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1 Introduction

Recently there is increasing interest in the existence of positive solutions of boundary value prob-

lems (BVP) for differential equations on the half lines, see the references [1–9, 12–38]. It is observed

that fixed point theorems have been useful in establishing the existence of positive solutions. To

apply a fixed point theorem, one needs a Banach space, a cone, and a completely continuous op-

erator. A brief survey of the Banach spaces, cones and operators used in the literature is given

below.

The Banach spaces used in the literature include

• C[0,∞) = {x : [0,∞) → IR : x is continuous on [0,∞) and limt→∞ x(t) exists} with the norm

‖x‖0 = supt∈[0,∞) |x(t)| (see [6, 13]);

• C1[0,∞) = {x : [0,∞) → IR : x, x′ are continuous on [0,∞) and limt→∞ x(t), limt→∞ x′(t)

exist} with the norm ‖x‖1 = max
{

supt∈[0,∞) |x(t)|, supt∈[0,∞) |x′(t)|
}

(see [12, 15]);

• C1[0,∞) =
{

x : [0,∞) → IR : x, x′ are continuous on [0,∞) and limt→∞
x(t)
1+t , limt→∞ x′(t)

exist
}

with the norm ‖x‖ = max
{

supt∈[0,∞)
|x(t)|
1+t , supt∈[0,∞) |x′(t)|

}

(see [14, 16, 36]);

• weighted Banach spaces (with weights u, v : [0,∞) → (0,∞)) such as

– Cu[0,∞) =
{

x : [0,∞) → IR : x is continuous on [0,∞) and limt→∞
x(t)

1+u(t) exists
}

with

the norm ‖x‖u = supt∈[0,∞)
|x(t)|

1+u(t) (see [17, 18, 19, 20, 26, 31, 32]); and
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– C1
u,v[0,∞) =

{

x : [0,∞) → IR : x, x′ are continuous on [0,∞) and limt→∞
x(t)

1+u(t) ,

limt→∞ v(t)x′(t) exist
}

with the norm ‖x‖u,v = max
{

supt∈[0,∞)
|x(t)|

1+u(t) , supt∈[0,∞)

|v(t)x′(t)|
}

(see [33, 34, 35]).

For the construction of a suitable cone, in the literature two methods have been used, one is

by using the Green’s function of the corresponding boundary value problem [9, 13, 29, 30], while

the other is by using the concavity property of the solutions [12, 14, 17, 18, 20].

To define an appropriate operator, in [9, 13, 29] the nonlinear operator is defined by using

the Green’s function, whereas in [12, 14, 17, 18, 20, 30] the boundary condition x′(∞) = 0 is

instrumental in transforming the boundary value problem into an integral equation which leads to

the definition of the nonlinear operator.

On the fixed point theorems used in the literature, in [21, 32] the method of upper and lower

solutions or Tychonoff fixed point theorem has been used to establish the existence of bounded

solutions of boundary value problems for second order differential equations on the half line. Yan

[31] has applied the Leray-Schauder theorem and the fixed point index theory to establish the

existence of multiple nonnegative unbounded solutions of the boundary value problem



























1

p(t)
[p(t)x′(t)]′ + f(t, x(t)) = 0, t ∈ (0,∞),

x(0) = a ≥ 0,

lim
t→∞

p(t)x′(t) = b ≥ 0.

Motivated by the above mentioned papers, in this paper we consider the following non-homogeneous

boundary value problem for the differential equation on the half line whose boundary conditions

are of integral form


























[p(t)φ(x′(t))]′ + f(t, x(t)) = 0, t ∈ (0,∞),

x(0) =

∫ ∞

0

g(s)x(s)ds+ a,

lim
t→∞

φ−1(p(t))x′(t) = b.

(1.1)

Note that here we do not have the boundary condition x′(∞) = 0 as in [12, 14, 17, 18, 20, 30].

In (1.1) it is assumed that a, b ≥ 0, g : [0,∞) → [0,∞) is continuous with
∫∞
0 g(s)ds < 1,

f : (0,∞) × [0,∞) → [0,∞), p : [0,∞) → (0,∞) is continuous (may be singular at t = 0), and

φ(x) = |x|q−2x with q > 1 is called one dimensional Laplacian. The inverse function of φ is

φ−1(x) = |x|q′−2x where 1/q + 1/q′ = 1. We say x : [0,∞) → (0,∞) is a positive solution of (1.1)

if x ∈ C1[0,∞), [pφ(x′)]′ ∈ L1(0,∞) and x satisfies (1.1). We shall establish existence results

for at least three bounded positive solutions of (1.1) by applying the Leggett-Williams fixed point

theorem. In our derivation, the Banach space involved is motivated by [31], but the cone needed

has to be very technically constructed – this is so since the boundary value problem involves the

nonlinear operator [pφ(x′)]′ and the possible solutions are not concave if p 6≡ 1, hence the cone

cannot be constructed by using the concavity of x or even the Green’s function.
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We also consider the following boundary value problem


























[Φ(x′(t))]′ + f(t, x(t)) = 0, t ∈ (0,∞),

x(0) =

∫ ∞

0

g(s)x(s)ds,

lim
t→∞

x′(t) = 0

(1.2)

where g : [0,∞) → [0,∞) is continuous with
∫∞
0
g(s)ds < 1, f : (0,∞) × IR → [0,∞), and Φ :

IR → IR is a pseudo sup-multiplicative function (see Definition 2.2). Note that the one dimensional

Laplacian φ is a special case of a pseudo sup-multiplicative function. We say x : [0,∞) → (0,∞)

is a positive solution of (1.2) if x ∈ C1[0,∞), [Φ(x′)]′ satisfies
∫∞
0 Φ−1

(∫∞
s [Φ(x′)]′(u)du

)

ds < ∞
and x satisfies (1.2). We shall establish sufficient conditions for the existence of bounded positive

solutions of (1.2) by using Schauder fixed point theorem.

Our results improve and complement the work of [5–9, 12–14, 17–20, 22–33, 37, 38]. The paper

is organized as follows. Section 2 contains some background definitions and the Leggett-Williams

fixed point theorem. The results for (1.1) and (1.2) are given in sections 3 and 4 respectively.

Finally, in section 5 we present some examples to illustrate the results obtained.

2 Preliminaries

In this section, we present some background definitions and results.

Definition 2.1. The function f : (0,∞) × IR → IR is called a Carathéodory function if

(i) for each u ∈ IR, t 7→ f(t, u) is measurable on (0,∞);

(ii) for a.e. t ∈ (0,∞), u 7→ f(t, u) is continuous on IR;

(iii) for each r > 0, there exists Br ∈ L1(0,∞) satisfying Br(t) > 0, t ∈ (0,∞) and
∫∞
0 Br(s)ds <

∞ such that |u| ≤ r implies

|f(t, u)| ≤ Br(t), a.e. t ∈ (0,∞).

Definition 2.2. An odd homeomorphism Φ of the real line IR onto itself is called a pseudo sup-

multiplicative function if there exists a homeomorphism ω of [0,∞) onto itself which supports Φ in

the sense that for all v1, v2 ≥ 0 we have

Φ(v1v2) ≥ ω(v1)Φ(v2).

ω is called the supporting function of Φ. (Note that in [10] pseudo sup-multiplicative function is

also known as sup-multiplicative-like function.)

