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Abstract

In this paper existence and uniqueness results for an abstract measure delay

differential equation are proved, by using Leray-Schauder nonlinear alternative,

under Carathéodory conditions.
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1 Introduction

Functional differential equations with delay is a hereditary system in which the rate of
change or the derivative of the unknown function or set-function depends upon the past
history. The functional differential equations of neutral type is a hereditary system in
which the derivative of the set-function is determined by the values of a state variable
as well as the derivative of the state variable over some past interval in the phase
space. Although the general theory and the basic results for differential equations have
now been thoroughly investigated, the study of functional differential equations has
not been complete yet. In recent years, there has been an increasing interest for such
equations among the mathematicians of the world. The study of functional abstract
measure differential equations is very rare.

The study of abstract measure delay differential equations was initiated by Joshi
[6], Joshi and Deo [7] and Shendge and Joshi [11] and subsequently developed by
Dhage [1]-[3]. Recently, the authors in [4] proved existence and uniqueness results for
abstract measure differential equations, by using Leray-Schauder alternative [5], under
Carathéodory conditions. In this paper, by using the same method, we extend the
results of [4] to a system of abstract measure delay differential equations. In that our
approach is different from that of Joshi [6]. The results of this paper complement and
generalize the results of Joshi [6] on abstract measure delay differential equations under
weaker conditions.
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2 Preliminaries

Let IR denote the real line, IRn an Euclidean space with repect to the norm |·|n defined
by

|x|n = max{|x1|, . . . , |xn|} for x = (x1, . . . , xn) ∈ IR
n. (1)

Let X be a real Banach space with any convenient norm ‖ · ‖. For any two points
x, y in X, the segment xy in X is defined by

xy = {z ∈ X|z = x+ r(y − x), 0 ≤ r ≤ 1}.

Let x0 and y0 be two fixed points in X, such that 0y0 ⊂ 0x0, where 0 is the zero
vector of X. Let z be a point of X, such that 0x0 ⊂ 0z. For this z and x ∈ y0z, define
the sets Sx and Sx as follows

Sx = {rx : −∞ < r < 1}

and
Sx = {rx : −∞ < r ≤ 1}.

For x1, x2 ∈ y0z, we write x1 < x2 (or x2 > x1) if y0x1 ⊂ y0x2. Let the positive
number ‖x0 − y0‖ be denoted by w. For each x ∈ x0z, z > x0, let xw denote that
element of y0z which

xw < x, ‖x− xw‖ = w.

Note that, xw and wx are not the same points, unless w = 0 and x = 0.
LetM denote the σ-algebra of all subsets ofX so that (X,M) becomes a measurable

space. Let ca(X,M) be the space of all vector measures (signed measures) and define
a norm ‖ · ‖ on ca(X,M) by

‖p‖ = |p|n(X) (2)

where |p|n is a total variation measure of p and is given by

|p|n(X) =

∞
∑

i=1

|p(Ei)|n, ∀Ei ⊂ X. (3)

It is known that ca(X,M) is a Banach space with respect to the norm ‖ · ‖ defined
by (2). Let µ be a σ-finite measure on X and let p ∈ ca(X,M). We say p is absolutely
continuous with respect to the measure µ if µ(E) = 0 implies p(E) = 0 for some
E ∈M. In this case we write p << µ.

For a fixed x0 ∈ X, let M0 be the smallest σ-algebra on Sx0
, containing {x0} and

the sets Sx, x ∈ y0x0. Let z ∈ X be such that z > x0 and let Mz denote the σ-algebra
of all sets containing M0 and the sets of the form Sx for x ∈ x0z. Finally let L1

µ(Sz,R)
denote the space of all µ -integrable nonnegative real-valued functions h on Sz with
the norm ‖ · ‖L1

µ
defined by

‖h‖L1
µ

=

∫

Sz

|h(x)| dµ.
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3 Statement of the problem

Let µ be a σ-finite real measure on X. Given a p ∈ ca(X,M) with p << µ, consider the
abstract measure delay differential equation (in short AMDDE), involving the delay w,

dp

dµ
= f(x, p(Sx), p(Sxw

)), a.e. [µ] on x0z,

p(E) = q(E), E ∈M0,
(4)

where q is a given known vector measure, dp/dµ is a Radon-Nikodym derivative of p
with respect to µ and f : Sz × IR

n × IR
n → IR

n is such that f(x, p(Sx), p(Sxw
)) is

µ-integrable for each p ∈ ca(Sz,Mz).

