3.

For any δ ∈
(
ln
√

3, 1
]
, we set

η (s) :=
δ

3δ − 1
s

2−3δ
3δ−1 ,

then (2.1) is satisfied. For any T ∈ R, we choose n ∈ N so large that 2nπ ≥ T and
let

a1 = 2nπ, a2 = b1 = 2nπ +
π

4
, b2 = 2nπ +

π

2
.

Let ρ (t) = 2 − cos 4t, and for i = 1, 2 let ui (t) = sin 4t and ũi be defined by (2.5).
Then

∫ bi

ai

p(t)ũi (t) dt =
1

4

∫ π
4

0

(
4 − cos2 4t

){
8 cos 4t +

4 sin2 4t

2 − cos 4t

}2

dt

=
1

8

(
96

√
3 − 107

)
π.

With t0 = 0 we have

â1 = 16n, â1 + 1 = 16n + 1, â1 + 2 = 16n + 2 = b̂1,

and

τca1
= 2nπ − π

16
, τca1+1 = 2nπ +

π

16
, τca1+2 = 2nπ +

3π

16
= τ bb1

, τca1+3 = 2nπ +
5π

16
.

It is easy to see that

max{ρ(t) : t ∈ [τca1
, τca1+1]} = 2 − 1√

2
, max{p(t) : t ∈ [τca1

, τca1+1]} = 3,

ui(τca1+1) =
1√
2
, (ρp)ca1+1 = 3

(
2 − 1√

2

)
, (τca1+1 − a1)

−γ
=

16

π
;

and

max{ρ(t) : t ∈ [τca1+1, τca1+2]} = 2 +
1√
2
, max{p(t) : t ∈ [τca1+1, τca1+2]} = 2 +

1√
2
,

ui(τca1+2) =
1√
2
, (ρp)ca1+2 =

(
2 +

1√
2

)2

, (τca1+2 − τca1+1)
−γ

=
8

π
.

Note that

φγ

(
ηca1+1

λca1+1

)
− 1 = φγ

(
ηk

λk

)
− 1 =

σ2

σ1
− 1.

Then we have

Φ
[
(u1)

2
; a1, b1

]
=

[
σ2

σ1
− 1

]{
3

2

(
2 − 1√

2

)
16

π
+

8

π

∑
16n+2

k=16n+2
(ui (τk))

2
(ρp)k

}

=

[
σ2

σ1
− 1

]{
3

2

(
2 − 1√

2

)
16

π
+

8

π

1

2

(
2 +

1√
2

)2
}

=
1

π

[
σ2

σ1
− 1

] [
66 − 4

√
2
]
.
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Similarly,

Φ
[
(u2)

2
; a2, b2

]
=

1

π

[
σ2

σ1
− 1

] [
66 − 4

√
2
]
.

Therefore, there exists an r0 > 0 such that for r ≥ r0

sup
δ∈(ln

√
3,1]

∫ π
4

0

(2 − cos 4t) [sin t + g (t)] ≥ 1

8

(
96

√
3 − 107

)
π+

1

π

[
σ2

σ1
− 1

] [
66 − 4

√
2
]
,

where

g (t) :=

[
ret cos 2t

1 − δ

]1−δ

exp

(∫ 1

0

η (s) ln
sin t

η (s)
ds

)
.

Hence (2.3) holds and Eq. (1.1) is oscillatory for r ≥ r0. We comment that the
value of r0 can be easily obtained by a numerical calculation.

3. Proofs

The Lemma below, established in [26], provides a generalized Arithmetic-Geometric
mean inequality.

Lemma 3.1. Let u ∈ C [0, b) and η ∈ Lζ (0, b) satisfying u ≥ 0, η > 0 on [0, b) and∫ b

0
η (s) dζ (s) = 1. Then

∫ b

0

η (s)u (s) dζ (s) ≥ exp

(∫ b

0

η (s) ln [u (s)] dζ (s)

)
, (3.1)

where we use the convention that ln 0 = −∞ and e−∞ = 0.