Remark 2.1. Note that any sup-multiplicative function is a pseudo sup-multiplicative function.

Also any function of the form

Φ(u) :=

k
∑

j=0

cj |u|ju, u ∈ IR
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is pseudo sup-multiplicative, provided that cj ≥ 0. Here a supporting function is defined by

ω(u) := min{uk+1, u}, u ≥ 0.

Remark 2.2. It is clear that a pseudo sup-multiplicative function Φ and any corresponding

supporting function ω are increasing functions vanishing at zero, moreover their inverses Φ−1 and

ν respectively are increasing and for all v1, v2 ≥ 0 we have

Φ−1(v1v2) ≤ ν(v1)Φ
−1(v2).

Let X be a real Banach space. The nonempty convex closed subset P of X is called a cone in

X if (i) ax ∈ P and x + y ∈ P for all x, y ∈ P and a ≥ 0; (ii) x ∈ X and −x ∈ X imply x = 0.

A map ψ : P → [0,∞) is a nonnegative continuous concave (convex) functional map provided ψ is

nonnegative, continuous and satisfies

ψ(tx+ (1 − t)y) ≥ (≤) tψ(x) + (1 − t)ψ(y) for all x, y ∈ P, t ∈ [0, 1].

An operator T : X → X is completely continuous if it is continuous and maps bounded sets into

pre-compact sets.

Let ψ be a nonnegative functional on a cone P of a real Banach space X . We define the sets

Pr = {y ∈ P : ‖y‖ < r},
P (ψ; a, b) = {y ∈ P : a ≤ ψ(y), ‖y‖ < b}.

Theorem 2.1. [11] (Leggett-Williams Fixed-Point Theorem) Let A < B < D < C be positive

numbers, T : PC → PC be a completely continuous operator, and ψ be a nonnegative continuous

concave functional on P such that ψ(y) ≤ ‖y‖ for all y ∈ PC . Suppose that

(E1) {y ∈ P (ψ;B,D) | ψ(y) > B} 6= ∅ and ψ(Ty) > B for y ∈ P (ψ;B,D);

(E2) ‖Ty‖ < A for y ∈ P with ‖y‖ ≤ A;

(E3) ψ(Ty) > B for y ∈ P (ψ;B,C) with ‖Ty‖ > D.

Then T has at least three fixed points y1, y2 and y3 such that ‖y1‖ < A, ψ(y2) > B and ‖y3‖ > A

with ψ(y3) < B.

3 Bounded Positive Solutions of BVP (1.1)

In this section we shall establish the existence of at least three bounded positive solutions of BVP

(1.1). For easy referencing, we list the conditions needed as follows:

(A1) p : [0,∞) → (0,∞) is continuous and satisfies

∫ ∞

0

φ−1

(

1

p(s)

)

ds <∞,

∫ ∞

0

g(s)

∫ s

0

φ−1

(

1

p(u)

)

duds <∞;
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(A2) f : (0,∞) × [0,∞) → [0,∞) is a Carathéodory function with f(t, 0) 6≡ 0 on each subinterval

of [0,∞).

We denote

τ = τ(t) =

∫ t

0

φ−1

(

1

p(s)

)

ds.

Choose k (> 1) large enough such that
∫ 1

k

0

φ−1

(

1

p(s)

)

ds = τ

(

1

k

)

< 1.

Let

µ =

∫ 1

k

0

φ−1

(

1

p(s)

)

ds
1

1 +
∫∞
0
φ−1

(

1
p(s)

)

ds
.

It is clear that

0 < µ <

∫ 1

k

0

φ−1

(

1

p(s)

)

ds
1

1 +
∫ 1/k

0 φ−1
(

1
p(s)

)

ds
< 1.

Let the Banach space

X =
{

x ∈ C0[0,∞) : there exists the limt lim
t→∞

x(t)
}

(3.1)

be equipped with the norm

‖x‖ = sup
t∈[0,∞)

|x(t)| for x ∈ X. (3.2)

Define the cone P in X by

P =

{

x ∈ X : x(t) ≥ 0 on [0,∞), x(t) is non-decresing on [0,∞), min
t∈[1/k,k]

x(t) ≥ µ sup
t∈[0,∞)

x(t)

}

.

(3.3)

Define the functional ψ : P → IR by

ψ(y) = min
t∈[1/k,k]

y(t), y ∈ P. (3.4)

It is easy to see that ψ is a nonnegative continuous concave functional on P such that ψ(y) ≤ ‖y‖
for all y ∈ P .

Now, to study (1.1), for x ∈ X we consider the following boundary value problem


























[p(t)φ(y′(t))]′ + f(t, x(t)) = 0, t ∈ (0,∞),

y(0) =

∫ ∞

0

g(s)y(s)ds+ a,

lim
t→∞

φ−1(p(t))y′(t) = b.

(3.5)

Lemma 3.1. Suppose that (A1) and (A2) hold and y is a solution of (3.5) for x ∈ X . Then, y

can be expressed as

y(t) =
1

1 −
∫∞
0
g(s)ds

∫ ∞

0

g(t)

∫ t

0

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, x(u))du

)

dsdt

+

∫ t

0

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, x(u))du

)

ds+
a

1 −
∫∞
0 g(s)ds

.
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Proof. Since x ∈ X is a solution of BVP (3.5) and f is a Carathéodory function, we get

∫ ∞

0

f(s, x(s))ds <∞.

Hence

y′(t) = φ−1

(

1

p(t)
φ(b) +

1

p(t)

∫ ∞

t

f(u, x(u))du

)

, t ≥ 0.

Integrating gives

y(t) = y(0) +

∫ t

0

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, x(u))du

)

ds, t ≥ 0. (3.6)

The boundary conditions in (3.5) imply that

y(0) = y(0)

∫ ∞

0

g(s)ds+

∫ ∞

0

g(t)

∫ t

0

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, x(u))du

)

dsdt+ a.

It follows that

y(0) =

∫∞
0
g(t)

∫ t

0
φ−1

(

1
p(s)φ(b) + 1

p(s)

∫∞
s
f(u, x(u))du

)

dsdt+ a

1 −
∫∞
0 g(s)ds

. (3.7)

Substituting (3.7) into (3.6) completes the proof. �

Lemma 3.2. Suppose that (A1) and (A2) hold and y is a solution of (3.5) for x ∈ X . Then

y′(t) ≥ 0 for all t ∈ [0,∞), y(t) > 0 for all t ∈ (0,∞) and y(t) is concave with respect to τ on

[0,∞), where

τ =

∫ t

0

φ−1

(

1

p(s)

)

ds.

Proof. First, we shall prove that y′ is positive on [0,∞). Since y is a solution of (3.5), (A2)

implies that [p(t)φ(y′(t))]′ ≤ 0 for all t ∈ [0,∞). Then

φ(b) − p(t)φ(y′(t)) ≤ 0, t ∈ [0,∞).

Since b ≥ 0, we have p(t)φ(y′(t)) ≥ 0. Thus y′(t) ≥ 0 for all t ∈ [0,∞).

Next, we shall prove that y(t) ≥ 0 for t ∈ [0,∞). Since y′(t) ≥ 0 for all t ∈ [0,∞), it suffices to

show that y(0) ≥ 0. The boundary conditions in (3.5) imply that

y(0) =

∫ ∞

0

g(s)y(s)ds+ a ≥ y(0)

∫ ∞

0

g(s)ds.

