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Abstract. We consider the following complementary Lidstone boundary value problem

(−1)my(2m+1)(t) = F (t, y(t), y′(t)), t ∈ [0, 1]

y(0) = 0, y(2k−1)(0) = y(2k−1)(1) = 0, 1 ≤ k ≤ m.

The nonlinear term F depends on y′ and this derivative dependence is seldom investigated in

the literature. Using a variety of fixed point theorems, we establish the existence of one or more

positive solutions for the boundary value problem. Examples are also included to illustrate the

results obtained.
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1 Introduction

In this paper we shall consider the complementary Lidstone boundary value problem

(−1)my(2m+1)(t) = F (t, y(t), y′(t)), t ∈ [0, 1]

y(0) = 0, y(2k−1)(0) = y(2k−1)(1) = 0, 1 ≤ k ≤ m
(1.1)

where m ≥ 1 and F is continuous at least in the interior of the domain of interest. It is noted

that the nonlinear term F involves y′, a derivative of the dependent variable. This case is seldom

studied in the literature and most research papers on boundary value problems consider nonlinear

terms that involve y only.

The complementary Lidstone interpolation and boundary value problems are very recently

introduced in [17], and drawn on by Agarwal et. al. in [3, 9] where they consider an (2m + 1)th

order differential equation together with boundary data at the odd order derivatives

y(0) = a0, y(2k−1)(0) = ak, y(2k−1)(1) = bk, 1 ≤ k ≤ m. (1.2)

The boundary conditions (1.2) are known as complementary Lidstone boundary conditions, they

naturally complement the Lidstone boundary conditions [4, 6, 19, 31] which involve even order
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derivatives. To be precise, the Lidstone boundary value problem comprises an 2mth order differ-

ential equation and the Lidstone boundary conditions

y(2k)(0) = ak, y(2k)(1) = bk, 0 ≤ k ≤ m − 1. (1.3)

There is a vast literature on Lidstone interpolation and boundary value problems. In fact, the

Lidstone interpolation was first introduced by Lidstone [26] in 1929 and further characterized in

the work of [13, 14, 28, 29, 32, 33, 34, 35]. More recent research on Lidstone interpolation as

well as Lidstone spline can be found in [7, 8, 16, 17, 18, 36, 37, 38]. On the other hand, the

Lidstone boundary value problems and several of its particular cases have been the subject matter

of numerous investigations, see [1, 2, 4, 5, 8, 11, 12, 15, 20, 21, 22, 23, 24, 27, 30, 39] and the

references cited therein. It is noted that in most of these works the nonlinear terms considered

do not involve derivatives of the dependent variable, only a handful of papers [20, 21, 24, 27]

tackle nonlinear terms that involve even order derivatives. In the present work, our study of the

complementary Lidstone boundary value problem (1.1) where F depends on a derivative certainly

extends and complements the rich literature on boundary value problems and in particular on

Lidstone boundary value problems. The literature on complementary Lidstone boundary value

problems pales in comparison with that of Lidstone boundary value problems, in a recent work

[10] the eigenvalue problem of complementary Lidstone boundary value problem is discussed.

The focus of this paper is on the existence of a positive solution of (1.1). By a positive solution

y of (1.1), we mean a nontrivial y ∈ C[0, 1] satisfying (1.1) and y(t) ≥ 0 for t ∈ [0, 1]. By using

a variety of fixed point theorems, we begin with the establishment of the existence of a solution

(not necessary positive), and proceed to develop the existence of a nontrivial positive solution,

two nontrivial positive solutions, and multiple nontrivial positive solutions. The usefulness of the

results obtained are then illustrated by some examples.

2 Preliminaries

In this section we shall state the fixed point theorems and some inequalities for certain Green’s

function which are needed later. The first theorem is known as the Leray-Schauder alternative and

the second is usually called Krasnosel’skii’s fixed point theorem in a cone.

Theorem 2.1. [2] Let B be a Banach space with E ⊆ B closed and convex. Assume U is a

relatively open subset of E with 0 ∈ U and S : U → E is a continuous and compact map. Then

either

(a) S has a fixed point in U, or

(b) there exists x ∈ ∂U and λ ∈ (0, 1) such that x = λSx.

Theorem 2.2. [25] Let B = (B, ‖ · ‖) be a Banach space, and let C ⊂ B be a cone in B. Assume

Ω1, Ω2 are open subsets of B with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let S : C ∩ (Ω2\Ω1) → C be a completely

continuous operator such that, either

(a) ‖Sx‖ ≤ ‖x‖, x ∈ C ∩ ∂Ω1, and ‖Sx‖ ≥ ‖x‖, x ∈ C ∩ ∂Ω2, or
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(b) ‖Sx‖ ≥ ‖x‖, x ∈ C ∩ ∂Ω1, and ‖Sx‖ ≤ ‖x‖, x ∈ C ∩ ∂Ω2.

Then S has a fixed point in C ∩ (Ω2\Ω1).

To tackle the complementary Lidstone boundary value problem (1.1), let us review certain

attributes of the Lidstone boundary value problem. Let gm(t, s) be the Green’s function of the

Lidstone boundary value problem

x(2m)(t) = 0, t ∈ [0, 1]

x(2k)(0) = x(2k)(1) = 0, 0 ≤ k ≤ m − 1.
(2.1)

The Green’s function gm(t, s) can be expressed as [4, 6]

gm(t, s) =

∫ 1

0

g(t, u)gm−1(u, s)du (2.2)

where

g1(t, s) = g(t, s) =

{

t(s − 1), 0 ≤ t ≤ s ≤ 1

s(t − 1), 0 ≤ s ≤ t ≤ 1.

Further, it is known that

|gm(t, s)| = (−1)mgm(t, s) and gm(t, s) = gm(s, t), (t, s) ∈ (0, 1)× (0, 1). (2.3)

The following two lemmas give the upper and lower bounds of |gm(t, s)|, they play an important

role in subsequent development. We remark that the bounds in the two lemmas are sharper than

those given in the literature [4, 6, 27, 39].

Lemma 2.1. [10] For (t, s) ∈ [0, 1]× [0, 1], we have

|gm(t, s)| ≤
1

π2m−1
sin πs.

Lemma 2.2. [10] Let δ ∈
(

0, 1
2

)

be given. For (t, s) ∈ [δ, 1 − δ] × [0, 1], we have

|gm(t, s)| ≥
2δ

π2m
sinπs.