Indeed, Lemma 3.1 is a generalization of the original Arithmetic-Geometric mean
inequality. This can be seen as follows: For n ∈ N let b = 1 + 1/n, η(s) = 1 for
s ∈ [0, 1), and ζ(s) = i/n for s ∈ [i−1, i) and i = 1, . . . , n+1. For u ∈ C [0, 1 + 1/n)

denote ui = u(i/n) for i = 1, . . . , n. It is easy to see that
∫ b

0
η (s) dζ (s) = 1. Also,

∫ b

0

η (s)u (s) dζ (s) =

n∑

i=1

ui/n

and

exp

(∫ b

0

η (s) ln [u (s)] dζ (s)

)
= exp

(
n∑

i=1

lnui/n

)
=

n∏

i=1

u
1/n
i .

Hence (3.1) becomes
n∑

i=1

ui/n ≥
n∏

i=1

u
1/n
i

which is the original Arithmetic-Geometric mean inequality. Some other Arithmetic-
Geometric mean inequalities can also be deduced from (3.1) by using different η(s)
and ζ(s).
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Proof of Theorem 2.1. Assume Eq. (1.1) has an extendible solution x(t) which is
eventually positive or negative. Then, without loss of generality, assume x (t) > 0
for all t ≥ T ≥ 0, where T depends on the solution x (t). When x (t) is an eventually
negative, the proof follows the same way except that the interval [a2, b2], instead of
[a1, b1], is used. Define

z (t) := ρ (t)
p(t)φγ (x′(t))

φγ (x(t))
for t ≥ T, t 6= tk, k ∈ N. (3.2)

It follows from (1.1) that for t ≥ T and t 6= τk, z (t) satisfies the first order nonlinear
Riccati equation

z′ (t) = −ρ (t) q0 (t) − ρ (t)

∫ b

0

q (t, s) [x (t)]
α(s)−γ

dζ (s)

+ρ (t) e(t)x−γ(t) +
ρ′ (t)

ρ (t)
z (t) − γ |z (t)|

γ+1

γ

(ρ (t) p(t))
1
γ

. (3.3)

(I) We first consider the case where the supremum in (2.3) is assumed at δ = 1.
From (2.2) and (3.3), we have that for t ∈ (a1, b1] and t 6= τk

z′ (t) ≤ −ρ (t) q0 (t) − ρ (t)

∫ b

0

q (t, s) [x (t)]
α(s)−γ

dζ (s) +
ρ′ (t)

ρ (t)
z (t) − γ |z (t)|

γ+1

γ

(ρ (t) p(t))
1
γ

.

(3.4)
Let η ∈ Lζ (0, b) be defined as in Lemma 2.1 with δ = 1. Then η satisfies (2.1) with
δ = 1. This follows that

∫ b

0

η (s) [α (s) − γ]dζ = 0.

Then, from Lemma 3.1, we get, for t ∈ (a1, b1] and t 6= τk

∫ b

0

q (t, s) [x (t)]α(s)−γ dζ (s)

=

∫ b

0

η (s)
q (t, s)

η (s)
[x (t)]

α(s)−γ
dζ (s)

≥ exp

(∫ b

0

η (s) ln

(
q (t, s)

η (s)
[x (t)]

α(s)−γ

)
dζ (s)

)

= exp

(∫ b

0

η (s) ln

[
q (t, s)

η (s)

]
dζ (s) + ln (x (t))

∫ b

0

η (s) [α (s) − γ] dζ (s)

)

= exp

(∫ b

0

η (s) ln

[
q (t, s)

η (s)

]
dζ (s)

)
.

This together with (3.4) shows that

z′ (t) ≤ −Q (t) +
ρ′ (t)

ρ (t)
z (t) − γ |z (t)|

γ+1

γ

(ρ (t) p(t))
1
γ

, for t ∈ (a1, b1] and t 6= τk, (3.5)
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where Q (t) is defined by (2.4) with δ = 1.
(II) Now, we consider the case where the supremum in (2.3) is assumed at δ ∈

(m, 1). Then from (2.2) we see that for t ∈ (a1, b1] and t 6= τk,

z′ (t) ≤ −ρ (t) q0 (t) − ρ (t)

∫ b

0

q1 (t, s) [x (t)]
α(s)−γ

dζ (s)

−ρ(t) |e(t)|x−γ(t) +
ρ′ (t)