Since
∫∞
0 g(s)ds < 1, we get y(0) ≥ 0. Hence, y(t) ≥ 0 for t ∈ [0,∞). It follows from (A2) that

y(t) > 0 for all t ∈ (0,∞).

Finally, we shall prove that y is concave with respect to τ on [0,∞). From (A1) we have
∫∞
0 φ−1

(

1
p(s)

)

ds <∞. So τ ∈ C
(

[0,∞),
[

0,
∫∞
0 φ−1

(

1
p(s)

)

ds
))

and

dτ

dt
= φ−1

(

1

p(t)

)

> 0.

EJQTDE, 2012 No. 23, p. 6



Thus
dy

dt
=
dy

dτ

dτ

dt
=
dy

dτ
φ−1

(

1

p(t)

)

. (3.8)

It follows that
dy

dτ
=
dy

dt

1

φ−1
(

1
p(t)

) ≥ 0.

Moreover, since

p(t)φ

(

dy

dt

)

= φ

(

dy

dτ

)

,

we get
[

p(t)φ

(

dy

dt

)]′
= φ′

(

dy

dτ

)

d2y

dτ2

dτ

dt
.

So

d2y

dτ2
=

[

p(t)φ
(

dy
dt

)]′

φ′
(

dy
dτ

)

dτ
dt

.

Since [p(t)φ(y′(t))]′ ≤ 0, φ′(y) > 0 (y > 0) and dτ
dt > 0, we obtain d2y

dτ2 ≤ 0. Hence y(t) is concave

with respect to τ on [0,∞). The proof is complete. �

Define the nonlinear operator T : P → X by

(Tx)(t) =
1

1 −
∫∞
0
g(s)ds

∫ ∞

0

g(t)

∫ t

0

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, x(u))du

)

dsdt

+

∫ t

0

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, x(u))du

)

ds+
a

1 −
∫∞
0
g(s)ds

.

(3.9)

Lemma 3.3. Suppose that (A1) and (A2) hold. We have the following:

(i) For x ∈ P , Tx satisfies


























[p(t)φ((Tx)′(t))]′ + f (t, x(t)) = 0, t ∈ (0,∞),

(Tx)(0) =

∫ ∞

0

g(s)(Tx)(s)ds+ a,

lim
t→∞

φ−1(p(t))(Tx)′(t) = b;

(3.10)

(ii) Tx ∈ P for each x ∈ P ;

(iii) x is a bounded positive solution of BVP (1.1) if and only if x is a solution of the operator

equation x = Tx in P .

Proof. The proofs of (i) and (iii) follow from the definition of T and are omitted.

To show (ii), we note from (i) that Tx is a solution of (3.5). Then, Lemma 3.2 implies that

(Tx)(t) ≥ 0 and (Tx)′(t) ≥ 0 for all t ∈ [0,∞), and (Tx)(t) is concave with respect to τ =
∫ t

0 φ
−1
(

1
p(s)

)

ds. To complete the proof of TP ⊆ P , it suffices to prove that

min
t∈[1/k,k]

(Tx)(t) ≥ µ sup
t∈[0,∞)

(Tx)(t). (3.11)
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Since x ∈ X and f is a Carathéodory function, there exist r > 0 and Br ∈ L1(0,∞) such that

‖x‖ < r and 0 ≤ f(t, x(t)) ≤ Br(t) for t ∈ [0,∞). Then,

(Tx)(t) =
1

1 −
∫∞
0
g(s)ds

∫ ∞

0

g(t)

∫ t

0

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, x(u))du

)

dsdt

+

∫ t

0

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, x(u))du

)

ds+
a

1 −
∫∞
0
g(s)ds

≤ 1

1 −
∫∞
0
g(s)ds

∫ ∞

0

g(t)

∫ t

0

φ−1

(

1

p(s)

)

dsdt φ−1

(

φ(b) +

∫ ∞

0

Br(u)du

)

+

∫ ∞

0

φ−1

(

1

p(s)

)

ds φ−1

(

φ(b) +

∫ ∞

0

Br(u)du

)

+
a

1 −
∫∞
0
g(s)ds

< ∞.

So supt∈[0,∞)(Tx)(t) exists. We shall consider two cases.

First, suppose (Tx)(t) achieves its maximum at σ ∈ [0,∞). Noting that

τ(t) =

∫ t

0

φ−1

(

1

p(s)

)

ds,

and the inverse function of τ = τ(t) is denoted by t = t(τ), one sees for t ∈ [1/k, k] that

(Tx)(t) ≥ (Tx)(1/k)

= (Tx) (t(τ(1/k)))

= (Tx)

(

t

(

1 − τ(1/k) + τ(σ)

1 + τ(σ)

τ(1/k)

1 − τ(1/k) + τ(σ)
+

τ(1/k)

1 + τ(σ)
τ(σ)

))

.

Noting that τ(1/k) < 1 and (Tx)(t) is concave with respect to τ , we find for t ∈ [1/k, k],

(Tx)(t) ≥ 1 − τ(1/k) + τ(σ)

1 + τ(σ)
(Tx)

(

t

(

τ(1/k)

1 − τ(1/k) + τ(σ)

))

+
τ(1/k)

1 + τ(σ)
(Tx)

(

t (τ(σ))
)

≥ τ(1/k)

1 + τ(σ)
(Tx)

(

t (τ(σ))
)

=

∫ 1

k

0

φ−1

(

1

p(s)

)

ds
1

1 + τ(σ)
(Tx)(σ)

≥
∫ 1

k

0

φ−1

(

1

p(s)

)

ds
1

1 +
∫∞
0
φ−1

(

1
p(s)

)

ds
sup

t∈[0,∞)

(Tx)(t)

= µ sup
t∈[0,∞)

(Tx)(t).
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Next, suppose (Tx)(t) achieves its maximum at ∞. Choose σ′ ∈ [0,∞). Similar to the above

discussion, we get for t ∈ [1/k, k] that

(Tx)(t) ≥ µ(Tx)(σ′).

Let σ′ → ∞, we get for t ∈ [1/k, k] that

(Tx)(t) ≥ µ sup
t∈[0,∞)

(Tx)(t).

We have shown that (3.11) holds in both cases. Hence Tx ∈ P . �

Lemma 3.4. T : P → P is completely continuous.

Proof. It is easy to verify that T : P → P is well defined. We shall prove that T is continuous

and maps bounded sets into pre-compact sets.

Let xn → x0 as n→ ∞ in P , then there exists r0 such that supn≥0 ‖xn‖ < r0. Set

Br0(t) = sup
|u|∈[0,r0]

f(t, u).

Then, we have
∫ ∞

0

|f(s, xn(s)) − f(s, x0(s))|ds ≤ 2

∫ ∞

0

Br0(s)ds.

Therefore by the Lebesgue dominated convergence theorem, we obtain

∫ ∞

t

f(u, xn(u))du→
∫ ∞

t

f(u, x0(u))du uniformly as n→ ∞.

For any ǫ > 0, since, for all n,

φ(b) +

∫ ∞

s

f(u, xn(u))du ≤ φ(b) +

∫ ∞

0

Br0(u)du ≡ r,

and φ−1 is uniformly continuous on [0, r], we see that there exists δ > 0 such that x, y ∈ [0, r] and

|x− y| < δ implies
∣

∣φ−1 (x) − φ−1 (y)
∣

∣ < ǫ.

