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ABSTRACT: We consider the wave equation with a mild internal dissipa-
tion. It is proved that any small dissipation inside the domain is sufficient to
uniformly stabilize the solution of this equation by means of a nonlinear feed-
back of memory type acting on a part of the boundary. This is established
without any restriction on the space dimension and without geometrical con-
ditions on the domain or its boundary.
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1 INTRODUCTION

In this paper we are concerned with the uniform stability of the solution to
the following mixed problem:















utt(t, x) + αut(t, x) = 4u(t, x) + g(t, x), t > 0, x ∈ Ω,
∂u
∂ν

(t, x) +
∫ t

0
k(t − s, x)us(s, x)ds = h(t, x), t > 0, x ∈ Γ0,

u(t, x) = 0, t > 0, x ∈ Γ1,
u(0, x) = u0(x), ut(x) = u1(x), x ∈ Ω,

(1.1)
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where Ω is a bounded domain in Rn (the n-dimensional Euclidean space,
n ≥ 1) with a boundary Γ = ∂Ω of class C2; (Γ0, Γ1) is a partition of Γ such
that int(Γ1) 6= ∅; ν(x) denotes the outward normal vector to Γ at x ∈ Γ; ∂

∂ν

is the normal derivative on Γ; α is a positive number and g, h, u0, u1 are
given functions; 4 is the Laplacian with respect to the spatial variable x and
the subscript t denotes differentiation with respect to the variable t.

Problem (1.1) models, for instance, the evolution of sound in a compress-
ible fluid with reflection of sound at the surface of the material. The bound-
ary condition in (1.1) is general and covers a fairly large variety of different
physical configurations. The physical meaning of this boundary condition as
well as the following three particular cases

∂p

∂ν
(t, x) + ζ(x)pt(t, x) = 0, t > 0, x ∈ Γ, (1.2)

∂p

∂ν
(t, x) + β(x)pt(t, x) + α(x)p(t, x) = 0, t > 0, x ∈ Γ, (1.3)

m(x)δtt(t, x) + d(x)δt(t, x) + K(x)δ(t, x) = −p(t, x),
∂p
∂ν

(t, x) + δtt(t, x) = 0, t > 0, x ∈ Γ,
(1.4)

is discussed in [4]. See also references therein for questions of existence,
uniqueness, regularity and asymptotic behavior. In [1] the exponential decay
of the energy of problem (1.1) with the boundary condition (1.2) in the case
ζ(x) ≡ C a positive constant, g ≡ h ≡ 0 and α < 0 on the n-dimensional
open unit cube was established. More delicate is the same problem with
boundary condition (1.2), g ≡ h ≡ 0 without internal damping i.e α = 0.
This is discussed in Komornik and Zuazua [2] and Zuazua [6].

Inspired by the method developed in [2], we shall prove exponential decay
for solutions of problem (1.1) (h ≡ 0) using an appropriately chosen energy
functional. In fact, we shall uniformly stabilize the solution of the wave
equation by a nonlinear feedback of memory type acting on a part of the
boundary provided the equation contains a mild damping (however small it
is) in the interior of the domain.

Let R+ denote the set of nonnegative real numbers and

H1
Γ1

(Ω) = {u ∈ H1(Ω) : u |Γ1
= 0} (1.5)

where H1(Ω) is the usual Sobolev space.
By a real function a(t, x) ∈ L1

loc(R+; L∞(Γ0)) of positive type we mean a
function satisfying

∫ T

0

∫

Γ0

v(t)

∫ t

0

a(t − s)v(s)ds dσ dt ≥ 0 (1.6)
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for all v ∈ C(R+; H1
Γ1

(Ω)) and for every T > 0. See [3] for more information
on functions of positive type.

In [4], Propst and Prüss have reformulated problem (1.1) (with α = 0)
as an integral equation of variational type and then have used results and
methods developed in the second author’s monograph [5] to derive, among
others the following theorem:

Theorem 1.1 Suppose that Γ0 and Γ1 are closed in Γ. Let u0 ∈ H2(Ω) ∩
H1

Γ1
(Ω), u1 ∈ H1

Γ1
(Ω), g ∈ W 1,1

loc (R+; L2(Ω)), h ∈ W 2,1
loc (R+; L2(Γ0)) and h ∈

C(R+; H1/2(Γ0)), k ∈ BVloc(R+; C1(Γ0)) of positive type, either u1 = 0 on Γ0

or k is locally absolutely continuous in t, uniformly with respect to x ∈ Γ0 and
k′ (the derivative of k with respect to t) is in BVloc(R+; L∞(Γ0)), then there
is a unique solution u ∈ C(R+; H2(Ω)) ∩ C1(R+; H1

Γ1
(Ω)) ∩ C2(R+; L2(Ω))

and u(t, x) satisfies (1.1) for all t ≥ 0 and almost all x.