ρ (t)
z (t) − γ |z (t)|

γ+1

γ

(ρ (t) p(t))
1
γ

. (3.6)

Let η̃ (s) = δ−1η (s). Then from (2.1) we have
∫ b

0

η̃ (s) dζ (s) = 1 and

∫ b

0

η̃ (s) [δα (s) − γ]dζ = 0. (3.7)

Hence for t ∈ (a1, b1] and t 6= τk

∫ b

0

q1 (t, s) [x (t)]
α(s)−γ

dζ (s) + |e(t)| x−γ(t)

=

∫ b

0

η̃ (s)
(
δη−1 (s) q1 (t, s) [x (t)]

α(s)−γ
+ |e(t)|x−γ(t)

)
dζ (s) . (3.8)

Using the Arithmetic-geometric mean inequality, see [4, Page 17],

ch + dk ≥ chdk, where c, d ≥ 0, h, k > 0 and h + k = 1,

with

c = η−1 (s) q1 (t, s) [x (t)]
α(s)−γ

, d =
1

1 − δ
|e(t)|x−γ(t), h = δ and k = 1 − δ,

we have that for for t ∈ (a1, b1] , and t 6= τk and s ∈ [0, b)

δη−1 (s) q1 (t, s) [x (t)]α(s)−γ + (1 − δ)
|e(t)|
1 − δ

x−γ(t)

≥
[
q1 (t, s)

η (s)

]δ [ |e(t)|
1 − δ

]1−δ

[x (t)]
δα(s)−γ

.

Substituting this into (3.8) and using Lemma 3.1 and (3.7), we see that for t ∈
(a1, b1], t 6= τk and e(t) 6= 0,

∫ b

0

q1 (t, s) [x (t)]α(s)−γ dζ (s) + |e(t)|x−γ(t)

≥ exp

(∫ b

0

η̃ (s) ln

([
q1 (t, s)

η (s)

]δ [ |e(t)|
1 − δ

]1−δ

[x (t)]δα(s)−γ

)
dζ (s)

)

= exp

(∫ b

0

η̃ (s)

(
ln

[
q1 (t, s)

η (s)

]δ

+ ln

[ |e(t)|
1 − δ

]1−δ

+ [δα (s) − γ] lnx (t)

)
dζ (s)

)

=

[ |e(t)|
1 − δ

]1−δ

exp

(∫ b

0

η (s) ln
q1 (t, s)

η (s)
dζ (s)

)
. (3.9)
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Note that (3.9) also holds when e(t) = 0 since
[
|e(t)|
1−δ

]1−δ

= 0 for δ ∈ (0, 1). It

follows from (3.6) and (3.9) that for t ∈ (a1, b1] and t 6= τk

z′ (t) ≤ −ρ (t) q0 (t) − ρ (t)

[ |e(t)|
1 − δ

]1−δ

exp

(∫ b

0

η (s) ln
q1 (t, s)

η (s)
dζ (s)

)

+
ρ′(t)

ρ (t)
z (t) − γ |z (t)|

γ+1

γ

(ρp)
1
γ (t)

= −Q (t) +
ρ′ (t)

ρ (t)
z (t) − γ |z (t)|

γ+1

γ

(ρp)
1
γ (t)

, (3.10)

where Q (t) is defined by (2.4) with δ ∈ (m, 1) .
For both cases (I) and (II), from (3.5) and (3.10), we have

z′ (t) ≤ −Q (t) +
ρ′ (t)

ρ (t)
z (t) − γ |z (t)|

γ+1

γ

(ρp)
1
γ (t)

, for t ∈ (a1, b1] and t 6= τk. (3.11)

Multiplying both sides of (3.5) by |u1 (t)|γ+1, integrating from a1 to b1, and using
integration by parts, we find that

∫ b1

a1

Q (t) |u1 (t)|γ+1 dt

≤
∑

cb1

k=ca1+1
|u1 (τk)|γ+1

z (τk)

[
φγ

(
ηk

λk

)
− 1

]
+

∫ b1

a1

[
φγ(u1(t))

[
(γ + 1)u′

1 (t) +
ρ′ (t)

ρ (t)
u1 (t)

]
z (t) − γ |u1 (t)|γ+1

(ρ (t) p(t))
1
γ

|z (t)|
γ+1

γ

]
dt

≤
∑

cb1

k=ca1+1
|u1 (τk)|γ+1

z (τk)

[
φγ

(
ηk

λk

)
− 1

]
+

∫ b1

a1

[
|u1 (t)|γ

∣∣∣∣(γ + 1)u′
1 (t) +

ρ′ (t)

ρ (t)
u1 (t)

∣∣∣∣ |z (t)| − γ |u1 (t)|γ+1

(ρ (t) p(t))
1
γ

|z (t)|
γ+1

γ

]
dt.