So for this δ > 0, there exists N > 0 such that

∣

∣

∣

∣

b +

∫ ∞

t

f(u, xn(u))du−
(

b+

∫ ∞

t

f(u, x0(u))du

)∣

∣

∣

∣

< δ, n > N, t ∈ [0,∞).

Then for n > N , we have

∣

∣

∣

∣

φ−1

(

b+

∫ ∞

t

f(u, xn(u))du

)

− φ−1

(

b+

∫ ∞

t

f(u, x0(u))du

)∣

∣

∣

∣

< ǫ.
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Thus, we get for t ∈ [0,∞) and n > N that

0 ≤ |[(Txn) − (Tx0)](t)|

=

∣

∣

∣

∣

∣

1

1 −
∫∞
0 g(s)ds

∫ ∞

0

g(t)

∫ t

0

[

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, xn(u))du

)

− φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, x0(u))du

)]

dsdt

+

∫ t

0

[

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, xn(u))du

)

− φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, x0(u))du

)]

ds

∣

∣

∣

∣

≤ 1

1 −
∫∞
0 g(s)ds

∫ ∞

0

g(t)

∫ t

0

∣

∣

∣

∣

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, xn(u))du

)

− φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, x0(u))du

)∣

∣

∣

∣

dsdt

+

∫ t

0

∣

∣

∣

∣

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, xn(u))du

)

− φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, x0(u))du

)∣

∣

∣

∣

ds

≤ 1

1 −
∫∞
0 g(s)ds

∫ ∞

0

g(t)

∫ t

0

φ−1

(

1

p(s)

)

ǫdsdt +

∫ t

0

φ−1

(

1

p(s)

)

ǫds

≤
[

1

1 −
∫∞
0 g(s)ds

∫ ∞

0

g(t)

∫ t

0

φ−1

(

1

p(s)

)

dsdt+

∫ ∞

0

φ−1

(

1

p(s)

)

ds

]

ǫ.

It follows that

‖(Txn) − (Tx0)‖ → 0

uniformly as n→ ∞. So, T is continuous.

Let Ω be any bounded subset of P . First, we shall prove that TΩ is bounded. Since Ω is

bounded, there exists r > 0 such that ‖x‖ ≤ r for all x ∈ Ω. Denote

Br(t) = sup
|u|∈[0,r]

f(t, u).
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Obviously, we have

0 ≤ (Tx)(t)

=
1

1 −
∫∞
0 g(s)ds

∫ ∞

0

g(t)

∫ t

0

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, x(u))du

)

dsdt

+

∫ t

0

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, x(u))du

)

ds+
a

1 −
∫∞
0 g(s)ds

≤ 1

1 −
∫∞
0
g(s)ds

∫ ∞

0

g(t)

∫ t

0

φ−1

(

1

p(s)

)

dsdt φ−1

(

φ(b) +

∫ ∞

0

Br(u)du

)

+

∫ t

0

φ−1

(

1

p(s)

)

ds φ−1

(

φ(b) +

∫ ∞

0

Br(u)du

)

+
a

1 −
∫∞
0
g(s)ds

≤ 1

1 −
∫∞
0
g(s)ds

∫ ∞

0

g(t)

∫ t

0

φ−1

(

1

p(s)

)

dsdt φ−1

(

φ(b) +

∫ ∞

0

Br(u)du

)

+

∫ ∞

0

φ−1

(

1

p(s)

)

ds φ−1

(

φ(b) +

∫ ∞

0

Br(u)du

)

+
a

1 −
∫∞
0
g(s)ds

< ∞.

So TΩ is bounded.

Next, since

(Tx)′(t) = φ−1

(

1

p(t)

)

φ−1

(

φ(b) +

∫ ∞

t

f(u, x(u))du

)

,

we find for any N ∈ (0,∞) and t1, t2 ∈ [0, N ],

|(Tx)(t1) − (Tx)(t2)| ≤
∣

∣

∣

∣

∫ t2

t1

(Tx)′(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t2

t1

φ−1

(

1

p(s)

)

φ−1

(

φ(b) +

∫ ∞

s

f(u, x(u))du

)

ds

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ t2

t1

φ−1

(

1

p(s)

)

ds

∣

∣

∣

∣

φ−1

(

φ(b) +

∫ ∞

0

Br(u)du

)

→ 0 uniformly as t1 → t2

for all x ∈ Ω. So {(Tx)(t) : x ∈ Ω} is equicontinuous on any compact interval of [0,∞).

Finally, we shall prove that {(Tx)(t) : x ∈ Ω} is equiconvergent at infinity. Since

0 ≤ φ(b) +

∫ ∞

t

f(u, x(u))du ≤ φ(b) +

∫ ∞

0

Br(s)ds ≡ r,

and
∫∞
0
φ−1

(

1
p(s)

)

ds <∞, we know there exists N > 0 such that

∣

∣

∣

∣

∫ t2

t1

φ−1

(

1

p(s)

)

ds

∣

∣

∣

∣

<
ǫ

φ−1(r)
, t1, t2 > N.
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It follows that

|(Tx)(t1) − (Tx)(t2)| ≤
∣

∣

∣

∣

∫ t2

t1

φ−1

(

1

p(s)

)

ds

∣

∣

∣

∣

φ−1

(

φ(b) +

∫ ∞

0

Br(u)du

)

<
ǫ

φ−1(r)
φ−1(r) = ǫ, t1, t2 > N.

So {(Tx)(t) : x ∈ Ω} is equiconvergent at infinity. By using Theorem 2.5 in [23], we obtain that

{(Tx)(t) : x ∈ Ω} is pre-compact. Hence, T : P → P is completely continuous. �

For positive numbers e1, e2, and C, let M, M1 and L be defined by

M = C

[

φ

(

(

1 −
∫∞
0
g(s)ds

)

C − a
∫∞
0
g(t)

∫ t

0
1

φ−1(p(s))dsdt+
(

1 −
∫∞
0
g(s)ds

) ∫∞
0

1
φ−1(p(s))ds

)

− φ(b)

]−1

, (3.12)

M1 = e1

[

φ

(

(

1 −
∫∞
0
g(s)ds

)

e1 − a
∫∞
0 g(t)

∫ t

0
1

φ−1(p(s))dsdt+
(

1 −
∫∞
0 g(s)ds

) ∫∞
0

1
φ−1(p(s))ds

)

− φ(b)

]−1

, (3.13)

and

L = µ(k − 1)e2



φ





µ(1 + k)e2
(

1 −
∫∞
0
g(s)ds

)

− a
(

1 −
∫∞
0
g(s)ds

) ∫ 1/k

0
1

φ−1(p(s))ds



− φ(b)





−1

. (3.14)

Theorem 3.1. Suppose that (A1) and (A2) hold and there exist constants e1, e2 and C such that

0 < e1 < µ(1 + k)e2 < (1 + k)e2 < C, LC > Mµ(1 + k)e2 > 0

and

(C1) f(t, x) ≤ C
M(1+t)2 for t ∈ (0,∞) and x ∈ [0, C];

(C2) f(t, x) ≤ e1
M1(1+t)2

for t ∈ (0,∞) and x ∈ [0, e1];

(C3) f(t, x) ≥ µ(1+k)e2
L(1+t)2 for t ∈ [1/k, k] and x ∈ [µ(1 + k)e2, (1 + k)e2].