Definition 3.1 Given an initial real measure q on M0, a vector p ∈ ca(Sz,Mz) (z > x)
is said to be a solution of AMDDE (4) if

(i) p(E) = q(E), E ∈M0,

(ii) p << µ on x0z,

(iii) p satisfies (4) a.e. [µ] on x0z.

Remark 3.1 The AMDDE (4) is equivalent to the abstract measure integral equation

p(E) =

{
∫

E
f(x, p(Sx), p(Sxw

))dµ, E ∈Mz, E ⊂ x0z

q(E), E ∈M0.

A solution p of AMDDE (4) on x0z will be denoted by p(Sx0
, q).

In the following section we shall prove the main existence theorem for AMDDE (4)
under suitable conditions on f. We shall use the following form of the Leray-Schauder’s
nonlinear alternative. See Dugundji and Granas [5].

Theorem 3.1 Let B(0, r) and B[0, r] denote respectively the open and closed balls in a
Banach space X centered at the origin 0 of radius r, for some r > 0. Let T : B[0, r] → X
be a completely continuous operator. Then either

(i) the operator equation Tx = x has a solution in B[0, r], or

(ii) there exists an u ∈ X with ‖u‖ = r such that u = λTu for some 0 < λ < 1.
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4 Existence and Uniqueness Theorems

We need the following definition in the sequel.

Definition 4.1 A function β : Sz × IR
n × IR

n → IR
n is said to satisfy conditions of

Carathéodory or simply it is Carathéodory if

(i) x→ β(x, y, z) is µ-measurable for each (y, z) ∈ IR
n × IR

n.

(ii) (y, z) → β(x, y, z) is continuous for almost everywhere µ on x ∈ x0z, and

(iii) for each given real number ρ > 0 there exists a function hρ ∈ L1
µ(Sz, IR) such

that

|β(x, y, z)| ≤ hρ(x) a.e. [µ] x ∈ x0z, for each y, z ∈ IR with |y| ≤ ρ, |z| ≤ ρ.

We consider the following set of assumptions.

(A1) For any z > x0, the σ-algebra Mz is compact with respect to the topology gen-
erated by the pseudo-metric d defined by

d(E1, E2) = |µ|n(E1 4E2), E1, E2 ∈Mz.

(A2) µ({x0}) = 0.

(A3) q is continuous on Mz with respect to the Pseudo-metric d defined in (A1).

(A4) The function f(x, y, z) is L1
µ-Carathéodory.

(A5) There exists a function φ ∈ L1
µ(Sz, IR

+) such that φ(x) > 0 a.e. [µ], x ∈ Sz and
a continuous and nondecreasing function ψ : [0,∞) → (0,∞) such that

|f(x, y, z)|n ≤ φ(x)ψ(max {|y|n, |z|n}) a.e. [µ] on x0z, ∀y ∈ IR
n, ∀z ∈ IR

n.

Theorem 4.1 Suppose that assumptions (A1)–(A5) hold. Further if there exists a real
number r > 0 such that

r > ‖q‖ + ‖φ‖L1
µ
ψ(r) (5)

then AMDDE (4) has a solution on Mz.

Proof. Let X = ca(Sz,Mz) and consider an open ball B(0, r) in ca(Sz,Mz) centered
at the origin and of radius r, where the real number r > 0 satisfies (5). Define an
operator T from B[0, r] into ca(Sz,Mz) by

Tp(E) =

{
∫

E
f(x, p(Sx), p(Sxw

))dµ, E ∈Mz, E ⊂ x0z

q(E), E ∈M0.
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We shall show that the operator T satisfies all the conditions of Theorem 3.1 on
B[0, r].

Step I: First we show that T is continuous on B[0, r]. Let {pn} be a sequence
of vector measures in B[0, r] converging to a vector measure p. Then by Dominated
Convergence Theorem,

lim
n
Tpn(E) = lim

n→∞

∫

E

f(x, pn(Sx), pn(Sxw
))dµ

=

∫

E

f(x, p(Sx), p(Sxw
))dµ

= Tp(E)

for all E ∈Mz, E ⊂ x0z. Similarly if E ∈M0, then

lim
n
Tpn(E) = q(E) = Tp(E)

and, so T is a continuous operator on B[0, r].