(3.12)

Let λ := γ+1
γ . Define A and B by

Aλ :=
γ |u1 (t)|γ+1

(ρ (t) p(t))
1
γ

|z (t)|λ ,

and

B λ−1 :=
(γρ (t) p(t))

1
γ+1

γ + 1

∣∣∣∣(γ + 1)u′
1 (t) +

ρ′ (t)

ρ (t)
u1 (t)

∣∣∣∣ .

Using the inequality in [8] we have

λAB λ−1 − Aλ ≤ (λ − 1)B λ, (3.13)
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i.e.,

|u1 (t)|γ
∣∣∣∣(γ + 1)u′

1 (t) +
ρ′ (t)

ρ (t)
u1 (t)

∣∣∣∣ |z (t)| − γ |u1 (t)|γ+1

(ρ (t) p(t))
1
γ

|z (t)|
γ+1

γ

≤ ρ (t) p(t)

(γ + 1)γ+1

∣∣∣∣(γ + 1)u′
1 (t) +

ρ′ (t)

ρ (t)
u1 (t)

∣∣∣∣
γ+1

,

which together with (3.12) and (2.5) implies that
∫ b1

a1

[
Q (t) |u1 (t)|γ+1 − p(t)ũ1 (t)

]
dt

≤
∑

cb1

k=ca1+1
|u1 (τk)|γ+1

z (τk)

[
φγ

(
ηk

λk

)
− 1

]
. (3.14)

There are two cases to consider: either â1 = b̂1 or â1 < b̂1.
Case (i) â1 = b̂1. There is no impulsive moments in [a1, b1] and (3.14) yields

∫ b1

a1

[
Q (t) |u1 (t)|γ+1 − p(t)ũ1 (t)

]
dt

≤
∑

cb1

k=ca1+1
|u1 (τk)|γ+1

z (τk)

[
φγ

(
ηk

λk

)
− 1

]

= 0 = Φ
[
|u1|γ+1

; a1, b1

]
. (3.15)

Case (ii) â1 < b̂1. There are impulsive moments τca1+1, τca1+2, ..., τ bb1
in [a1, b1].

For t ∈ (a1, τca1+1],

(p(t)φγ (x′(t)))
′
= e(t) − q0 (t) φγ (x(t)) −

∫ b

0

q (t, s)φα(s) (x(t)) dζ (s) ≤ 0.

Hence p(t)φγ (x′(t)) is nonincreasing on (a1, τca1+1]. Note that for any t ∈ (a1, τca1+1]

x (t) − x (a1) = x′ (ζ) (t − a1) for some ζ ∈ (a1, t) .

Since x (a1) > 0 and φγ is an increasing function, then

φγ (x (t)) > φγ (x (t) − x (a1)) = φγ (x′ (ζ)) (t − a1)
γ ≥ p (t) φγ (x′ (t))

p (ζ)
(t − a1)

γ

=
(ρp) (t) φγ (x′ (t))

ρ (t) p (ζ)
(t − a1)

γ ≥ (ρp) (t) φγ (x′ (t))

(ρp)
ca1+1

(t − a1)
γ

,

which yields that for t ∈ (a1, τca1+1]

z (t) =
(ρp) (t)φγ (x′(t))

φγ (x(t))
< (ρp)

ca1+1 (t − a1)
−γ

.

In particular, when t = τ−
ca1+1, we get

z (τca1+1) < (ρp)
ca1+1 (τca1+1 − a1)

−γ
.