Then, BVP (1.1) has at least three bounded positive solutions x1, x2 and x3 satisfying

sup
t∈[0,∞)

x1(t) < e1, min
t∈[1/k,k]

x2(t) > µ(1 + k)e2

and

sup
t∈[0,∞)

x3(t) > e1, min
t∈[1/k,k]

x3(t) < µ(1 + k)e2.

Proof. We shall apply Theorem 2.1 with T, P and ψ defined in (3.9), (3.3) and (3.4) respectively.

To recap, a fixed point of T is a solution of (1.1) (Lemma 3.3), T : P → P is completely continuous

(Lemma 3.4), and ψ is a nonnegative continuous concave functional on the cone P with ψ(y) ≤ ‖y‖
for all y ∈ P . Further, corresponding to Theorem 2.1, we choose

D = (1 + k)e2, B = µ(1 + k)e2, A = e1.
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Then 0 < A < B < D < C. We divide the remainder of the proof into four steps.

Step 1. We shall prove that T (PC) ⊂ PC . Let x ∈ PC , then ‖x‖ ≤ C, so

0 ≤ x(t) ≤ C, t ∈ [0,∞).

It follows from (C1) that

f(t, x(t)) ≤ C

M(1 + t)2
, t ∈ [0,∞).

We find

‖Tx‖ = sup
t∈[0,∞)

(Tx)(t)

=

∫∞
0 g(t)

∫ t

0 φ
−1
(

1
p(s)φ(b) + 1

p(s)

∫∞
s f(u, x(u))du

)

dsdt

1 −
∫∞
0
g(s)ds

+

∫ ∞

0

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, x(u))du

)

ds+
a

1 −
∫∞
0 g(s)ds

≤
∫∞
0
g(t)

∫ t

0
φ−1

(

1
p(s)

)

dsdt φ−1
(

φ(b) +
∫∞
0
f(u, x(u))du

)

1 −
∫∞
0
g(s)ds

+

∫ ∞

0

φ−1

(

1

p(s)

)

ds φ−1

(

φ(b) +

∫ ∞

0

f(u, x(u))du

)

+
a

1 −
∫∞
0
g(s)ds

≤
∫∞
0
g(t)

∫ t

0
φ−1

(

1
p(s)

)

dsdt φ−1
(

φ(b) +
∫∞
0

C
M(1+u)2 du

)

1 −
∫∞
0 g(s)ds

+

∫ ∞

0

φ−1

(

1

p(s)

)

ds φ−1

(

φ(b) +

∫ ∞

0

C

M(1 + u)2
du

)

+
a

1 −
∫∞
0 g(s)ds

=





∫∞
0 g(t)

∫ t

0 φ
−1
(

1
p(s)

)

dsdt

1 −
∫∞
0
g(s)ds

+

∫ ∞

0

φ−1

(

1

p(s)

)

ds



φ−1

(

φ(b) +
C

M

)

+
a

1 −
∫∞
0
g(s)ds

= C

where the last equality follows from the definition of M in (3.12). Hence, Tx ∈ PC . This shows

that T (PC) ⊂ PC .

Step 2. We shall show that (E1) of Theorem 2.1 holds, i.e.,

{y ∈ P (ψ;B,D) | ψ(y) > B} = {y ∈ P (ψ;µ(1 + k)e2, (1 + k)e2) | ψ(y) > µ(1 + k)e2} 6= ∅

and ψ(Ty) > B = µ(1 + k)e2 for y ∈ P (ψ;µ(1 + k)e2, (1 + k)e2).
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To prove that {y ∈ P (ψ;µ(1 + k)e2, (1 + k)e2) | ψ(y) > µ(1 + k)e2} 6= ∅, we choose λ > 0 and

let

y0(t) =















λ− k2λ

(

t− 1

k

)2

, t ∈
[

0,
1

k

]

,

λ, t ≥ 1

k
.

It is easy to see that

min
t∈[1/k,k]

y0(t) = λ,

and

sup
t∈[0,∞)

y0(t) ≤ λ.

Since µ < 1, we get mint∈[1/k,k] y0(t) ≥ µ supt∈[0,∞) y0(t). It is easy to see that y0 ∈ {y ∈
P (ψ;B,D) | ψ(y) > B} if λ ∈ (B,D).

Next, let y ∈ P (ψ;µ(1 + k)e2, (1 + k)e2), then ψ(y) ≥ µ(1 + k)e2 and ‖y‖ ≤ (1 + k)e2. So

min
t∈[1/k,k]

y(t) ≥ µ(1 + k)e2, sup
t∈[0,∞)

y(t) ≤ (1 + k)e2.

Hence,

µ(1 + k)e2 ≤ y(t) ≤ (1 + k)e2, t ∈ [1/k, k].

It follows from (C3) that

f(t, y(t)) ≥ µ(1 + k)e2
L(1 + t)2

, t ∈ [1/k, k].

We find

ψ(Ty) = min
t∈[1/k,k]

(Ty)(t)

= (Ty)

(

1

k

)

=
1

1 −
∫∞
0 g(s)ds

∫ ∞

0

g(t)

∫ t

0

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, y(u))du

)

dsdt

+

∫ 1/k

0

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, y(u))du

)

ds+
a

1 −
∫∞
0 g(s)ds

≥
∫ 1/k

0

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ k

1/k

f(u, y(u))du

)

ds+
a

1 −
∫∞
0 g(s)ds

≥
∫ 1/k

0

φ−1

(

1

p(s)

)

ds φ−1

(

φ(b) +

∫ k

1/k

µ(1 + k)e2
L(1 + u)2

du

)

+
a

1 −
∫∞
0 g(s)ds

=

∫ 1/k

0

φ−1

(

1

p(s)

)

ds φ−1

(

φ(b) +
µ(k − 1)e2

L

)

+
a

1 −
∫∞
0
g(s)ds

= B
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where the last equality follows from the definition of L in (3.14). This completes the proof of step

2.

Step 3. We shall prove that (E2) of Theorem 2.1 holds, i.e., ‖Ty‖ < A for y ∈ P with ‖y‖ ≤ A.

Let y ∈ P with ‖y‖ ≤ A = e1, then

sup
t∈[0,∞)

y(t) ≤ e1.

It follows from (C2) that

f(t, y(t)) ≤ e1
M1(1 + t)2

, t ∈ [0,∞).

We find

‖Ty‖ = sup
t∈[0,∞)

(Ty)(t)

= sup
t∈[0,∞)

∫∞
0 g(t)

∫ t

0 φ
−1
(

1
p(s)φ(b) + 1

p(s)

∫∞
s f(u, y(u))du

)

dsdt

1 −
∫∞
0
g(s)ds

+

∫ ∞

0

φ−1

(

1

p(s)
φ(b) +

1

p(s)

∫ ∞

s

f(u, y(u))du

)

ds+
a

1 −
∫∞
0
g(s)ds

<

∫∞
0
g(t)

∫ t

0
φ−1

(

1
p(s)

)

dsdt φ−1
(

φ(b) + e1
M1

)

1 −
∫∞
0 g(s)ds

+

∫ ∞

0

φ−1

(

1

p(s)

)

ds φ−1

(

φ(b) +
e1
M1

)

+
a

1 −
∫∞
0 g(s)ds

= e1

where the last equality follows from the definition of M1 in (3.13). Thus, ‖Ty‖ < e1 for y ∈ P

with ‖y‖ ≤ e1. This completes the proof of step 3.

