A MEMORY TYPE BOUNDARY STABILIZATION OF A MIDLY DAMPED WAVE EQUATION

\author{

1) Mokhtar KIRANE and 2) Nasser-eddine TATAR
}
2) Université de Picarde Jules Verne, Faculté de Mathématiques et d'Informatique, LAMFA UPRES A 6119 33, rue Saint Leu, 80039 Amiens Cedex 1, France
e-mail: Mokhtar.Kirane@u-picardie.fr
3) Université de Annaba

Institut de Mathématiques,
B.P 12, 23000 Annaba, Algeria

Abstract

We consider the wave equation with a mild internal dissipation. It is proved that any small dissipation inside the domain is sufficient to uniformly stabilize the solution of this equation by means of a nonlinear feedback of memory type acting on a part of the boundary. This is established without any restriction on the space dimension and without geometrical conditions on the domain or its boundary.

Mathematics Subject Classification: 35L20, 35B40
Key words and Phrases: wave equations, internal dissipation, stabilization

1 INTRODUCTION

In this paper we are concerned with the uniform stability of the solution to the following mixed problem:

$$
\left\{\begin{array}{l}
u_{t t}(t, x)+\alpha u_{t}(t, x)=\triangle u(t, x)+g(t, x), \quad t>0, x \in \Omega, \tag{1.1}\\
\frac{\partial u}{\partial \nu}(t, x)+\int_{0}^{t} k(t-s, x) u_{s}(s, x) d s=h(t, x), \quad t>0, \quad x \in \Gamma_{0}, \\
u(t, x)=0, \quad t>0, x \in \Gamma_{1}, \\
u(0, x)=u_{0}(x), u_{t}(x)=u_{1}(x), \quad x \in \Omega,
\end{array}\right.
$$

where Ω is a bounded domain in R^{n} (the n-dimensional Euclidean space, $n \geq 1)$ with a boundary $\Gamma=\partial \Omega$ of class $C^{2} ;\left(\Gamma_{0}, \Gamma_{1}\right)$ is a partition of Γ such that $\operatorname{int}\left(\Gamma_{1}\right) \neq \emptyset ; \nu(x)$ denotes the outward normal vector to Γ at $x \in \Gamma ; \frac{\partial}{\partial \nu}$ is the normal derivative on $\Gamma ; \alpha$ is a positive number and g, h, u_{0}, u_{1} are given functions; \triangle is the Laplacian with respect to the spatial variable x and the subscript t denotes differentiation with respect to the variable t.

Problem (1.1) models, for instance, the evolution of sound in a compressible fluid with reflection of sound at the surface of the material. The boundary condition in (1.1) is general and covers a fairly large variety of different physical configurations. The physical meaning of this boundary condition as well as the following three particular cases

$$
\begin{gather*}
\frac{\partial p}{\partial \nu}(t, x)+\zeta(x) p_{t}(t, x)=0, \quad t>0, \quad x \in \Gamma, \tag{1.2}\\
\frac{\partial p}{\partial \nu}(t, x)+\beta(x) p_{t}(t, x)+\alpha(x) p(t, x)=0, \quad t>0, \quad x \in \Gamma, \tag{1.3}\\
m(x) \delta_{t t}(t, x)+d(x) \delta_{t}(t, x)+K(x) \delta(t, x)=-p(t, x), \\
\frac{\partial p}{\partial \nu}(t, x)+\delta_{t t}(t, x)=0, \quad t>0, \quad x \in \Gamma, \tag{1.4}
\end{gather*}
$$

is discussed in [4]. See also references therein for questions of existence, uniqueness, regularity and asymptotic behavior. In [1] the exponential decay of the energy of problem (1.1) with the boundary condition (1.2) in the case $\zeta(x) \equiv C$ a positive constant, $g \equiv h \equiv 0$ and $\alpha<0$ on the n-dimensional open unit cube was established. More delicate is the same problem with boundary condition (1.2), $g \equiv h \equiv 0$ without internal damping i.e $\alpha=0$. This is discussed in Komornik and Zuazua [2] and Zuazua [6].

Inspired by the method developed in [2], we shall prove exponential decay for solutions of problem (1.1) $(h \equiv 0)$ using an appropriately chosen energy functional. In fact, we shall uniformly stabilize the solution of the wave equation by a nonlinear feedback of memory type acting on a part of the boundary provided the equation contains a mild damping (however small it is) in the interior of the domain.