W m,p and Cm are the usual Sobolev space and the space of continuously
differentiable functions up to order m respectively. BV is the space of func-
tions of bounded variation.

2 Exponential decay

In this section we assume the existence of a regular strong solution to problem
(1.1) in the sense of the preceding theorem with h ≡ 0.

Note that the Poincaré inequality holds in H1
Γ1

(Ω) i.e

∃β > 0, ‖v‖2
2 ≤ β ‖∇v‖2

2 , for all v ∈ H1
Γ1

(Ω). (2.7)

Combined with the trace inequality the preceding inequality (2.7) yields

∃γ > 0,

∫

Γ0

v2dσ ≤ γ

∫

Ω

|∇v|2 dσ, for all v ∈ H1
Γ1

(Ω). (2.8)

We suppose that our boundary material is characterized by the function

k(t, x) = p(x)e−t, t ≥ 0, x ∈ Γ0, (2.9)

with 0 ≤ p(x) ∈ C1(Γ0) and ‖p(x)‖
∞

= M.
Let us introduce the energy functional

E(u; t) =
1

2

∫

Ω

(

|ut|
2 + |∇u|2

)

dx +
1

2

∫

Γ0

p(x)

(
∫ t

0

e−(t−s)us(s)ds

)2

dσ.

(2.10)
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Differentiating the energy functional (2.10) using (1.1) we obtain

d

dt
E(u; t) = −α

∫

Ω

u2
t dx −

∫

Γ0

p(x)

(
∫ t

0

e−(t−s)us(s)ds

)2

dσ +

∫

Ω

utgdx.

(2.11)

Remark 2.1 Note that if g ≡ 0, then it is readily seen that the energy is
decreasing.

Next, for ε > 0 we will define

Eε(u; t) = E(u; t) + εϕ(u; t), t ≥ 0, (2.12)

where

ϕ(u; t) =

∫

Ω

utudx. (2.13)

For the sake of brevity, we will write Eε(t) for Eε(u; t) and ϕ(t) for ϕ(u; t).
Using the Poincaré inequality (2.7) we have

|ϕ(t)| ≤
1

2

∫

Ω

u2
t dx +

1

2
β

∫

Ω

|∇u|2 dx ≤ (1 + β)E(t). (2.14)

It then follows that

|Eε(t) − E(t)| ≤ ε(1 + β)E(t), t ≥ 0. (2.15)

We are now ready to prove our main theorem.

Theorem 2.2 Assume that h and k are as above. Let u0 ∈ H2(Ω)∩H1
Γ1

(Ω),

u1 ∈ H1
Γ1

(Ω) and g ∈ W 1,1
loc (R+; L2(Ω)). If

∫ t

0

eεωs

(
∫

Ω

g2dx

)

ds

grows no faster than a polynomial as t → ∞ for some ε satisfying

0 < ε < min

{

2α

5 + 4α2β
,

2

1 + 2Mγ
,

1

1 + β

}

where β and γ are the constants in (2.7) and (2.8) and 1/2 < ω < 1, then
there exists a positive constant C such that

E(t) ≤ Ce−εωt, t ≥ 0.
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Proof: Differentiating the functional Eε(t) we find

E
′

ε(t) = E
′

(t) + εϕ
′

(t)

= −α
∫

Ω
u2

t dx −
∫

Γ0

p(x)
(

∫ t

0
e−(t−s)us(s)ds

)2

dσ

+
∫

Ω
utgdx + ε

∫

Ω
uttudx + ε

∫

Ω
u2

t dx.

(2.16)

Using problem (1.1) we get
∫

Ω
uttudx = −α

∫

Ω
utudx +

∫

Ω
(4u)udx +

∫

Ω
ugdx

= −α
∫

Ω
utudx −

∫

Γ0

p(x)u
∫ t

0
e−(t−s)us(s)dsdσ

−
∫

Ω
|∇u|2 dx +

∫

Ω
ugdx.