Step 4. We shall show that (E3) of Theorem 2.1 holds, i.e., ψ(Ty) > B for y ∈ P (ψ;B,C)

with ‖Ty‖ > D. Let y ∈ P (ψ;B,C) = P (ψ;µ(1 + k)e2, C) with ‖Ty‖ > D = (1 + k)e2, then

sup
t∈[0,∞)

(Ty)(t) ≥ (1 + k)e2 and ‖y‖ = sup
t∈[0,∞)

y(t) ≤ C.

Noting Ty ∈ P, we get

ψ(Ty) = min
t∈[1/k,k]

(Ty)(t) ≥ µ sup
t∈[0,∞)

(Ty)(t) ≥ µ(1 + k)e2 = B.

This completes the proof of step 4.

We have shown that all the conditions of Theorem 2.1 are satisfied. Hence, by Theorem 2.1

the operator T has three fixed points x1, x2 and x3 ∈ PC such that

‖x1‖ < A, ψ(x2) > B, ‖x3‖ > A with ψ(x3) < B,
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i.e., x1, x2 and x3 satisfy

sup
t∈[0,∞)

x1(t) < e1, min
t∈[1/k,k]

x2(t) > µ(1 + k)e2 (3.15)

and

sup
t∈[0,∞)

x3(t) > e1, min
t∈[1/k,k]

x3(t) < µ(1 + k)e2. (3.16)

Hence, BVP (1.1) has at least three positive solutions x1, x2 and x3 satisfying (3.15) and (3.16).

It is easy to see that x1, x2 and x3 are bounded positive solutions since x1, x2, x3 ∈ Pc imply that

sup
t∈[0,∞)

xi(t) ≤ C, i = 1, 2, 3.

The proof is complete. �

Let

ψ(t) =

{

1√
t
, t ∈ (0, 1),

1
t2 , t ≥ 1.

For positive numbers e1, e2, and C, let M, M1 and L be defined by

M = 3C

[

φ

(

(

1 −
∫∞
0
g(s)ds

)

C − a
∫∞
0 g(t)

∫ t

0
1

φ−1(p(s))dsdt+
(

1 −
∫∞
0 g(s)ds

) ∫∞
0

1
φ−1(p(s))ds

)

− φ(b)

]−1

, (3.17)

M1 = 3e1

[

φ

(

(

1 −
∫∞
0 g(s)ds

)

e1 − a
∫∞
0 g(t)

∫ t

0
1

φ−1(p(s))dsdt+
(

1 −
∫∞
0 g(s)ds

) ∫∞
0

1
φ−1(p(s))ds

)

− φ(b)

]−1

, (3.18)

and

L = µ

(

3 − 1

k
−
√

1

k

)

e2



φ





µ(1 + k)e2
(

1 −
∫∞
0
g(s)ds

)

− a
(

1 −
∫∞
0 g(s)ds

) ∫ 1/k

0
1

φ−1(p(s))ds



− φ(b)





−1

. (3.19)

Theorem 3.2. Suppose that (A1) and (A2) hold and there exist constants e1, e2 and C such that

0 < e1 < µ(1 + k)e2 < (1 + k)e2 < C, LC > Mµ(1 + k)e2 > 0

and

(D1) f(t, x) ≤ Cψ(t)
M for t ∈ [0,∞) and x ∈ [0, C];

(D2) f(t, x) ≤ e1ψ(t)
M1

for t ∈ [0,∞) and x ∈ [0, e1];

(D3) f(t, x) ≥ µ(1+k)e2ψ(t)
L for t ∈ [1/k, k] and x ∈ [µ(1 + k)e2, (1 + k)e2].

Then, BVP (1.1) has at least three bounded positive solutions x1, x2 and x3 satisfying

sup
t∈[0,∞)

x1(t) < e1, min
t∈[1/k,k]

x2(t) > µ(1 + k)e2
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and

sup
t∈[0,∞)

x3(t) > e1, min
t∈[1/k,k]

x3(t) < µ(1 + k)e2.

Proof. The proof is similar to that of Theorem 3.1 and is omitted. �

Remark 3.1. In (C1) and (C2) of Theorem 3.1, it is easy to see that f is bounded on (0,∞)×[0, C]

or (0,∞)×[0, e1]. However, in (D1) and (D2) of Theorem 3.2, f may be unbounded on (0,∞)×[0, C]

or (0,∞) × [0, e1], i.e., f may be singular at t = 0 since ψ(t) is singular at t = 0.

4 Bounded Positive Solutions of BVP (1.2)

In this section we shall establish the existence of at least one bounded positive solution of BVP

(1.2).

Remark 4.1. In [18, 19, 20, 37], the authors study the existence of multiple positive solutions

(such that supt∈[0,∞)
x(t)
1+t <∞) of the multi-point boundary value problem for differential equation

on the half line






























[φ(x′(t))]′ + f(t, x(t)) = 0, t ∈ (0,∞),

x(0) =
m
∑

i=1

aix(ξi),

lim
t→∞

x′(t) = 0.

Here, φ is an increasing homeomorphism and positive homomorphism satisfying:

(i) φ(x) ≤ φ(y) for all x ≤ y;

(ii) φ is a continuous bijection with φ(0) = 0 and its inverse function is also continuous;

(iii) φ(xy) = φ(x)φ(y) for all x, y ∈ [0,∞) or for all x, y ∈ IR.

Note that if φ satisfies (i)–(iii) and is differentiable at t = 1 with φ′(1) > 0, one actually gets

φ(x) = |x|q−2x for some q > 1, i.e., φ is an one dimensional Laplacian. In fact, we have

φ′(x) = lim
∆x→0

φ(x + ∆x) − φ(x)

∆x

= lim
∆x→0

φ
(

x
(

1 + ∆x
x

))

− φ(x)

∆x

= lim
∆x→0

φ (x)φ
(

1 + ∆x
x

)

− φ(x)φ(1)

∆x
=

φ(x)

x
φ′(1).

So |φ(x)| = |x|φ′(1). Since φ′(1) > 0, it is easy to see that there exists q > 1 such that

φ(x) = |x|q−2x, i.e., φ is an one dimensional Laplacian. Hence, it will be interesting to con-

sider a more general φ which is an increasing homeomorphism, indeed the Φ in (1.2) is the more

general case.

For easy referencing, we list the conditions needed as follows:
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(A3) f(t, 0) 6≡ 0 on each subinterval of [0,∞), t → f(t, u) is measurable and u → f(t, u) is

continuous, and for each r > 0 there exists Br ∈ L1(0,∞) such that

f(t, x) ≤ Br(t), for all t ∈ (0,∞) and |x| ≤ r,

∫ ∞

0

Φ−1

(∫ ∞

s

Br(u)du

)

ds <∞;

(A4) Φ : IR → IR is a pseudo sup-multiplicative function with supporting function w (the inverse

of w is ν), Φ maps [0,∞) into [0,∞), and there exists a constant µ > 0 such that |Φ−1(x) −
Φ−1(y)| ≤ µΦ−1(|x− y|) for all x, y ≥ 0;

(A5)σ there exist positive number σ > 0 and positive functions ψi (i = 1, 2) such that

∫ ∞

0

Φ−1

(∫ ∞

s

ψi(u)du

)

ds <∞ (i = 1, 2)

and

|f(t, x) − ψ1(t)| ≤ ψ2(t)Φ(|x|σ), t ∈ (0,∞), x ∈ IR.