Let R_{+}denote the set of nonnegative real numbers and

$$
\begin{equation*}
H_{\Gamma_{1}}^{1}(\Omega)=\left\{u \in H^{1}(\Omega):\left.u\right|_{\Gamma_{1}}=0\right\} \tag{1.5}
\end{equation*}
$$

where $H^{1}(\Omega)$ is the usual Sobolev space.
By a real function $a(t, x) \in L_{l o c}^{1}\left(R_{+} ; L^{\infty}\left(\Gamma_{0}\right)\right)$ of positive type we mean a function satisfying

$$
\begin{equation*}
\int_{0}^{T} \int_{\Gamma_{0}} v(t) \int_{0}^{t} a(t-s) v(s) d s d \sigma d t \geq 0 \tag{1.6}
\end{equation*}
$$

for all $v \in C\left(R_{+} ; H_{\Gamma_{1}}^{1}(\Omega)\right)$ and for every $T>0$. See [3] for more information on functions of positive type.

In [4], Propst and Prüss have reformulated problem (1.1) (with $\alpha=0$) as an integral equation of variational type and then have used results and methods developed in the second author's monograph [5] to derive, among others the following theorem:

Theorem 1.1 Suppose that Γ_{0} and Γ_{1} are closed in Γ. Let $u_{0} \in H^{2}(\Omega) \cap$ $H_{\Gamma_{1}}^{1}(\Omega), u_{1} \in H_{\Gamma_{1}}^{1}(\Omega), g \in W_{l o c}^{1,1}\left(R_{+} ; L^{2}(\Omega)\right), h \in W_{l o c}^{2,1}\left(R_{+} ; L^{2}\left(\Gamma_{0}\right)\right)$ and $h \in$ $C\left(R_{+} ; H^{1 / 2}\left(\Gamma_{0}\right)\right), k \in B V_{\text {loc }}\left(R_{+} ; C^{1}\left(\Gamma_{0}\right)\right)$ of positive type, either $u_{1}=0$ on Γ_{0} or k is locally absolutely continuous in t, uniformly with respect to $x \in \Gamma_{0}$ and k^{\prime} (the derivative of k with respect to t) is in $B V_{\text {loc }}\left(R_{+} ; L^{\infty}\left(\Gamma_{0}\right)\right)$, then there is a unique solution $u \in C\left(R_{+} ; H^{2}(\Omega)\right) \cap C^{1}\left(R_{+} ; H_{\Gamma_{1}}^{1}(\Omega)\right) \cap C^{2}\left(R_{+} ; L^{2}(\Omega)\right)$ and $u(t, x)$ satisfies (1.1) for all $t \geq 0$ and almost all x.
$W^{m, p}$ and C^{m} are the usual Sobolev space and the space of continuously differentiable functions up to order m respectively. $B V$ is the space of functions of bounded variation.

2 Exponential decay

In this section we assume the existence of a regular strong solution to problem (1.1) in the sense of the preceding theorem with $h \equiv 0$.

Note that the Poincaré inequality holds in $H_{\Gamma_{1}}^{1}(\Omega)$ i.e

$$
\begin{equation*}
\exists \beta>0, \quad\|v\|_{2}^{2} \leq \beta\|\nabla v\|_{2}^{2}, \quad \text { for all } \quad v \in H_{\Gamma_{1}}^{1}(\Omega) . \tag{2.7}
\end{equation*}
$$

Combined with the trace inequality the preceding inequality (2.7) yields

$$
\begin{equation*}
\exists \gamma>0, \quad \int_{\Gamma_{0}} v^{2} d \sigma \leq \gamma \int_{\Omega}|\nabla v|^{2} d \sigma, \quad \text { for all } \quad v \in H_{\Gamma_{1}}^{1}(\Omega) . \tag{2.8}
\end{equation*}
$$

We suppose that our boundary material is characterized by the function

$$
\begin{equation*}
k(t, x)=p(x) e^{-t}, \quad t \geq 0, \quad x \in \Gamma_{0}, \tag{2.9}
\end{equation*}
$$

with $0 \leq p(x) \in C^{1}\left(\Gamma_{0}\right)$ and $\|p(x)\|_{\infty}=M$.
Let us introduce the energy functional

$$
\begin{equation*}
E(u ; t)=\frac{1}{2} \int_{\Omega}\left(\left|u_{t}\right|^{2}+|\nabla u|^{2}\right) d x+\frac{1}{2} \int_{\Gamma_{0}} p(x)\left(\int_{0}^{t} e^{-(t-s)} u_{s}(s) d s\right)^{2} d \sigma . \tag{2.10}
\end{equation*}
$$