3 Existence of Positive Solutions

To tackle (1.1) we first consider the initial value problem

y′(t) = x(t), t ∈ [0, 1]

y(0) = 0
(3.1)

whose solution is simply

y(t) =

∫ t

0

x(s)ds. (3.2)
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Taking into account (3.1) and (3.2), the complementary Lidstone boundary value problem (1.1)

reduces to the Lidstone boundary value problem

(−1)mx(2m)(t) = F

(

t,

∫ t

0

x(s)ds, x(t)

)

, t ∈ [0, 1]

x(2k−2)(0) = x(2k−2)(1) = 0, 1 ≤ k ≤ m.

(3.3)

If (3.3) has a solution x∗, then by virtue of (3.2),

y∗(t) =

∫ t

0

x∗(s)ds (3.4)

is a solution of (1.1). Hence, the existence of a solution of the complementary Lidstone boundary

value problem (1.1) follows from the existence of a solution of the Lidstone boundary value problem

(3.3). It is clear from (3.4) that ‖y∗‖ ≤ ‖x∗‖, moreover if x∗ is positive, so is y∗. With the tools

in Section 2 and a technique to handle the nonlinear term F, we shall study the boundary value

problem (1.1) via (3.3).

Let the Banach space B = C[0, 1] be equipped with the norm ‖x‖ = supt∈[0,1] |x(t)| for x ∈ B.

Define the operator S : C[0, 1] → C[0, 1] by

Sx(t) =

∫ 1

0

(−1)mgm(t, s)F

(

s,

∫ s

0

x(τ)dτ, x(s)

)

ds

=

∫ 1

0

|gm(t, s)|F

(

s,

∫ s

0

x(τ)dτ, x(s)

)

ds, t ∈ [0, 1]

(3.5)

where gm(t, s) is the Green’s function given in (2.2). A fixed point x∗ of the operator S is clearly

a solution of the boundary value problem (3.3), and as seen earlier y∗(t) =
∫ t

0 x∗(s)ds is a solution

of (1.1).

For easy reference, we list below the conditions that are used later. In these conditions, the

number δ ∈
(

0, 1
2

)

is fixed and the sets K, K̃ are defined by

K̃ = {x ∈ B | x(t) ≥ 0, t ∈ [0, 1]}

and

K = {x ∈ K̃ | x(t) > 0 on some subset of [0, 1] of positive measure}.

(C1) F is continuous on [0, 1]× K̃ × K̃, with

F (t, u, v) ≥ 0, (t, u, v) ∈ [0, 1] × K̃ × K̃ and F (t, u, v) > 0, (t, u) ∈ [0, 1] × K × K.

(C2) There exist continuous functions β and f with β : [0, 1] → [0,∞), f : [0,∞)× [0,∞) → [0,∞)

and f is nondecreasing in each of its arguments, such that

F (t, u, v) ≤ β(t)f(u, v), (t, u, v) ∈ [0, 1]× K̃ × K̃.

(C3) There exists a > 0 such that

a > Mf(a, a)

where M = supt∈[0,1]

∫ 1

0 |gm(t, s)|β(s)ds.
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(C4) There exists a continuous function α with α :
[

1
2 , 1 − δ

]

→ (0,∞), such that

F (t, u, v) ≥ α(t)f(u, v), (t, u, v) ∈

[

1

2
, 1 − δ

]

× K × K.

(C5) There exists b > 0 such that

b ≤ Nf

(

γb

(

1

2
− δ

)

, γb

)

where γ = 2δ
π

and N = supt∈[0,1]

∫ 1−δ
1

2

|gm(t, s)|α(s)ds.

Our first result is an existence criterion for a solution (need not be positive).

Theorem 3.1. Let F : [0, 1] × IR × IR → IR be continuous. Suppose there exists a constant ρ,

independent of λ, such that ‖x‖ 6= ρ for any solution x ∈ C[0, 1] of the equation

x(t) = λ

∫ 1

0

|gm(t, s)|F

(

s,

∫ s

0

x(τ)dτ, x(s)

)

ds, t ∈ [0, 1] (3.6)λ

where 0 < λ < 1. Then, (1.1) has at least one solution y∗ ∈ C[0, 1] such that ‖y∗‖ ≤ ρ.

Proof. Clearly, a solution of (3.6)λ is a fixed point of the equation x = λSx where S is defined

in (3.5). Using the Arzelà-Ascoli theorem, we see that S is continuous and completely continuous.

Now, in the context of Theorem 2.1, let U = {x ∈ B | ‖x‖ < ρ}. Since ‖x‖ 6= ρ, where x is any

solution of (3.6)λ, we cannot have conclusion (b) of Theorem 2.1, hence conclusion (a) of Theorem

2.1 must hold, i.e., (3.3) has a solution x∗ ∈ U with ‖x∗‖ ≤ ρ. From (3.4), it is clear that (1.1) has

a solution y∗(t) =
∫ t

0
x∗(s)ds with ‖y∗‖ ≤ ‖x∗‖ ≤ ρ. �

The next result employs Theorem 3.1 to give the existence of a positive solution.

Theorem 3.2. Let (C1)–(C3) hold. Then, (1.1) has a positive solution y∗ ∈ C[0, 1] such that

‖y∗‖ < a, i.e., 0 ≤ y∗(t) < a, t ∈ [0, 1].

Proof. To apply Theorem 3.1, we consider the equation

x(t) =

∫ 1

0

|gm(t, s)|F̂

(

s,

∫ s

0

x(τ)dτ, x(s)

)

ds, t ∈ [0, 1] (3.7)

where F̂ : [0, 1] × IR × IR → IR is defined by

F̂ (t, u, v) = F (t, |u|, |v|). (3.8)

Noting (C1) we see that the function F̂ is well defined and is continuous.

We shall show that (3.7) has a solution. To proceed, we shall consider the equation

x(t) = λ

∫ 1

0

|gm(t, s)|F̂

(

s,

∫ s

0

x(τ)dτ, x(s)

)

ds, t ∈ [0, 1] (3.9)λ

where 0 < λ < 1, and show that any solution x ∈ C[0, 1] of (3.9)λ satisfies ‖x‖ 6= a. Then it follows

from the proof of Theorem 3.1 that (3.7) has a solution.