Theorem 4.1. Suppose that (A3) and (A4) hold. Then, BVP (1.2) has at least one bounded

positive solution if (A5)σ holds for

(i) σ > 1 and

‖ψ0‖1−σ(σ − 1)σ−1

σσ
≥ µ

∫∞
0
ν
(∫∞
s
ψ2(u)du

)

ds

1 −
∫∞
0
g(s)ds

where

ψ0(t) =
1

1 −
∫∞
0
g(s)ds

∫ ∞

0

g(t)

∫ t

0

Φ−1

(∫ ∞

s

ψ1(u)du

)

dsdt

+

∫ t

0

Φ−1

(∫ ∞

s

ψ1(u)du

)

ds, or

(ii) σ ∈ (0, 1), or

(iii) σ = 1 and
µ
∫∞
0 ν

(∫∞
s ψ2(u)du

)

ds

1 −
∫∞
0 g(s)ds

< 1.

Proof. Let the Banach space X and its norm be defined as in (3.1) and (3.2). Define the nonlinear

operator T by

(Tx)(t) =
1

1 −
∫∞
0 g(s)ds

∫ ∞

0

g(t)

∫ t

0

Φ−1

(∫ ∞

s

f(u, x(u))du

)

dsdt

+

∫ t

0

Φ−1

(∫ ∞

s

f(u, x(u))du

)

ds.

(4.1)

We have the following (the proofs are similar to those of Lemmas 3.3 and 3.4):
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(i) For x ∈ X , Tx satisfies



























[Φ((Tx)′(t))]′ + f (t, x(t)) = 0, t ∈ (0,∞),

(Tx)(0) =

∫ ∞

0

g(s)(Tx)(s)ds,

lim
t→∞

(Tx)′(t) = 0;

(ii) T : X → X is well defined;

(iii) x is a bounded positive solution of BVP (1.2) if and only if x is a solution of the operator

equation x = Tx in X ;

(iv) T : X → X is completely continuous.

Let

ψ0(t) =
1

1 −
∫∞
0
g(s)ds

∫ ∞

0

g(t)

∫ t

0

Φ−1

(∫ ∞

s

ψ1(u)du

)

dsdt+

∫ t

0

Φ−1

(∫ ∞

s

ψ1(u)du

)

ds.

It is easy to show that ψ0 ∈ X . Let r > 0 and define Mr = {x ∈ X : ‖x− ψ0‖ ≤ r}.
Since Φ is a pseudo sup-multiplicative function, from Remark 2.2 we have

Φ−1(v1v2) ≤ ν(v1)Φ
−1(v2) for all v1, v2 ≥ 0.

For x ∈Mr, using (A4) and (A5)σ we find

‖Tx− ψ0‖ = sup
t∈[0,∞)

∣

∣

∣

∣

∣

1

1 −
∫∞
0 g(s)ds

∫ ∞

0

g(t)

∫ t

0

Φ−1

(∫ ∞

s

f(u, x(u))du

)

dsdt

+

∫ t

0

Φ−1

(∫ ∞

s

f(u, x(u))du

)

ds

− 1

1 −
∫∞
0 g(s)ds

∫ ∞

0

g(t)

∫ t

0

Φ−1

(∫ ∞

s

ψ1(u)du

)

dsdt

−
∫ t

0

Φ−1

(∫ ∞

s

ψ1(u)du

)

ds

∣

∣

∣

∣

= sup
t∈[0,∞)

∣

∣

∣

∣

∣

1

1 −
∫∞
0
g(s)ds

∫ ∞

0

g(t)

∫ t

0

[

Φ−1

(∫ ∞

s

f(u, x(u))du

)

− Φ−1

(∫ ∞

s

ψ1(u)du

)]

dsdt

+

∫ t

0

[

Φ−1

(∫ ∞

s

f(u, x(u))du

)

− Φ−1

(∫ ∞

s

ψ1(u)du

)]

ds

∣

∣

∣

∣

≤ 1

1 −
∫∞
0
g(s)ds

∫ ∞

0

g(t)

∫ ∞

0

∣

∣

∣

∣

Φ−1

(∫ ∞

s

f(u, x(u))du

)

− Φ−1

(∫ ∞

s

ψ1(u)du

)∣

∣

∣

∣

dsdt

+

∫ ∞

0

∣

∣

∣

∣

Φ−1

(∫ ∞

s

f(u, x(u))du

)

− Φ−1

(∫ ∞

s

ψ1(u)du

)∣

∣

∣

∣

ds
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≤ 1

1 −
∫∞
0 g(s)ds

∫ ∞

0

g(t)

∫ ∞

0

µΦ−1

(∫ ∞

s

|f(u, x(u)) − ψ1(u)|du
)

dsdt

+

∫ ∞

0

µΦ−1

(∫ ∞

s

|f(u, x(u)) − ψ1(u)|du
)

ds

≤ µ

1 −
∫∞
0
g(s)ds

∫ ∞

0

g(t)

∫ ∞

0

Φ−1

(∫ ∞

s

ψ2(u)Φ(|x(u)|σ)du
)

dsdt

+µ

∫ ∞

0

Φ−1

(∫ ∞

s

ψ2(u)Φ(|x(u)|σ)du
)

ds

≤ µ
∫∞
0
g(t)dt

1 −
∫∞
0
g(s)ds

∫ ∞

0

Φ−1

(∫ ∞

s

ψ2(u)Φ(‖x‖σ)du
)

ds

+µ

∫ ∞

0

Φ−1

(∫ ∞

s

ψ2(u)Φ(‖x‖σ)du
)

ds

≤ µ
∫∞
0
g(t)dt

1 −
∫∞
0
g(s)ds

∫ ∞

0

ν

(∫ ∞

s

ψ2(u)du

)

ds ‖x‖σ + µ

∫ ∞

0

ν

(∫ ∞

s

ψ2(u)du

)

ds ‖x‖σ

=
µ
∫∞
0
ν
(∫∞
s
ψ2(u)du

)

ds

1 −
∫∞
0
g(s)ds

‖x‖σ

≤ µ
∫∞
0
ν
(∫∞
s
ψ2(u)du

)

ds

1 −
∫∞
0
g(s)ds

(‖x− ψ0‖ + ‖ψ0‖)σ

≤ µ
∫∞
0
ν
(∫∞
s
ψ2(u)du

)

ds

1 −
∫∞
0
g(s)ds

(r + ‖ψ0‖)σ .

Case (i). σ > 1. Let r = r0 = ‖ψ0‖
σ−1 . By assumption,

r0
(r0 + ‖ψ0‖)σ

=
‖ψ0‖1−σ(σ − 1)σ−1

σσ
≥ µ

∫∞
0
ν
(∫∞
s
ψ2(u)du

)

ds

1 −
∫∞
0
g(s)ds

.

Then, for x ∈Mr0 we have

‖Tx− ψ0‖ ≤ µ
∫∞
0
ν
(∫∞
s
ψ2(u)du

)

ds

1 −
∫∞
0
g(s)ds

(r0 + ‖ψ0‖)σ ≤ r0.