Differentiating the energy functional (2.10) using (1.1) we obtain

$$
\begin{equation*}
\frac{d}{d t} E(u ; t)=-\alpha \int_{\Omega} u_{t}^{2} d x-\int_{\Gamma_{0}} p(x)\left(\int_{0}^{t} e^{-(t-s)} u_{s}(s) d s\right)^{2} d \sigma+\int_{\Omega} u_{t} g d x \tag{2.11}
\end{equation*}
$$

Remark 2.1 Note that if $g \equiv 0$, then it is readily seen that the energy is decreasing.

Next, for $\varepsilon>0$ we will define

$$
\begin{equation*}
E_{\varepsilon}(u ; t)=E(u ; t)+\varepsilon \varphi(u ; t), \quad t \geq 0, \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(u ; t)=\int_{\Omega} u_{t} u d x . \tag{2.13}
\end{equation*}
$$

For the sake of brevity, we will write $E_{\varepsilon}(t)$ for $E_{\varepsilon}(u ; t)$ and $\varphi(t)$ for $\varphi(u ; t)$. Using the Poincaré inequality (2.7) we have

$$
\begin{equation*}
|\varphi(t)| \leq \frac{1}{2} \int_{\Omega} u_{t}^{2} d x+\frac{1}{2} \beta \int_{\Omega}|\nabla u|^{2} d x \leq(1+\beta) E(t) . \tag{2.14}
\end{equation*}
$$

It then follows that

$$
\begin{equation*}
\left|E_{\varepsilon}(t)-E(t)\right| \leq \varepsilon(1+\beta) E(t), \quad t \geq 0 . \tag{2.15}
\end{equation*}
$$

We are now ready to prove our main theorem.
Theorem 2.2 Assume that h and k are as above. Let $u_{0} \in H^{2}(\Omega) \cap H_{\Gamma_{1}}^{1}(\Omega)$, $u_{1} \in H_{\Gamma_{1}}^{1}(\Omega)$ and $g \in W_{l o c}^{1,1}\left(R_{+} ; L^{2}(\Omega)\right)$. If

$$
\int_{0}^{t} e^{\varepsilon \omega s}\left(\int_{\Omega} g^{2} d x\right) d s
$$

grows no faster than a polynomial as $t \rightarrow \infty$ for some ε satisfying

$$
0<\varepsilon<\min \left\{\frac{2 \alpha}{5+4 \alpha^{2} \beta}, \frac{2}{1+2 M \gamma}, \frac{1}{1+\beta}\right\}
$$

where β and γ are the constants in (2.7) and (2.8) and $1 / 2<\omega<1$, then there exists a positive constant C such that

$$
E(t) \leq C e^{-\varepsilon \omega t}, \quad t \geq 0
$$

Proof: Differentiating the functional $E_{\varepsilon}(t)$ we find

$$
\begin{align*}
E_{\varepsilon}^{\prime}(t)= & E^{\prime}(t)+\varepsilon \varphi^{\prime}(t) \\
= & -\alpha \int_{\Omega} u_{t}^{2} d x-\int_{\Gamma_{0}} p(x)\left(\int_{0}^{t} e^{-(t-s)} u_{s}(s) d s\right)^{2} d \sigma \tag{2.16}\\
& +\int_{\Omega} u_{t} g d x+\varepsilon \int_{\Omega} u_{t t} u d x+\varepsilon \int_{\Omega} u_{t}^{2} d x .
\end{align*}
$$

Using problem (1.1) we get

$$
\begin{align*}
\int_{\Omega} u_{t t} u d x= & -\alpha \int_{\Omega} u_{t} u d x+\int_{\Omega}(\Delta u) u d x+\int_{\Omega} u g d x \\
= & -\alpha \int_{\Omega} u_{t} u d x-\int_{\Gamma_{0}} p(x) u \int_{0}^{t} e^{-(t-s)} u_{s}(s) d s d \sigma \tag{2.17}\\
& -\int_{\Omega}|\nabla u|^{2} d x+\int_{\Omega} u g d x .
\end{align*}
$$