EJQTDE, 2012 No. 60, p. 5



Let x ∈ C[0, 1] be any solution (3.9)λ. Using (3.8) and (C1) we get

x(t) = λ

∫ 1

0

|gm(t, s)|F̂

(

s,

∫ s

0

x(τ)dτ, x(s)

)

ds

= λ

∫ 1

0

|gm(t, s)|F

(

s,

∣

∣

∣

∣

∫ s

0

x(τ)dτ

∣

∣

∣

∣

, |x(s)|

)

ds ≥ 0, t ∈ [0, 1].

Thus, x is a positive solution.

Applying (C2) and (C3) successively, we find for t ∈ [0, 1],

|x(t)| = x(t) ≤

∫ 1

0

|gm(t, s)|F

(

s,

∣

∣

∣

∣

∫ s

0

x(τ)dτ

∣

∣

∣

∣

, |x(s)|

)

ds

≤

∫ 1

0

|gm(t, s)|β(s)f

(∣

∣

∣

∣

∫ s

0

x(τ)dτ

∣

∣

∣

∣

, |x(s)|

)

ds

≤

∫ 1

0

|gm(t, s)|β(s)f

(
∫ 1

0

‖x‖dτ, ‖x‖

)

ds

=

∫ 1

0

|gm(t, s)|β(s)ds · f(‖x‖, ‖x‖).

Taking supremum both sides yields

‖x‖ ≤ Mf(‖x‖, ‖x‖). (3.10)

Comparing (3.10) and (C3), we conclude that ‖x‖ 6= a.

It now follows from the proof of Theorem 3.1 that (3.7) has a solution x∗ ∈ C[0, 1] with

‖x∗‖ ≤ a. Using a similar argument as above, it can be easily seen that x∗ is a positive solution

and ‖x∗‖ 6= a. Hence, ‖x∗‖ < a.

Finally, we shall show that x∗ is actually a solution of (3.3). In fact, using (3.8) and the

positivity of x∗, we obtain for t ∈ [0, 1],

x∗(t) =

∫ 1

0

|gm(t, s)|F̂

(

s,

∫ s

0

x∗(τ)dτ, x∗(s)

)

ds

=

∫ 1

0

|gm(t, s)|F

(

s,

∣

∣

∣

∣

∫ s

0

x∗(τ)dτ

∣

∣

∣

∣

, |x∗(s)|

)

ds

=

∫ 1

0

|gm(t, s)|F

(

s,

∫ s

0

x∗(τ)dτ, x∗(s)

)

ds.

Hence, x∗ is a positive solution of (3.3) with ‖x∗‖ < a. Noting (3.4), y∗(t) =
∫ t

0
x∗(s)ds is a positive

solution of (1.1) with ‖y∗‖ ≤ ‖x∗‖ < a. �

Remark 3.1. We note that the last inequality in (C1), viz,

F (t, u, v) > 0, (t, u, v) ∈ [0, 1] × K × K

is not needed in Theorem 3.2.

Theorem 3.2 provides the existence of a positive solution which may be trivial. Our next result

guarantees the existence of a nontrivial positive solution.
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Theorem 3.3. Let (C1)–(C5) hold. Then, (1.1) has a nontrivial positive solution y∗ ∈ C[0, 1]

such that

(a) ‖y∗‖ ≤ b and y∗(t) > γa(t − δ) for t ∈ [δ, 1 − δ], if a < b;

(b) ‖y∗‖ < a and y∗(t) ≥ γb(t − δ) for t ∈ [δ, 1 − δ], if a > b.

Proof. We shall employ Theorem 2.2. To begin, note that the operator S : C[0, 1] → C[0, 1] is

continuous and completely continuous.

Next, we define a cone C ⊂ B by

C =

{

x ∈ B

∣

∣

∣

∣

x(t) ≥ 0 for t ∈ [0, 1], and min
t∈[δ,1−δ]

x(t) ≥ γ‖x‖

}

(3.11)

where γ = 2δ
π

(< 1). Note that C ⊆ K̃. We shall show that S maps C into C. Let x ∈ C. Noting

(C1), we obtain

Sx(t) =

∫ 1

0

|gm(t, s)|F

(

s,

∫ s

0

x(τ)dτ, x(s)

)

ds ≥ 0, t ∈ [0, 1]. (3.12)

Next, using (3.12) and Lemma 2.1, we have for t ∈ [0, 1],

|Sx(t)| = Sx(t) ≤

∫ 1

0

1

π2m−1
F

(

s,

∫ s

0

x(τ)dτ, x(s)

)

sinπsds

which leads to

‖Sx‖ ≤

∫ 1

0

1

π2m−1
F

(

s,

∫ s

0

x(τ)dτ, x(s)

)

sin πsds. (3.13)

On the other hand, for t ∈ [δ, 1 − δ] we use Lemma 2.2 and (3.13) to get

Sx(t) ≥

∫ 1

0

2δ

π2m
F

(

s,

∫ s

0

x(τ)dτ, x(s)

)

sin πsds ≥
2δ

π
‖Sx‖.

It follows that

min
t∈[δ,1−δ]

Sx(t) ≥ γ‖Sx‖. (3.14)

Having established (3.12) and (3.14), we have shown that S(C) ⊆ C.

Let

Ωa = {x ∈ B | ‖x‖ < a} and Ωb = {x ∈ B | ‖x‖ < b}.

We shall show that (i) ‖Sx‖ ≤ ‖x‖ for x ∈ C ∩ ∂Ωa, and (ii) ‖Sx‖ ≥ ‖x‖ for x ∈ C ∩ ∂Ωb.

To verify (i), let x ∈ C ∩ ∂Ωa. Then, ‖x‖ = a. Using (C2), we get for t ∈ [0, 1],

|Sx(t)| = Sx(t) ≤

∫ 1

0

|gm(t, s)|β(s)f

(
∫ s

0

x(τ)dτ, x(s)

)

ds ≤

∫ 1

0

|gm(t, s)|β(s)f

(
∫ 1

0

a dτ, a

)

ds.

Taking supremum and applying (C3) then gives

‖Sx‖ ≤ Mf(a, a) < a = ‖x‖. (3.15)
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Next, to prove (ii), let x ∈ C ∩ ∂Ωb. So ‖x‖ = b. Noting (C4), we find for t ∈ [0, 1],

|Sx(t)| ≥

∫ 1−δ

1

2

|gm(t, s)|F

(

s,

∫ s

0

x(τ)dτ, x(s)

)

ds

≥

∫ 1−δ

1

2

|gm(t, s)|α(s)f

(
∫ s

0

x(τ)dτ, x(s)

)

ds

≥

∫ 1−δ

1

2

|gm(t, s)|α(s)f

(

∫ 1

2

δ

x(τ)dτ, x(s)

)

ds

≥

∫ 1−δ

1

2

|gm(t, s)|α(s)f

(

∫ 1

2

δ

γb dτ, γb

)

ds.