Step II: Next we show that T (B[0, r]) is a uniformly bounded and equi-continuous
set in ca(Sz,Mz). Let p ∈ B[0, r] be arbitrary. Then we have ‖p‖ ≤ r. Now by the
definition of the map T one has

Tp(E) =

{
∫

E
f(x, p(Sx), p(Sxw

))dµ, if E ∈Mz, E ⊂ x0z

q(E), if E ∈M0.

Therefore for any E = F ∪G,F ∈M0 and G ∈Mz, G ⊂ x0z, we have

|Tp(E)|n ≤ |q(E)|n +

∫

E

|f(x, p(Sx), p(Sx))|ndµ

≤ ‖q‖ +

∫

E

φ(x)ψ(max{|p(Sx)|n, |p(Sxw
)|n})dµ

≤ ‖q‖ +

∫

E

φ(x)ψ(‖p‖)dµ

≤ ‖q‖ + ‖φ‖L1
µ
ψ(r)

for all E ∈Mz. By definition of the norm ‖ · ‖ we have

‖Tp‖ = |Tp|n(Sz)

≤ ‖q‖ + ‖φ‖L1
µ
ψ(r).

This shows that the set T (B[0, r]) is uniformly bounded in ca(Sz,Mz).
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Now we show that T (B[0, r]) is an equi-continuous set in ca(Sz,Mz). Let E1, E2 ∈
Mz. Then there are sets F1, F2 ∈M0 and G1, G2 ∈Mz with G1, G2 ⊂ x0z, and

Fi ∩Gi = ∅, i = 1, 2.

We know the set-identities

G1 = (G1 −G2) ∪ (G2 ∩G1) and G2 = (G2 −G1) ∪ (G2 ∩G1). (6)

Therefore we have

Tp(E1) − Tp(E2) = q(F1) − q(F2)

+

∫

G1−G2

f(x, p(Sx), p(Sxw
))dµ−

∫

G2−G1

f(x, p(Sx), p(Sxw
))dµ.

Since f(x, y, z) is L1
µ- Carathéodory, we have that

|Tp(E1) − Tp(E2)|n ≤ |q(F1) − q(F2)|n +

∫

G14G2

|f(x, p(Sx), pn(Sxw
))|ndµ

≤ |q(F1) − q(F2)| +

∫

G14G2

hr(x)dµ.

Assume that d(E1, E2) = |µ|n(E1 4 E2) → 0. Then we have E1 → E2 and conse-
quently F1 → F2 and |µ|n(G1 4 G2) → 0. From the continuity of q on M0 it follows
that

|Tp(E1) − Tp(E2)|n ≤ |q(F1) − q(F2)|n +

∫

G14G2

hr(x)dµ

→ 0 as E1 → E2.

This shows that T (B[0, r]) is an equi-continuous set in ca(Sz,Mz). Thus T (B[0, r])
is uniformly bounded and equi-continuous set in ca(Sz,Mz), so it is compact in the
norm topology on ca(Sz,Mz). Now an application of Arzelá-Ascoli Theorem yields that
T (B[0, r]) is a compact subset of ca(Sz,Mz). As a result T is a continuous and totally
bounded operator on B[0, r]. Hence an application of Theorem 3.1 yields that either
x = Tx has a solution or the operator equation x = λTx has a solution u with ‖u‖ = r
for some 0 < λ < 1. We shall show that this later assertion is not possible. We assume
the contrary. Then there is an u ∈ X with ‖u‖ = r satisfying u = λTu for some
0 < λ < 1. Now for any E ∈ Mz, we have E = F ∪ G, where F ∈ M0 and G ⊂ x0z
satisfying F ∩G = ∅.