Making use of the Hölder inequality and the algebraic inequality

$$
\begin{equation*}
a b \leq \lambda a^{2}+\frac{1}{4 \lambda} b^{2}, \quad a, b \in R, \lambda>0 \tag{2.18}
\end{equation*}
$$

we have the following estimates

$$
\begin{gather*}
\int_{\Omega} u_{t} u d x \leq c_{1} \int_{\Omega} u_{t}^{2} d x+\frac{1}{4 c_{1}} \int_{\Omega} u^{2} d x \tag{2.19}\\
\int_{\Omega} u_{t} g d x \leq c_{2} \int_{\Omega} u_{t}^{2} d x+\frac{1}{4 c_{2}} \int_{\Omega} g^{2} d x \tag{2.20}\\
\int_{\Omega} u g d x \leq c_{3} \int_{\Omega} u^{2} d x+\frac{1}{4 c_{3}} \int_{\Omega} g^{2} d x \tag{2.21}\\
\int_{\Gamma_{0}} p(x) u \int_{0}^{t} e^{-(t-s)} u_{s}(s) d s d \sigma \leq \\
c_{4} M \int_{\Gamma_{0}} u^{2} d x+\frac{1}{4 c_{4}} \int_{\Gamma_{0}} p(x)\left(\int_{0}^{t} e^{-(t-s)} u_{s}(s) d s\right)^{2} d \sigma \tag{2.22}
\end{gather*}
$$

Replacing the expression (2.17) into (2.16) and taking into account the estimates (2.19)-(2.22) we obtain

$$
\begin{align*}
E_{\varepsilon}^{\prime}(t) \leq & -2 \varepsilon E(t)-(\alpha-2 \varepsilon) \int_{\Omega} u_{t}^{2} d x+\left(\alpha c_{1} \varepsilon+c_{2}\right) \int_{\Omega} u_{t}^{2} d x \\
& +\beta\left(\frac{\alpha \varepsilon}{4 c_{1}}+c_{3} \varepsilon\right) \int_{\Omega}|\nabla u|^{2} d x+2 M c_{4} \gamma \varepsilon \int_{\Omega}|\nabla u|^{2} d x \\
& -\left(1-\varepsilon-\frac{\varepsilon}{4 c_{4}}\right) \int_{\Gamma_{0}} p(x)\left(\int_{0}^{t} e^{-(t-s)} u_{s}(s) d s\right)^{2} d \sigma \tag{2.23}\\
& +\left(\frac{\varepsilon}{4 c_{3}}+\frac{1}{4 c_{2}}\right) \int_{\Omega} g^{2} d x .
\end{align*}
$$

Note that we have used the inequalities (2.7) and (2.8) in (2.23). Let us choose $c_{1}=2 \alpha \beta, c_{2}=\varepsilon, c_{3}=1 / 8 \beta$ and $c_{4}=1 / 4 M \gamma$, then (2.23) yields

$$
\begin{align*}
E_{\varepsilon}^{\prime}(t) \leq & -\varepsilon E(t)-\left\{\alpha-\left(\frac{5}{2}+2 \alpha^{2} \beta\right) \varepsilon\right\} \int_{\Omega} u_{t}^{2} d x+\left(2 \beta \varepsilon+\frac{1}{4 \varepsilon}\right) \int_{\Omega} g^{2} d x \\
& -\left\{1-\left(M \gamma+\frac{1}{2}\right) \varepsilon\right\} \int_{\Gamma_{0}} p(x)^{2}\left(\int_{0}^{t} e^{-(t-s)} u_{t}(s) d s\right)^{2} d \sigma . \tag{2.24}
\end{align*}
$$

EJQTDE, 1999 No. 6, p. 5

Now we choose $\varepsilon>0$ so that $\alpha-\left(\frac{5}{2}+2 \alpha^{2} \beta\right) \varepsilon \geq 0$ and $1-\left(M \gamma+\frac{1}{2}\right) \varepsilon \geq 0$, i.e.,

$$
\begin{equation*}
\varepsilon \leq \min \left\{\frac{2 \alpha}{5+4 \alpha^{2} \beta}, \frac{2}{1+2 M \gamma}\right\} \tag{2.25}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
E_{\varepsilon}^{\prime}(t) \leq-\varepsilon E(t)+K(\varepsilon, \beta) \int_{\Omega} g^{2} d x \tag{2.26}
\end{equation*}
$$