Taking supremum both sides and using (C5), we obtain

‖Sx‖ ≥ Nf

(

γb

(

1

2
− δ

)

, γb

)

≥ b = ‖x‖. (3.16)

Having established (i) and (ii), it follows from Theorem 2.2 that S has a fixed point x∗ ∈

C ∩
(

Ωmax{a,b}\Ωmin{a,b}

)

. Thus, min{a, b} ≤ ‖x∗‖ ≤ max{a, b}. Using a similar argument as in

the first part of the proof of Theorem 3.2, we see that ‖x∗‖ 6= a. Hence, we obtain

a < ‖x∗‖ ≤ b if a < b and b ≤ ‖x∗‖ < a if a > b. (3.17)

Coupling (3.17) with the fact x∗ ∈ C gives

min
t∈[δ,1−δ]

x∗(t) ≥ γ‖x∗‖







> γa, if a < b

≥ γb, if a > b.

Now from (3.4), a positive solution of (1.1) is y∗(t) =
∫ t

0 x∗(s)ds. In view of (3.17), it is clear that

‖y∗‖ ≤ ‖x∗‖







≤ b, if a < b

< a, if a > b.

Moreover, we have for t ∈ [δ, 1 − δ],

y∗(t) =

∫ t

0

x∗(s)ds ≥

∫ t

δ

x∗(s)ds ≥

∫ t

δ

γ‖x∗‖ds = γ‖x∗‖(t − δ). (3.18)

Hence, noting (3.17) we get for t ∈ [δ, 1 − δ],

y∗(t) > γa(t − δ) if a < b and y∗(t) ≥ γb(t − δ) if a > b.

The proof is complete. �

Remark 3.2. The conditions (C4) and (C5) in Theorem 3.3 may be replaced by the following:

(C4)′ there exists a continuous function α0 with α0 : [1 − δ, 1] → (0,∞), such that

F (t, u, v) ≥ α0(t)f(u, v), (t, u, v) ∈ [1 − δ, 1]× K × K;
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(C5)′ there exists b > 0 such that

b ≤ N0f (γb(1 − 2δ), γb)

where γ = 2δ
π

and N0 = supt∈[0,1]

∫ 1

1−δ
|gm(t, s)|α0(s)ds.

Indeed, in the proof of Theorem 3.3, to show (ii) ‖Sx‖ ≥ ‖x‖ for x ∈ C ∩ ∂Ωb, using (C4)′ we find

for x ∈ C ∩ ∂Ωb and t ∈ [0, 1],

|Sx(t)| ≥

∫ 1

1−δ

|gm(t, s)|F

(

s,

∫ s

0

x(τ)dτ, x(s)

)

ds

≥

∫ 1

1−δ

|gm(t, s)|α0(s)f

(
∫ s

0

x(τ)dτ, x(s)

)

ds

≥

∫ 1

1−δ

|gm(t, s)|α0(s)f

(

∫ 1−δ

δ

x(τ)dτ, x(s)

)

ds

≥

∫ 1

1−δ

|gm(t, s)|α0(s)f

(

∫ 1−δ

δ

γb dτ, γb

)

ds.

Now, taking supremum both sides and using (C5)′ yields

‖Sx‖ ≥ N0f (γb(1 − 2δ), γb) ≥ b = ‖x‖.

Remark 3.3. The computation of the constants M, N and N0 in (C3), (C5) and (C5)′ can be

avoided by using Lemmas 2.1 and 2.2, the tradeoff is we obtain stricter inequalities. Indeed, using

Lemma 2.1 we have

M = sup
t∈[0,1]

∫ 1

0

|gm(t, s)|β(s)ds ≤

∫ 1

0

1

π2m−1
β(s) sin πsds

and so (C3) is satisfied provided

a > f(a, a)

∫ 1

0

1

π2m−1
β(s) sin πsds, (3.19)

which is a stronger condition to fulfill. On the other hand, in view of Lemma 2.2, we have

N = sup
t∈[0,1]

∫ 1−δ

1

2

|gm(t, s)|α(s)ds ≥ sup
t∈[δ,1−δ]

∫ 1−δ

1

2

|gm(t, s)|α(s)ds ≥

∫ 1−δ

1

2

2δ

π2m
α(s) sin πsds

and so (C5) is fulfilled if we impose the stricter inequality

b ≤ f

(

γb

(

1

2
− δ

)

, γb

)
∫ 1−δ

1

2

2δ

π2m
α(s) sin πsds. (3.20)

Similarly, (C5)′ is satisfied provided we have the stricter inequality

b ≤ f (γb(1 − 2δ), γb)

∫ 1

1−δ

2δ

π2m
α0(s) sin πsds. (3.21)

The next result gives the existence of two positive solutions.
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Theorem 3.4. Let (C1)–(C5) hold with a < b. Then, (1.1) has (at least) two positive solutions

y1, y2 ∈ C[0, 1] such that

0 ≤ ‖y1‖ < a, ‖y2‖ ≤ b; y2(t) > γa(t − δ), t ∈ [δ, 1 − δ].

Proof. From the proof of Theorems 3.2 and 3.3 (see (3.17)), we conclude that (3.3) has two

positive solutions x1, x2 ∈ C[0, 1] such that

0 ≤ ‖x1‖ < a < ‖x2‖ ≤ b. (3.22)

Noting (3.4) and (3.18), it follows that (1.1) has two positive solutions y1, y2 ∈ C[0, 1] such that

for i = 1, 2,

‖yi‖ ≤ ‖xi‖ and y2(t) ≥ γ‖x2‖(t − δ), t ∈ [δ, 1 − δ]. (3.23)

Using (3.22) in (3.23), the conclusion is immediate. �

In Theorem 3.4 it is possible to have ‖y1‖ = 0. Our next result guarantees the existence of

two nontrivial positive solutions.

Theorem 3.5. Let (C1)–(C5) and (C5)|b=b̃ hold, where 0 < b̃ < a < b. Then, (1.1) has (at least)

two nontrivial positive solutions y1, y2 ∈ C[0, 1] such that

‖y1‖ < a, ‖y2‖ ≤ b; y1(t) ≥ γb̃(t − δ), y2(t) > γa(t − δ), t ∈ [δ, 1 − δ].