Now

u(E) = λTu(E) =

{

λq(F ), F ∈M0

λ
∫

G
f(x, u(Sx), u(Sxw

))dµ, G ∈Mz, G ⊂ x0z.
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Therefore

|u(E)|n = |λq(F )|n +

∣

∣

∣

∣

λ

∫

G

f(x, u(Sx), u(Sxw
))dµ

∣

∣

∣

∣

≤ ‖q‖ +

∣

∣

∣

∣

∫

G

|f(x, u(Sx), u(Sxw
))|ndµ

∣

∣

∣

∣

≤ ‖q‖ +

∫

G

φ(x)ψ(max {|p(Sx)|n, |u(Sxw
)|n})dµ

≤ ‖q‖ +

∫

G

φ(x)ψ(‖u‖)dµ

= ‖q‖ + ‖φ‖L1
µ
ψ(‖u‖).

This further implies that

‖u‖ = |u|n(Sz) ≤ ‖q‖ + ‖φ‖L1
µ
ψ(‖u‖).

Substituting ‖u‖ = r in the above inequality, this yields

r ≤ ‖q‖ + ‖φ‖L1
µ
ψ(r),

which is a contradiction to the inequality (5).
Hence the operator equation p = Tp has a solution v with ‖v‖ ≤ r. Consequently

the AMDDE (4) has a solution p = p(Sx0
, q) in B[0, r]. This completes the proof.

To prove the uniqueness theorem, we consider the following AMDDE

dr

dµ
= g(x, r(Sx), r(Sxw

)) a.e. [µ] on x0z

r(E) = 0, E ∈M0,







(7)

where g : Sz × IR
+ × IR

+ → IR
+ and g(x, r(Sx), r(Sxw

)) is µ-integrable for each
r ∈ ca(Sz,Mz) with r ≥ 0, and g(x, y, z) is nondecreasing in y, z almost everywhere [µ]
on x0z.

Theorem 4.2 Assume that the function g satisfies all the conditions of theorem 4.1
with the function f replaced by g. Suppose further that

|f(x, y, z) − f(x, y1, z1)|n ≤ g(x, |y − y1|n, |z − z1|n) a.e. [µ] on x0z

and the identically zero measure is the only solution of AMDDE (7) on Mz. Then
AMDDE (4) has at most one solution on Mz.

Proof. Suppose that AMDDE (4) has two solutions, namely p1 and p2 on Mz. Then
we have

p1(E) = q(F ) +

∫

G

f(x, p1(Sx), p1(Sxw
))dµ
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and

p2(E) = q(F ) +

∫

G

f(x, p2(Sx), p2(Sxw
))dµ,

for all E ∈Mz with E = F ∪G, F ∈M0, G ⊂ x0z and F ∩G = ∅. Now

p1(E) − p2(E) =

∫

G

f(x, p1(Sx), p1(Sxw
))dµ−

∫

G

f(x, p2(Sx), p2(Sxw
))dµ

=

∫

G

[f(x, p1(Sx), p1(Sxw
)) − f(x, p2(Sx), p2(Sxw

))]dµ.

Therefore,

|p1(E) − p2(E)|n ≤

∫

G

|f(x, p1(Sx), p1(Sxw
)) − f(x, p2(Sx), p2(Sxw

))|ndµ

≤

∫

G

g(x, |p1 − p2|n(Sx), |p1 − p2|n(Sxw
))dµ.

Since AMDDE (7) has a identically zero function on Mz, one has ‖p1 − p2‖ = |p1 −
p2|n(Sz) = 0 ⇒ p1 = p2.

Therefore AMDDE has at most one solution on Mz. This completes the proof.

5 Special case

In this section it is shown that, in a certain situation, the AMDDE (4) reduces to an
ordinary differential-difference equation

dy

dx
= f(x, y(x), y(x− w)), x ≥ x0,

y(x) = g(x), x ∈ [x0 − w, x0],







(8)

where g is continuous real function on [x0 − w, x0], and f satisfies Carathéodory con-
ditions.

Let X = IR, µ = m, the Lebesgue measure on IR, Sxw
= (−∞, x], x ∈ IR, and q a

given real Borel measure on M0. Then equation (4) takes the form

dp

dm
= f(x, p((−∞, x]), p((−∞, x− w])),

p(E) = q(E), E ∈M0.
(9)

It will now be shown that, the equations (8) and (9) are equivalent in the sense of
the following theorem.