It follows from (2.15) that

$$
\begin{equation*}
(1-(1+\beta) \varepsilon) E(t) \leq E_{\varepsilon}(t) \leq(1+(1+\beta) \varepsilon) E(t), \quad t \geq 0 \tag{2.27}
\end{equation*}
$$

If moreover $\varepsilon>0$ satisfies $\varepsilon<1 /(1+\beta)$, let a be any real number such that $0<a \leq 1-(1+\beta) \varepsilon$, then

$$
\begin{equation*}
a E(t) \leq E_{\varepsilon}(t) \leq(2-a) E(t), \quad t \geq 0 . \tag{2.28}
\end{equation*}
$$

Using (2.28) in (2.16) we deduce

$$
\begin{equation*}
E_{\varepsilon}^{\prime}(t) \leq-\frac{\varepsilon}{2-a} E_{\varepsilon}(t)+K(\varepsilon, \beta) \int_{\Omega} g^{2} d x \tag{2.29}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
E_{\varepsilon}(t) \leq\left\{E_{\varepsilon}(0)+K(\varepsilon, \beta) \int_{0}^{t} e^{\varepsilon \omega s}\left(\int_{\Omega} g^{2} d x\right) d s\right\} e^{-\varepsilon \omega t}, \quad t \geq 0 \tag{2.30}
\end{equation*}
$$

where $\omega=1 /(2-a)$. Once again in view of (2.28) we infer from (2.30) that

$$
\begin{equation*}
E(t) \leq\left\{\frac{2-a}{a} E(0)+\frac{K(\varepsilon, \beta)}{a} \int_{0}^{t} e^{\varepsilon \omega s}\left(\int_{\Omega} g^{2} d x\right) d s\right\} e^{-\varepsilon \omega t}, \quad t \geq 0 \tag{2.31}
\end{equation*}
$$

The proof is now complete.
Remark 2.2 It is clear from the proof that α may depend on the spatial variable x.

Remark 2.3 If the mild damping is in the boundary instead of the equation, i.e,

$$
\left\{\begin{array}{l}
u_{t t}(t, x)=\Delta u(t, x)+g(t, x), t>0, x \in \Omega \\
\frac{\partial u}{\partial \nu}(t, x)+\alpha u_{t}(t, x)+\int_{0}^{t} k(t-s, x) u_{t}(s, x) d s=h(t, x), t>0, x \in \Gamma_{0} \\
u(t, x)=0, t>0, x \in \Gamma_{1} \\
u(0, x)=u_{0}(x), u_{t}(x)=u_{1}(x), x \in \Omega
\end{array}\right.
$$

then considering the energy functional (2.10) we proceed as in [2] with $\alpha(x)=m(x) . \nu(x)$ where $m(x)=x-x^{0}, x^{0} \in R^{n}$, and

$$
\begin{aligned}
& \Gamma_{0}=\{x \in \Gamma: m(x) \cdot \nu(x)>0\}, \\
& \Gamma_{1}=\{x \in \Gamma: m(x) \cdot \nu(x) \leq 0\} .
\end{aligned}
$$

The appropriate perturbed energy functional is

$$
E_{\varepsilon}(u ; t)=E(u ; t)+\varepsilon \int_{\Omega} u_{t}\{(n-1) u+2(m(x) . \nabla u)\} d x, \quad t \geq 0 .
$$

In this case we do not impose to the function h (and g) to vanish identically, we are restricted however to the space dimension condition $n \leq 3$ when $c l\left(\Gamma_{0}\right) \cap c l\left(\Gamma_{1}\right) \neq \emptyset$ because of the limited validity of Grisvard's inequality (see [2] and [6]).

References

[1] A. B. Aliev and A. Kh. Khanmamedov, Energy estimates for solutions of the mixed problem for linear second-order hyperbolic equations, Math. Notes, Vol. 59, No 4 (1996), 345-149.
[2] V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures et appl., 69 (1990), 33-54.
[3] J. A. Nohel and D. F. Shea, Frequency domain methods for Volterra equations, Adv. Math., 22 (1976), 278-304.
[4] G. Propst and J. Prüss, On wave equations with boundary dissipation of memory type, J. Integral eq. Appl., Vol. 8, No 1 (1996), 99-123.
[5] J. Prüss, Evolutionary integral equations and applications, Birkhäuser Verlag, Basel, 1993.
[6] E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control Optim., Vol 28, No 2 (1990), 466477.