Proof. From the proof of Theorem 3.3 (see (3.17)), it is clear that (3.3) has two positive solutions

x1, x2 ∈ C[0, 1] such that

0 < b̃ ≤ ‖x1‖ < a < ‖x2‖ ≤ b. (3.24)

Noting (3.4), (3.18) and (3.24), the conclusion is clear. �

The next two results also guarantee the existence of two nontrivial positive solutions. Unlike

Theorem 3.5 which requires both (C3) and (C5), these results use either (C3) or (C5) together with

conditions on f0 and f∞, where

f0 = lim
u→0+, v→0+

f(u, v)

v
and f∞ = lim

u→∞, v→∞

f(u, v)

v
.

Theorem 3.6. Let (C1)–(C4) hold and 0 <
∫ 1−δ

1

2

α(s) sin πsds < ∞.

(a) If f0 = ∞, then (1.1) has a nontrivial positive solution y1 ∈ C[0, 1] such that 0 < ‖y1‖ < a.

(b) If f∞ = ∞, then (1.1) has a nontrivial positive solution y2 ∈ C[0, 1] such that y2(t) > γa(t−δ)

for t ∈ [δ, 1 − δ].

(c) If f0 = f∞ = ∞, then (1.1) has (at least) two nontrivial positive solutions y1, y2 ∈ C[0, 1]

such that

0 < ‖y1‖ < a and y2(t) > γa(t − δ), t ∈ [δ, 1 − δ].
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Proof. We shall apply Theorem 2.2 with the cone C defined in (3.11).

(a) Let

A =

[

γ

∫ 1−δ

1

2

2δ

π2m
α(s) sin πsds

]−1

. (3.25)

Since f0 = ∞, there exists 0 < r < a such that

f(u, v) ≥ Av, 0 < u ≤ r, 0 < v ≤ r. (3.26)

Let Ωr = {x ∈ B | ‖x‖ < r}. We shall show that ‖Sx‖ ≥ ‖x‖ for x ∈ C ∩ ∂Ωr. To proceed, let

x ∈ C ∩ ∂Ωr. So ‖x‖ = r. Applying (C4), Lemma 2.2, (3.26) and (3.25) successively, we get for

t ∈ [δ, 1 − δ],

|Sx(t)| ≥

∫ 1−δ

1

2

|gm(t, s)|F

(

s,

∫ s

0

x(τ)dτ, x(s)

)

ds

≥

∫ 1−δ

1

2

|gm(t, s)|α(s)f

(
∫ s

0

x(τ)dτ, x(s)

)

ds

≥

∫ 1−δ

1

2

|gm(t, s)|α(s)Ax(s)ds

≥

∫ 1−δ

1

2

2δ

π2m
α(s)Aγ‖x‖ sin πsds = ‖x‖.

It follows that ‖Sx‖ ≥ ‖x‖ for x ∈ C ∩ ∂Ωr.

Next, let Ωa = {x ∈ B | ‖x‖ < a}. For x ∈ C ∩ ∂Ωa, using (C2) and (C3) as in the proof of

Theorem 3.3, we obtain (3.15). Hence, ‖Sx‖ ≤ ‖x‖ for x ∈ C ∩ ∂Ωa.

It now follows from Theorem 2.2 that S has a fixed point x1 ∈ C ∩ (Ω̄a\Ωr) such that r ≤

‖x1‖ ≤ a. Using a similar argument as in the first part of the proof of Theorem 3.2, we see that

‖x1‖ 6= a. Hence, we obtain r ≤ ‖x1‖ < a. From (3.4), we have y1(t) =
∫ t

0
x1(s)ds is a positive

solution of (1.1) with 0 < ‖y1‖ ≤ ‖x1‖ < a.

(b) As seen in the proof of Case (a), the conditions (C2) and (C3) lead to ‖Sx‖ ≤ ‖x‖ for

x ∈ C ∩ ∂Ωa. Next, since f∞ = ∞, we may choose w > a such that

f(u, v) ≥ Av, u ≥ w, v ≥ w (3.27)

where A is defined in (3.25). Let

w0 = max

{

w

γ
,

w
(

1
2 − δ

)

γ

}

=
w

(

1
2 − δ

)

γ
.

and Ωw0
= {x ∈ B | ‖x‖ < w0}. Note that w0 > w > a. We shall show that ‖Sx‖ ≥ ‖x‖ for

x ∈ C ∩ ∂Ωw0
. Let x ∈ C ∩ ∂Ωw0

. So ‖x‖ = w0 and it is clear that

x(s) ≥ γ‖x‖ ≥ w, s ∈ [δ, 1 − δ] and

∫ 1

2

δ

x(τ)dτ ≥

(

1

2
− δ

)

γ‖x‖ = w.
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Using these together with (C4), Lemma 2.2, (3.27) and (3.25), we get for t ∈ [δ, 1 − δ],

|Sx(t)| ≥

∫ 1−δ

1

2

|gm(t, s)|α(s)f

(
∫ s

0

x(τ)dτ, x(s)

)

ds

≥

∫ 1−δ

1

2

|gm(t, s)|α(s)f

(

∫ 1

2

δ

x(τ)dτ, x(s)

)

ds

≥

∫ 1−δ

1

2

|gm(t, s)|α(s)Ax(s)ds

≥

∫ 1−δ

1

2

2δ

π2m
α(s)Aγ‖x‖ sin πsds = ‖x‖.

It follows that ‖Sx‖ ≥ ‖x‖ for x ∈ C ∩ ∂Ωw0
.

Applying Theorem 2.2, we conclude that S has a fixed point x2 ∈ C ∩ (Ω̄w0
\Ωa) such that

a ≤ ‖x2‖ ≤ w0. Once again as seen earlier ‖x2‖ 6= a, so a < ‖x2‖ ≤ w0. From (3.4) and (3.18),

we have y2(t) =
∫ t

0
x2(s)ds is a positive solution of (1.1) with ‖y2‖ ≤ ‖x2‖ ≤ w0 and y2(t) ≥

γ‖x2‖(t − δ) > γa(t − δ) for t ∈ [δ, 1 − δ].

(c) This follows from Cases (a) and (b). �

Theorem 3.7. Let (C1), (C2), (C4), (C5) hold, and 0 <
∫ 1

0 β(s) sin πsds < ∞.

(a) If f0 = 0, then (1.1) has a nontrivial positive solution y1 ∈ C[0, 1] such that 0 < ‖y1‖ ≤ b.