Theorem 5.1 Let q({x}) = 0, x ∈ [x0 − w, x0]. Then
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(a) to each solution p = p(Sx0
, q) of (9) existing on [x0, x1), there corresponds a

solution y of (8) satisfying

y(x) = g(x), x ∈ [x0 − w, x0].

(b) Conversely, if g is a continuous function of bounded variation on [x0 − w, x0],
then to every solution y(x) of (8), there corresponds a solution p(Sx0

, q), of (9)
existing on [x0, x1) with a suitable initial measure q.

Proof. (a) Let p = p(Sx0
, q) be a solution of (9), existing on [x0, x1). Define a real

Borel measure p1 on IR as follows.

p1((−∞, x)) =















0, if x ≤ x0 − w,

p((−∞, x]) − p((−∞, x0 − w]), if x0 − w < x < x1

p((−∞, x1)), if x ≥ x1,

(10)

and
p1(E) = p(E), if E ⊂ [x0 − w, x1).

Define the functions y1(x), y(x) and g(x) by

y1(x) = p1((−∞, x)), x ∈ IR

y(x) = y1(x) + p((−∞, x0 − w]), x ∈ [x0 − w, x1)

and
g(x) = y(x), x ∈ [x0 − w, x0].

The condition q({x}) = 0, x ∈ [x0 − w, x0], the definition of the solution p, and the
definitions of y(x), g(x) imply that

p1({x}) = p({x}) = 0, x ∈ [x0 − w, x0].

Hence by [8] (Theorem 8.14, p. 163) g is continuous on [x0 − w, x0].
Now for each x ∈ [x0 − w, x1) we obtain from (10) and the definition of y(x)

y(x) = y1(x) + p((−∞, x0 − w])

= p1((−∞, x)) + p((−∞, x0 − w])

= p(Sxw
).

(11)

Since p is a solution of (9) we have p << m on [x0, x1). Hence y(x) is absolutely
continuous on [x0, x1). This shows that y′(x) exists a.e. on [x0, x1). Now for each
x ∈ [x0, x1), we have, by virtue of (11) and (9)

p([x0, x]) =

∫

[x0,x]

(dp/dm)dm,
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that is,

p((−∞, x]) − p((−∞, x0]) =

∫ x

x0

(dp/dm)dm.

This further implies that

p(Sxw
) = p(Sx0

) +

∫ x

x0

f(t, p(Sx), p(Sx−w))dt.

That is

y(x) = y(x0) +

∫ x

x0

f(t, y(t), y(t− w))dt.

Hence
y′(x) = f(x, y(x), y(x− w)) a.e on [x0, x1).

This proves that y(x) is a solution of (8) on [x0, x1) satisfying

y(x) = g(x), x ∈ [x0 − w, x0].

(b) Let y(x) be a solution of (8) existing on [x0, x1], where g is continuous and of
bounded variation on [x0 − w, x0]. Define the function g1 on IR as follows.

g1(x) =















0, if x < x0 − w,

g(x) − g(x0 − w), if x0 − w ≤ x ≤ x0

g(x0) − g(x0 − w), if x > x0.

(12)

Clearly g1 ∈ NBV (where NBV is the class of left continuous functions φ of bounded
variation such that φ(x) → 0 as x → ∞). Hence by [8] [Theorem 8.14, p. 163] there
exists a real Borel measure q1 on IR, such that,

q1((−∞, x)) = g1(x). (13)

Let us now define the initial measure q on M0 as follows.

q((−∞, x]) = q1((−∞, x)) + g(x0 − w), x ∈ [x0 − w, x0],

q(E) = q1(E), E ⊂ [x0 − w, x0].

From (12), (13) and the definition of q we have

q(Sxw
) = q((−∞, x]) = g(x), x ∈ [x0 − w, x0].

Similarly corresponding to the function y(x) which is a solution of (8) on [x0, x1),
we can construct a real Borel measure p on Mx1

, such that,

p(E) = q(E), if E ∈M0,

p(Sxw
) = y(x), x ∈ [x0, x1).

(14)
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Since y(x) is a solution of (8) we have for x ∈ [x0, x1)

y(x) = y(x0) +

∫ x

x0

f(t, y(t), y(t− w))dt.