In the same way, we have, for t ∈ (τk−1, τk] with k = â1 + 2, . . . , b̂1

z (τk) < (ρp)k (τk − τk−1)
−γ

.
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Hence

∑
cb1

k=ca1+1
|u1 (τk)|γ+1

z (τk)

[
φγ

(
ηk

λk

)
− 1

]

< |u1 (τca1+1)|γ+1 (ρp)
ca1+1 (τca1+1 − a1)

−γ

[
φγ

(
ηba1+1

λca1+1

)
− 1

]

+
∑

cb1

k=ca1+2
|u1 (τk)|γ+1

(ρp)k (τk − τk−1)
−γ

[
φγ

(
ηk

λk

)
− 1

]
.

Then from (3.14), we get

∫ b1

a1

[
Q (t) |u1 (t)|γ+1 − p(t)ũ1 (t)

]
dt < Φ

[
|u1|γ+1

; a1, b1

]
.

This leads to a contradiction to (2.3). This completes the proof. �

Proof of Theorem 2.2. Assume Eq. (1.1) has an extendible solution x(t) which is
eventually positive or negative. Then, without loss of generality, assume x (t) > 0
for all t ≥ T ≥ 0, where T depends on the solution x (t). Define z(t) by (3.2). From
(3.11), we get that

z′ (t) ≤ −Q (t) +
ρ′(t)

ρ (t)
z (t) − γ |z (t)|

γ+1

γ

(ρp)
1
γ (t)

for t ∈ (a1, b1] and t 6= τk. (3.16)

Multiplying both sides of (3.16), with t replaced by s, by H1 (b1, s) and integrating
with respect to s from c1 to b1, we find that

∫ b1

c1

Q (s)H1 (b1, s) ds ≤ −
∫ b1

c1

z′ (s)H1 (b1, s) ds

+

∫ b1

c1

ρ′ (s)

ρ (s)
z (s)H1 (b1, s) ds −

∫ b1

c1

γ |z (s)|
γ+1

γ

(ρp)
1
γ (s)

H1 (b1, s) ds.

Using integration by parts and from (2.6) and (2.8), we obtain that

∫ b1

c1

Q (s) H1 (b1, s) ds

≤ −
∑

cb1

k= bc1+1
H1 (b1, τk) z (τk)

[
φγ

(
ηk

λk

)
− 1

]

+

∫ b1

c1

[
(γ + 1)h12 (b1, s)H

γ
γ+1

1 (b1, s) z (s) − γ |z (s)|
γ+1

γ H1 (b1, s)

(ρp)
1
γ (s)

]
ds

≤ −
∑

cb1

k= bc1+1
H1 (b1, τk) z (τk)

[
φγ

(
ηk

λk

)
− 1

]

+

∫ b1

c1

[
(γ + 1) |h12 (b1, s) |H

γ
γ+1

1 (b1, s) |z (s) | − γ |z (s)|
γ+1

γ H1 (b1, s)

(ρp)
1
γ (s)

]
ds.

(3.17)
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Let λ = γ+1
γ . Define A and B by

Aλ :=
γ |z (s)|λ H1 (b1, s)

p
1
γ (t)

and Bλ−1 := (γρ (s) p(s))
1

γ+1 |h12 (b1, s)| .

Then by the inequality (3.13), we get that

(γ + 1) |h12 (b1, s)|H
γ

γ+1

1 (b1, s) |z (s)| − γ |z (s)|
γ+1

γ H1 (b1, s)

p
1
γ (s)

≤ (ρp)
1
γ (s) |h12 (b1, s)|γ+1

.

This together with (3.17) shows that

∫ b1

c1

[
Q (s)H1 (b1, s) − (ρp)

1
γ (s) |h12 (b1, s)|γ+1

]
ds

≤ −
∑

cb1

k= bc1+1
H1 (b1, τk) z (τk)

[
φγ

(
ηk

λk

)
− 1

]
. (3.18)

Similarly, multiplying both sides of (3.16), with t replaced by s, by H1 (s, a1) and
integrating by parts from a1 to c1, we see that

∫ c1

a1

[
Q (s)H1 (s, a1) − (ρp)

1
γ (s) |h11 (s, a1)|γ+1

]
ds

≤ −
∑

cc1

k=ca1+1
H1 (τk, a1) z (τk)