(b) If f∞ = 0, then (1.1) has a nontrivial positive solution y2 ∈ C[0, 1] such that y2(t) ≥ γb(t−δ)

for t ∈ [δ, 1 − δ].

(c) If f0 = f∞ = 0, then (1.1) has (at least) two nontrivial positive solutions y1, y2 ∈ C[0, 1] such

that

0 < ‖y1‖ ≤ b and y2(t) ≥ γb(t − δ), t ∈ [δ, 1 − δ].

Proof. Once again we shall apply Theorem 2.2 with the cone C defined in (3.11).

(a) Let

Ã =

[
∫ 1

0

1

π2m−1
β(s) sin πsds

]−1

. (3.28)

Since f0 = 0, there exists 0 < r < b such that

f(u, v) ≤ Ãv, 0 < u ≤ r, 0 < v ≤ r. (3.29)

Let Ωr = {x ∈ B | ‖x‖ < r}. We shall show that ‖Sx‖ ≤ ‖x‖ for x ∈ C ∩ ∂Ωr. To proceed, let

x ∈ C ∩ ∂Ωr. So ‖x‖ = r. Using (C2), Lemma 2.1, (3.29) and (3.28), we find for t ∈ [0, 1],

|Sx(t)| ≤

∫ 1

0

|gm(t, s)|β(s)f

(
∫ s

0

x(τ)dτ, x(s)

)

ds

≤

∫ 1

0

|gm(t, s)|β(s)Ãx(s)ds

≤

∫ 1

0

1

π2m−1
β(s)Ã‖x‖ sinπsds = ‖x‖.
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Hence, ‖Sx‖ ≤ ‖x‖ for x ∈ C ∩ ∂Ωr.

Next, let Ωb = {x ∈ B | ‖x‖ < b}. For x ∈ C ∩ ∂Ωb, using (C4) and (C5) as in the proof of

Theorem 3.3, we obtain (3.16). Thus, ‖Sx‖ ≥ ‖x‖ for x ∈ C ∩ ∂Ωb.

It now follows from Theorem 2.2 that S has a fixed point x1 ∈ C ∩ (Ω̄b\Ωr) such that r ≤

‖x1‖ ≤ b. In view of (3.4), the conclusion is clear.

(b) As seen in the proof of Case (a), the conditions (C4) and (C5) lead to ‖Sx‖ ≥ ‖x‖ for

x ∈ C ∩ ∂Ωb. Next, since f∞ = 0, we may choose w > b such that

f(u, v) ≤ Ãv, u ≥ w, v ≥ w (3.30)

where Ã is defined in (3.28). We shall consider two cases – when f is bounded and when f is

unbounded.

Case 1 Suppose that f is bounded. Then, there exists some Q > 0 such that

f(u, v) ≤ Q, u, v ∈ [0,∞). (3.31)

Let

w0 = max

{

b + 1,
Q

π2m−1

∫ 1

0

β(s) sin πsds

}

and Ωw0
= {x ∈ B | ‖x‖ < w0}. For x ∈ C ∩ ∂Ωw0

, using (C2), Lemma 2.1 and (3.31), we get for

t ∈ [0, 1],

|Sx(t)| ≤

∫ 1

0

|gm(t, s)|β(s)f

(
∫ s

0

x(τ)dτ, x(s)

)

ds

≤

∫ 1

0

1

π2m−1
β(s)Q sin πsds ≤ w0 = ‖x‖.

Hence, ‖Sx‖ ≤ ‖x‖ for x ∈ C ∩ ∂Ωw0
.

Case 2 Suppose that f is unbounded. Then, there exists w0 > w (> b) such that

f(u, v) ≤ f(w0, w0), 0 ≤ u ≤ w0, 0 ≤ v ≤ w0. (3.32)

Let x ∈ C ∩ ∂Ωw0
where Ωw0

= {x ∈ B | ‖x‖ < w0}. Then, applying (C2), Lemma 2.1, (3.32),

(3.30) and (3.28) successively gives for t ∈ [0, 1],

|Sx(t)| ≤

∫ 1

0

|gm(t, s)|β(s)f

(
∫ s

0

x(τ)dτ, x(s)

)

ds

≤

∫ 1

0

|gm(t, s)|β(s)f(w0, w0)ds

≤

∫ 1

0

1

π2m−1
β(s)Ãw0 sinπsds = w0 = ‖x‖.

Thus, ‖Sx‖ ≤ ‖x‖ for x ∈ C ∩ ∂Ωw0
.

Having established ‖Sx‖ ≤ ‖x‖ for x ∈ C ∩ ∂Ωw0
in the above two cases, we can now apply

Theorem 2.2 to conclude that S has a fixed point x2 ∈ C ∩ (Ω̄w0
\Ωb) such that b ≤ ‖x2‖ ≤ w0. In

view of (3.4) and (3.18), the proof is complete.
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(c) This is immediate from Cases (a) and (b). �

Our last result gives the existence of multiple positive solutions of (1.1).

Theorem 3.8. Assume (C1), (C2) and (C4) hold. Let (C3) be satisfied for a = aℓ, ℓ = 1, 2, · · · , k,

and (C5) be satisfied for b = bℓ, ℓ = 1, 2, · · · , n.

(a) If n = k + 1 and 0 < b1 < a1 < · · · < bk < ak < bk+1, then (1.1) has (at least) 2k nontrivial

positive solutions y1, · · · , y2k ∈ C[0, 1] such that for ℓ = 1, 2, · · · , k,

‖y2ℓ−1‖ < aℓ, ‖y2ℓ‖ ≤ bℓ+1; y2ℓ−1(t) ≥ γbℓ(t − δ), y2ℓ(t) > γaℓ(t − δ), t ∈ [δ, 1 − δ].

(b) If n = k and 0 < b1 < a1 < · · · < bk < ak, then (1.1) has (at least) 2k − 1 nontrivial positive

solutions y1, · · · , y2k−1 ∈ C[0, 1] such that for ℓ = 1, 2, · · · , k and j = 1, 2, · · · , k − 1,

‖y2ℓ−1‖ < aℓ, ‖y2j‖ ≤ bj+1; y2ℓ−1(t) ≥ γbℓ(t − δ), y2j(t) > γaj(t − δ), t ∈ [δ, 1 − δ].