Hence by (14) it follows that

p(Sxw
) − p(Sx0

) =

∫

[x0,x]

f(t, p(St), p(Stw))dm.

That is

p([x0, x]) =

∫

[x0,x]

f(t, p(St), p(Stw))dm.

In general, if E ∈ Mx1
, E ⊂ x0x1, then

p(E) =

∫

E

f(t, p((−∞, x], p((−∞, x− w]))dm.

This shows that p is a solution of (9) on [x0, x1) and the proof of (b) is complete.

Remark 5.1 In proving (b) part of the above theorem we required g ∈ BV. That is not
surprising, since g1 is constructed from g, such that, g1 ∈ NBV.

Remark 5.2 Theorem 5.1 shows that our results for the equation (4) are general in
the sense that they include the corresponding results for the equation (8).

Remark 5.3 If we allow w to be zero then Sxw
= Sx0

for each x ≥ x0. Hence if we
define the initial measure q by

q(Sx0
) = α, q(E) = 0 if E 6= Sx0

,

the equation (4) takes the form

dp

dµ
= f(x, p(Sxw

)), p(Sx0
) = α

which is the AMDDE studied in [9], [10]. Thus our results include as particular cases,
the results in [9], [10].

6 Examples

Example 1. Let X = IR, Sx = (−∞, x], x0 = 0, w = 2 and M0 be the σ-algebra
defined on (−∞, 0]. Define an initial measure q on M0 as follows

q(E) =
∑

n∈E∩{−1,−2}

2n, if E ∩ {−1,−2} 6= ∅

= 0, if E ∩ {−1,−2} = ∅.
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Define a real measure µ by

µ(E) =
∑

n∈N∩(E)

1

3n
, if E ⊂ IR, E ∩N 6= ∅

= 0, if E ∩N = ∅.

where N is the set of natural numbers. Consider the AMDDE

dp

dµ
= p(Sx) + p(Sx−2), (15)

p(E) = q(E), E ∈M0. (16)

The above AMDDE is equivalent to

p(E) =

{
∫

E
p(Sx)dµ+

∫

E
p(Sx−2)dµ, E ⊂ [0,∞),

p(E) = q(E), E ∈M0.
(17)

It is not difficult to show that the operator T defined by the right hand side of (17) is a
contraction on ca(R,M) with the usual total variation norm. Hence AMDDE (15)-(16)
has a unique solution on [0,∞).

We also observe that

p(S1) = p(S0) +

∫

(0,1]

p(Sx)dµ+

∫

(0,1]

p(Sx−2)dµ

= q(S0) + p(S1)µ({1}) + p(S−1)µ({1})

= 1 +
1

3
p(S1)(1/2)

= 3/2.

Similarly

p(S2) = p(S1) +

∫

(1,2]

p(Sx)dµ+

∫

(1,2]

p(Sx−2)dµ

= p(S1) + p(S2)µ({2}) + p(S0)µ({2})

= 1 +
3

2
+

1

9
p(S1) +

1

12
= 19/12.

Thus we have

p(S0) =
3

4
, p(S1) =

3

2
, p(S0) =

57

32
, and so on.

It is easy to verify that the sequence {p(Sn)}, n = 0, 1, 2, 3, . . . is convergent, show-
ing thereby that the solution p of the above AMDDE is a finite measure.
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Example 2. Let X = IR, µ the Lebesgue measure on IR, S t = [0, t], t > 0, and
q(E) = µ(E), E ⊂ [0, 1]. Consider the AMDDE

dp

dµ
= 6p(St−1),

p(E) = q(E), E ⊂ [0, 1].

Here w = 1. For 0 ≤ t ≤ 1, we observe that

p(St) = p([0, t]) = q([0, t]) = t.

If t ∈ [1, 2], we have

p(St) = q(S1) +

∫

[1,t]

6p(Ss−1)ds

= 1 +

∫ t

1

6(s− 1)ds

= 1 + 3(t− 1)2.

Again, if 2 ≤ t ≤ 3, we obtain

p(St) = 6t+ 6(t− 2)3 − 8,

and so on, the solution p can be found recursively on [0,∞).

Remark 6.1 The above examples suggest a method to compute the solution of an
AMDDE, in the particular case when f(x, y, z) is linear in y and z.
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