(2.17)

Making use of the Hölder inequality and the algebraic inequality

ab ≤ λa2 +
1

4λ
b2, a, b ∈ R, λ > 0, (2.18)

we have the following estimates
∫

Ω

utudx ≤ c1

∫

Ω

u2
t dx +

1

4c1

∫

Ω

u2dx (2.19)

∫

Ω

utgdx ≤ c2

∫

Ω

u2
t dx +

1

4c2

∫

Ω

g2dx (2.20)

∫

Ω

ugdx ≤ c3

∫

Ω

u2dx +
1

4c3

∫

Ω

g2dx (2.21)

∫

Γ0
p(x)u

∫ t

0
e−(t−s)us(s)dsdσ ≤

c4M
∫

Γ0
u2dx + 1

4c4

∫

Γ0
p(x)

(

∫ t

0
e−(t−s)us(s)ds

)2

dσ
(2.22)

Replacing the expression (2.17) into (2.16) and taking into account the esti-
mates (2.19)-(2.22) we obtain

E
′

ε(t) ≤ −2εE(t) − (α − 2ε)
∫

Ω
u2

t dx + (αc1ε + c2)
∫

Ω
u2

t dx

+β
(

αε
4c1

+ c3ε
)

∫

Ω
|∇u|2 dx + 2Mc4γε

∫

Ω
|∇u|2 dx

−
(

1 − ε − ε
4c4

)

∫

Γ0
p(x)

(

∫ t

0
e−(t−s)us(s)ds

)2

dσ

+
(

ε
4c3

+ 1
4c2

)

∫

Ω
g2dx.

(2.23)

Note that we have used the inequalities (2.7) and (2.8) in (2.23). Let us
choose c1 = 2αβ, c2 = ε, c3 = 1/8β and c4 = 1/4Mγ, then (2.23) yields

E
′

ε(t) ≤ −εE(t) −
{

α − (5
2

+ 2α2β)ε
} ∫

Ω
u2

t dx +
(

2βε + 1
4ε

) ∫

Ω
g2dx

−
{

1 − (Mγ + 1
2
)ε

} ∫

Γ0

p(x)2
(

∫ t

0
e−(t−s)ut(s)ds

)2

dσ.

(2.24)
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Now we choose ε > 0 so that α − ( 5
2

+ 2α2β)ε ≥ 0 and 1 − (Mγ + 1
2
)ε ≥ 0,

i.e.,

ε ≤ min

{

2α

5 + 4α2β
,

2

1 + 2Mγ

}

. (2.25)

Hence,

E
′

ε(t) ≤ −εE(t) + K(ε, β)

∫

Ω

g2dx. (2.26)

It follows from (2.15) that

(1 − (1 + β)ε)E(t) ≤ Eε(t) ≤ (1 + (1 + β)ε)E(t), t ≥ 0. (2.27)

If moreover ε > 0 satisfies ε < 1/(1 + β), let a be any real number such that
0 < a ≤ 1 − (1 + β)ε, then

aE(t) ≤ Eε(t) ≤ (2 − a)E(t), t ≥ 0. (2.28)

Using (2.28) in (2.16) we deduce

E
′

ε(t) ≤ −
ε

2 − a
Eε(t) + K(ε, β)

∫

Ω

g2dx. (2.29)

Consequently,

Eε(t) ≤

{

Eε(0) + K(ε, β)

∫ t

0

eεωs

(
∫

Ω

g2dx

)

ds

}

e−εωt, t ≥ 0, (2.30)

where ω = 1/(2 − a). Once again in view of (2.28) we infer from (2.30) that

E(t) ≤

{

2 − a

a
E(0) +

K(ε, β)

a

∫ t

0

eεωs

(
∫

Ω

g2dx

)

ds

}

e−εωt, t ≥ 0. (2.31)

The proof is now complete.

Remark 2.2 It is clear from the proof that α may depend on the spatial
variable x.

Remark 2.3 If the mild damping is in the boundary instead of the equation,
i.e,















utt(t, x) = 4u(t, x) + g(t, x), t > 0, x ∈ Ω,
∂u
∂ν

(t, x) + αut(t, x) +
∫ t

0
k(t − s, x)ut(s, x)ds = h(t, x), t > 0, x ∈ Γ0,

u(t, x) = 0, t > 0, x ∈ Γ1,
u(0, x) = u0(x), ut(x) = u1(x), x ∈ Ω,
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then considering the energy functional (2.10) we proceed as in [2] with
α(x) = m(x).ν(x) where m(x) = x − x0, x0 ∈ Rn, and

Γ0 = {x ∈ Γ : m(x).ν(x) > 0},
Γ1 = {x ∈ Γ : m(x).ν(x) ≤ 0}.

The appropriate perturbed energy functional is

Eε(u; t) = E(u; t) + ε

∫

Ω

ut {(n − 1)u + 2(m(x).∇u)} dx, t ≥ 0.

In this case we do not impose to the function h (and g) to vanish identi-
cally, we are restricted however to the space dimension condition n ≤ 3 when
cl(Γ0)∩cl(Γ1) 6= ∅ because of the limited validity of Grisvard’s inequality (see
[2] and [6]).
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