(c) If k = n+1 and 0 < a1 < b1 < · · · < an < bn < an+1, then (1.1) has (at least) 2n+1 positive

solutions y0, · · · , y2n ∈ C[0, 1] such that for ℓ = 1, 2, · · · , n,

‖y0‖ < a1, ‖y2ℓ−1‖ ≤ bℓ, ‖y2ℓ‖ < aℓ+1;

y2ℓ−1(t) > γaℓ(t − δ), y2ℓ(t) ≥ γbℓ(t − δ), t ∈ [δ, 1 − δ].

Note that y1, · · · , y2n are nontrivial.

(d) If k = n and 0 < a1 < b1 < · · · < ak < bk, then (1.1) has (at least) 2k positive solutions

y0, · · · , y2k−1 ∈ C[0, 1] such that for ℓ = 1, 2, · · · , k and j = 1, 2, · · · , k − 1,

‖y0‖ < a1, ‖y2ℓ−1‖ ≤ bℓ, ‖y2j‖ < aj+1;

y2ℓ−1(t) > γaℓ(t − δ), y2j(t) ≥ γbj(t − δ), t ∈ [δ, 1 − δ].

Note that y1, · · · , y2k−1 are nontrivial.

Proof. In (a) and (b), we just apply (3.17) (in the proof of Theorem 3.3) repeatedly to get multiple

positive solutions of (3.3) as follows.

(a) If n = k + 1 and 0 < b1 < a1 < · · · < bk < ak < bk+1, then (3.3) has (at least) 2k nontrivial

positive solutions x1, · · · , x2k ∈ C[0, 1] such that

0 < b1 ≤ ‖x1‖ < a1 < ‖x2‖ ≤ b2 ≤ · · · < ak < ‖x2k‖ ≤ bk+1.

(b) If n = k and 0 < b1 < a1 < · · · < bk < ak, then (3.3) has (at least) 2k − 1 nontrivial positive

solutions x1, · · · , x2k−1 ∈ C[0, 1] such that

0 < b1 ≤ ‖x1‖ < a1 < ‖x2‖ ≤ b2 ≤ · · · ≤ bk ≤ ‖x2k−1‖ < ak.

In (c) and (d), from the proof of Theorem 3.2 we obtain the existence of a positive solution

x0 of (3.3) with 0 ≤ ‖x0‖ < a1, then we apply (3.17) repeatedly to get other positive solutions of

(3.3) as follows.
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(c) If k = n+1 and 0 < a1 < b1 < · · · < an < bn < an+1, then (3.3) has (at least) 2n+1 positive

solutions x0, · · · , x2n ∈ C[0, 1] such that

0 ≤ ‖x0‖ < a1 < ‖x1‖ ≤ b1 ≤ ‖x2‖ < a2 < · · · ≤ bn ≤ ‖x2n‖ < an+1.

(d) If k = n and 0 < a1 < b1 < · · · < ak < bk, then (3.3) has (at least) 2k positive solutions

x0, · · · , x2k−1 ∈ C[0, 1] such that

0 ≤ ‖x0‖ < a1 < ‖x1‖ ≤ b1 ≤ ‖x2‖ < a2 < · · · < ak < ‖x2k−1‖ ≤ bk.

The proof is complete by using (3.4) and (3.18). �

Remark 3.4. In view of Remark 3.2, the conditions (C4) and (C5) in Theorems 3.4, 3.5, 3.7

and 3.8 may be replaced by (C4)′ and (C5)′. Note, however, that (C4) in Theorem 3.6 cannot be

replaced by (C4)′.

We shall now illustrate the results obtained by some examples.

Example 3.1. Consider the complementary Lidstone boundary value problem

y(5) = F (t, y, y′) = 24

(

t5

10
+

t4

4
− t3 +

t2

4
+

t

2
+ 2

)−2 [
y + y′

2
+ 2

]2

, t ∈ [0, 1]

y(0) = y′(0) = y′′′(0) = y′(1) = y′′′(1) = 0.

(3.33)

Here, m = 2. Let δ = 1
4 . So γ = 1

2π
. Clearly, (C1) is satisfied. Further, (C2) and (C4) are

fulfilled if we choose

α(t) = β(t) = 24

(

t5

10
+

t4

4
− t3 +

t2

4
+

t

2
+ 2

)−2

and f(u, v) =

(

u + v

2
+ 2

)2

.

Next, in view of Remark 3.3 (see (3.19)), (C3) is satisfied provided

a > f(a, a)

∫ 1

0

1

π2m−1
β(s) sin πsds = (a + 2)2

∫ 1

0

1

π3
β(s) sin πsds

which is solved to get a ∈ [0.8467, 4.7247].

Hence, (C1)–(C4) are met and also f0 = f∞ = ∞. We conclude from Theorem 3.6 that (3.33)

has (at least) two nontrivial positive solutions y1, y2 ∈ C[0, 1] such that

0 < ‖y1‖ < a and y2(t) >
1

2π
a

(

t −
1

4

)

, t ∈

[

1

4
,
3

4

]

.

Since a ∈ [0.8467, 4.7247], it follows that

0 < ‖y1‖ < 0.8467 and y2(t) >
1

2π
(4.7247)

(

t −
1

4

)

, t ∈

[

1

4
,
3

4

]

. (3.34)

In fact, by direct computation a positive solution of (3.33) is given by y∗(t) = t5

5 − t4

2 + t2

2 with

‖y∗‖ = 0.2 and y∗(t) ≥
1

2π
(2.1426)

(

t −
1

4

)

, t ∈

[

1

4
,
3

4

]

. (3.35)
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(Note that the number 2.1426 in (3.35) is the largest c for the inequality y∗(t) ≥ 1
2π

c
(

t − 1
4

)

to

hold for t ∈
[

1
4 , 3

4

]

.) This y∗ validates the conclusion (3.34) about y1, this y∗ is not y2.

Example 3.2. Consider the complementary Lidstone boundary value problem

y(5) = F (t, y, y′) = 24

(

t5

10
+

t4

4
− t3 +

t2

4
+

t

2
+ 2

)−q [
y + y′

2
+ 2

]q

, t ∈ [0, 1]

y(0) = y′(0) = y′′′(0) = y′(1) = y′′′(1) = 0

(3.36)

where q > 0.

Once again let δ = 1
4 . So γ = 1

2π
. Clearly, (C1) is satisfied. Further, (C2) and (C4) are fulfilled

if we choose

α(t) = β(t) = 24

(

t5

10
+

t4

4
− t3 +

t2

4
+

t

2
+ 2

)−q

and f(u, v) =

(

u + v

2
+ 2

)q

.