[
φγ

(
ηk

λk

)
− 1

]
. (3.19)

Combining (3.18) and (3.19) we obtain that

1

H1 (c1, a1)

∫ c1

a1

[
Q (s)H1 (s, a1) − (ρp)

1
γ (s)hγ+1

11 (s, a1)
]
ds

+
1

H1 (b1, c1)

∫ b1

c1

[
Q (s) H1 (b1, s) − (ρp)

1
γ (s)hγ+1

12 (b1, s)
]
ds

≤ − 1

H1 (c1, a1)

∑
cc1

k=ca1+1
H1 (τk, a1) z (τk)

[
φγ

(
ηk

λk

)
− 1

]

− 1

H1 (b1, c1)

∑
cb1

k= bc1+1
H1 (b1, τk) z (τk)

[
φγ

(
ηk

λk

)
− 1

]
. (3.20)

There are several cases to consider: (i) â1 = ĉ1 = b̂1, (ii) â1 < ĉ1 = b̂1, (iii)

â1 = ĉ1 < b̂1, and (iv) â1 < ĉ1 < b̂1.

Case (i) â1 = ĉ1 = b̂1. There are no impulsive moments in [a1, b1]. Thus

∑
cc1

k=ca1+1
H1 (τk, a1) z (τk)

[
φγ

(
ηk

λk

)
− 1

]
= 0 = Φ [H1 (·, a1) ; a1, c1] (3.21)

and

∑
cb1

k= bc1+1
H1 (b1, τk) z (τk)

[
φγ

(
ηk

λk

)
− 1

]
= 0 = Φ [H1 (b1, ·) ; c1, b1] . (3.22)
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Case (ii) â1 < ĉ1 = b̂1. There are impulsive moments τca1+1, τca1+2, ..., τ bc1
in

[a1, c1] and no impulsive moments in [c1, b1]. Thus, (3.22) holds. As in Theorem
2.1, we have

z (τca1+1) < (ρp)
ca1+1 (τca1+1 − a1)

−γ

and
z (τk+1) < (ρp)k (τk − τk−1)

−γ
, k = â1 + 1, . . . , ĉ1 − 1.

Thus
∑

cc1

k=ca1+1
H1 (τk, a1) z (τk)

[
φγ

(
ηk

λk

)
− 1

]
< Φ [H1 (·, a1) ; a1, c1] .

Case (iii) â1 = ĉ1 < b̂1. there are no impulsive moments in [a1, c1] and there are
impulsive moments τ bc1+1, τ bc1+2, ..., τ bb1

in [c1, b1]. Similar to Case (ii), we have

that (3.21) holds, and

∑
cb1

k= bc1+1
H1 (b1, τk) z (τk)

[
φγ

(
ηk

λk

)
− 1

]
< Φ [H1 (b1, ·) ; c1, b1] .

Case (iv) â1 < ĉ1 < b̂1. There are impulsive moments τca1+1, τca1+2, ..., τ bc1
in

[a1, c1] and impulsive moments τ bc1+1, τ bc1+2, ..., τ bb1
in [c1, b1]. Similar to Cases (ii)

and (iii), we have that

∑
cc1

k=ca1+1
H1 (τk, a1) z (τk)

[
φγ

(
ηk

λk

)
− 1

]
< Φ [H1 (·, a1) ; a1, c1]

and ∑
cb1

k= bc1+1
H1 (b1, τk) z (τk)

[
φγ

(
ηk

λk

)
− 1

]
< Φ [H1 (b1, ·) ; c1, b1] .

For all the cases, from (3.20) we have

1

H1 (c1, a1)

∫ c1

a1

[
Q (s)H1 (s, a1) − (ρp) (s)hγ+1

11 (s, a1)
]
ds

+
1

H1 (b1, c1)

∫ b1

c1

[
Q (s)H1 (b1, s) − (ρp) (s)hγ+1

12 (b1, s)
]
ds

≤ 1

H1 (c1, a1)
Φ [H1 (·, a1) ; a1, c1] +

1

H1 (b1, c1)
Φ [H1 (b1, ·) ; c1, b1] .

This contradicts (2.9) with i = 1 and hence completes the proof. �
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