Next, noting Remark 3.3 (see (3.19) and (3.20)), (C3) and (C5) are satisfied provided

a > f(a, a)

∫ 1

0

1

π2m−1
β(s) sin πsds = (a + 2)q

∫ 1

0

1

π3
β(s) sin πsds (3.37)

and

b ≤ f

(

γb

(

1

2
− δ

)

, γb

)
∫ 1−δ

1

2

2δ

π2m
α(s) sin πsds =

(

5b

16π
+ 2

)q ∫ 3

4

1

2

1

2π4
α(s) sin πsds. (3.38)

Solving (3.37) and (3.38) for different values of q gives the following ranges of a and b.

q (C3) is satisfied if (C5) is satisfied if

1
2 a ∈ [0.5320,∞) b ∈ (0, 0.0263]

1 a ∈ [0.5869,∞) b ∈ (0, 0.0251]

2 a ∈ [0.8467, 4.7247] b ∈ (0, 0.0227]∪ [17760.50,∞)

Hence, (C1)–(C5) are fulfilled.

Case 1 q = 1
2 . From the above table, we see that a > b. By Theorem 3.3(b), we conclude that

(3.36) has a nontrivial positive solution y∗ ∈ C[0, 1] such that ‖y∗‖ < a and y∗(t) ≥ γb(t − δ) for

t ∈ [δ, 1 − δ]. Noting the ranges of a and b, we further obtain

‖y∗‖ < 0.5320 and y∗(t) ≥
1

2π
(0.0263)

(

t −
1

4

)

, t ∈

[

1

4
,
3

4

]

. (3.39)

Case 2 q = 1. Once again we have a > b. Hence, using Theorem 3.3(b) and the ranges of a and b,

we see that (3.36) has a nontrivial positive solution y∗ ∈ C[0, 1] such that

‖y∗‖ < 0.5869 and y∗(t) ≥
1

2π
(0.0251)

(

t −
1

4

)

, t ∈

[

1

4
,
3

4

]

. (3.40)
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Case 3 q = 2. Applying Theorem 3.5 with b̃ ∈ (0, 0.0227] and b ∈ [17760.50,∞), we see that (3.36)

has (at least) two nontrivial positive solutions y1, y2 ∈ C[0, 1] such that ‖y1‖ < a, ‖y2‖ ≤ b and

y1(t) ≥ γb̃(t − δ), y2(t) > γa(t − δ), t ∈ [δ, 1 − δ]. In view of the ranges of b̃, a and b, we further

conclude that

‖y1‖ < 0.8467, ‖y2‖ ≤ 17760.50;

y1(t) ≥
1

2π
(0.0227)

(

t −
1

4

)

, y2(t) >
1

2π
(4.7247)

(

t −
1

4

)

, t ∈

[

1

4
,
3

4

]

.
(3.41)

Note that by direct computation a positive solution of (3.36) is given by y∗(t) = t5

5 − t4

2 + t2

2

such that (3.35) holds. Clearly, this y∗ validates the conclusions (3.39) and (3.40). This y∗ may

be y1 but certainly not y2 in (3.41).

Remark 3.5. The boundary value problem (3.33) is actually (3.36) when q = 2. We see that

the conclusion (3.41) (obtained from Theorem 3.5) gives more details than the conclusion (3.34)

(obtained from Theorem 3.6). Note that the condition (C5) is required in Theorem 3.5 but not

in Theorem 3.6, and it takes more effort to check (C5). The ‘more’ details in (3.41) come at the

expense of a comparatively more complex condition.

Remark 3.6. In Example 3.2, (C4)′ is also satisfied with α0 = α. Moreover, (C5)′ is fulfilled

provided (see (3.21))

b ≤ f (γb(1 − 2δ), γb)

∫ 1

1−δ

2δ

π2m
α0(s) sin πsds =

(

3b

8π
+ 2

)q ∫ 1

3

4

1

2π4
α0(s) sin πsds. (3.42)

Solving (3.42) for the same values of q as in Example 3.2 gives the following new ranges of b.

q (C3) is satisfied if (C5)′ is satisfied if

1
2 a ∈ [0.5320,∞) b ∈ (0, 0.0110]

1 a ∈ [0.5869,∞) b ∈ (0, 0.0105]

2 a ∈ [0.8467, 4.7247] b ∈ (0, 0.0097]∪ [28722.08,∞)

Hence, (C1)–(C3), (C4)′ and (C5)′ are fulfilled.

Case 1 q = 1
2 . We have a > b. Using Theorem 3.3(b) and the ranges of a and b, we conclude that

(3.36) has a nontrivial positive solution y∗ ∈ C[0, 1] such that

‖y∗‖ < 0.5320 and y∗(t) ≥
1

2π
(0.0110)

(

t −
1

4

)

, t ∈

[

1

4
,
3

4

]

. (3.39)′

Case 2 q = 1. Once again we have a > b. Applying Theorem 3.3(b) again, we see that (3.36) has

a nontrivial positive solution y∗ ∈ C[0, 1] such that

‖y∗‖ < 0.5869 and y∗(t) ≥
1

2π
(0.0105)

(

t −
1

4

)

, t ∈

[

1

4
,
3

4

]

. (3.40)′
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Case 3 q = 2. Using Theorem 3.5 with b̃ ∈ (0, 0.0097] and b ∈ [28722.08,∞), we see that (3.36)

has (at least) two nontrivial positive solutions y1, y2 ∈ C[0, 1] such that

‖y1‖ < 0.8467, ‖y2‖ ≤ 28722.08;

y1(t) ≥
1

2π
(0.0097)

(

t −
1

4

)

, y2(t) >
1

2π
(4.7247)

(

t −
1

4

)

, t ∈

[

1

4
,
3

4

]

.
(3.41)′

It would appear that (3.39)–(3.41) are ‘sharper’ than (3.39)′–(3.41)′. However, it should be

noted that all the theorems in this paper give existence of at least one or two or multiple solutions.

Hence, the solutions in (3.39)–(3.41) may be different from the solutions in (3.39)′–(3.41)′. So we

cannot really compare (3.39)–(3.41) and (3.39)′–(3.41)′. From these conclusions we do get more

information about the solutions of the boundary value problem (3.36).

Once again a known positive solution of (3.36), y∗(t) = t5

5 − t4

2 + t2

2 (with (3.35)), validates the

conclusions (3.39)′ and (3.40)′, and this y∗ may be y1 but certainly not y2 in (3.41)′.
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