Hence, we have a bounded subset Mr0 ⊆ X such that T (Mr0) ⊆Mr0 . Then, Schauder fixed point

theorem implies that T has a fixed point x ∈Mr0 . Hence, x is a bounded solution of BVP (1.2).

Case (ii). σ ∈ (0, 1). Choose r > 0 sufficiently large such that

µ
∫∞
0
ν
(∫∞
s
ψ2(u)du

)

ds

1 −
∫∞
0
g(s)ds

(r + ‖ψ0‖)σ ≤ r.

Then, for x ∈Mr we have

‖Tx− ψ0‖ ≤ µ
∫∞
0 ν

(∫∞
s ψ2(u)du

)

ds

1 −
∫∞
0 g(s)ds

(r + ‖ψ0‖)σ ≤ r.
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So T (Mr) ⊆Mr and Schauder fixed point theorem implies that T has a fixed point x ∈Mr. This

x is a bounded solution of BVP (1.2).

Case (iii). σ = 1. We choose

r ≥
µ

R

∞

0
ν(

R

∞

s
ψ2(u)du)ds

1−
R

∞

0
g(s)ds

‖ψ0‖

1 − µ
R

∞

0
ν(

R

∞

s
ψ2(u)du)ds

1−
R

∞

0
g(s)ds

.

Then, for x ∈Mr we have

‖Tx− ψ0‖ ≤ µ
∫∞
0 ν

(∫∞
s ψ2(u)du

)

ds

1 −
∫∞
0 g(s)ds

(r + ‖ψ0‖) ≤ r.

Hence, as in earlier cases we conclude that T has a fixed point x ∈Mr, which is a bounded solution

of BVP (1.2).

Now, we shall prove that x is a positive solution of BVP (1.2). Since x satisfies (1.2), then

[Φ(x′(t))]′ + f(t, x(t)) = 0, x(0) =

∫ ∞

0

g(s)x(s)ds, lim
t→∞

x′(t) = 0.

By f : (0,∞)×IR → [0,∞) and the definition of Φ, we see that x′ is decreasing on (0,∞). Together

with limt→∞ x′(t) = 0 we can see that x′(t) ≥ 0 for all t ∈ (0,∞). Hence

x(0) =

∫ ∞

0

g(s)x(s)ds ≥ x(0)

∫ ∞

0

g(s)ds.

It follows that x(0) ≥ 0 since
∫∞
0 g(s)ds < 1. So x(t) ≥ 0 for all t ∈ [0,∞). If there exists t0 > 0

such that x(t0) = 0, together with the increasing property on x, then x(t) ≡ 0 on [0, t0]. Since Φ is

odd, then Φ(0) = 0. Hence 0 = [Φ(x′(t))]′ = −f(t, 0) = 0 on [0, t0]. This contradicts (A3). Thus

x is a positive solution of BVP (1.2). The proof is complete. �

5 Examples

To illustrate the usefulness of our main results, we present some examples that our results can

readily apply, whereas the known results in the literature are not applicable.

Example 5.1. Consider the following boundary value problem



























[

et[x′(t)]3
]′

+ f(t, x(t)) = 0, t ∈ (0,∞),

x(0) =
1

2

∫ ∞

0

e−sx(s)ds+ 2,

lim
t→∞

et/3 x′(t) = 1,

(5.1)
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where f is defined by

f(t, x) =
t

1029(1 + t)3
+

1

(1 + t)2
f0 (x) ,

f0(x) =
1

2

483 − 273

273
, x ∈ [0, 10],

f0(x) =
1

2

483 − 273

273

+
x− 10

100− 10







404
[

303
(

1 − e−
1

300

)

× 104 − 16
]3

− 404 × 123
(

1 − e−
1

300

)3

594
(

1 − e−
1

300

)3

+
83(102 × 104 − 4)3 − 483

2 × 273

]

, x ∈ [10, 100],

f0(x) =
404

[

303
(

1 − e−
1

300

)

× 104 − 16
]3

− 404 × 123
(

1 − e−
1

300

)3

594
(

1 − e−
1

300

)3

+
83(102 × 104 − 4)3 − 273

2 × 273
, x ∈ [100, 102× 104],

f0(x) =







404
[

303
(

1 − e−
1

300

)

× 104 − 16
]3

− 404 × 123
(

1 − e−
1

300

)3

594
(

1 − e−
1

300

)3

+
83(102 × 104 − 4)3 − 483

2 × 273

]

ex−102×104

, x ≥ 102 × 104.

Corresponding to BVP (1.1), we have φ(x) = x3, p(t) = et, g(t) = 1
2e

−t, a = 2 and b = 1.

Then, φ−1(x) = x
1

3 . It is easy to see that (A1) and (A2) hold.

Choose k = 100, e1 = 10, e2 = 10000 and C = 102 × 104. By direct computation we obtain

from (3.12)–(3.14)

µ =

∫ 1

k

0

φ−1

(

1

p(s)

)

ds
1

1 +
∫∞
0 φ−1

(

1
p(s)

)

ds
=

3

4

(

1 − e−
1

300

)

,

M =
273 × 102 × 104

83(102 × 104 − 4)3 − 273
,

M1 =
273 × 10

483 − 273
,

L =
297

(

1 − e−
1

300

)4

× 104

4
[

303
(

1 − e−
1

300

)

× 104 − 16
]3

− 4 × 123
(

1 − e−
1

300

)3
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and

0 < e1 < µ(1 + k)e2 < (1 + k)e2 < C, LC > Mµ(1 + k)e2 > 0.

On the other hand, D = (1 + k)e2, B = µ(1 + k)e2, A = e1 and we see from the definition of f

that

• f(t, x) ≤ 83(102×104−4)3−273

273

1
(1+t)2 for t ≥ 0 and x ∈ [0, 102× 104];

• f(t, x) ≤ 483−273

273

1
(1+t)2 for t ≥ 0 and x ∈ [0, 10];

• f(t, x) ≥ 404
h

303
“

1−e−
1

300

”

×104−16
i3

−404×123

“

1−e−
1

300

”3

297
“

1−e−
1

300

”3

1
(1+t)2 for t ∈ [0.01, 100] and x ∈

[100, 1010000] .

It is easy to see that (C1)–(C3) hold. Hence, Theorem 3.1 implies that BVP (5.1) has at least

three bounded positive solutions x1, x2 and x3 such that

sup
t∈[0,∞)

x1(t) < 10, min
t∈[0.01,100]

x2(t) > 2520.80

and

sup
t∈[0,∞)

x3(t) > 10, min
[0.01,100]

x3(t) < 2520.80.

Remark 5.1. It is easy to see that Example 5.1 cannot be covered by the theorems in [5–9, 12–14,

17–20, 22–33, 37, 38]. Further, it is evident from Example 5.1 that (i) there is a large number of

functions that satisfy the conditions of Theorem 3.1, and (ii) the conditions of Theorem 3.1 are

easy to check.

Example 5.2. Consider the following boundary value problem























































[

1

k3
|x′(t)|2x′(t) +

3

k6
|x′(t)|5x′(t)

]′
+ ψ1(t)

+ λe−2t

[

1

k3
|x(t)|3σ +

3

k6
|x(t)|6σ

]

= 0, t ∈ (0,∞),

x(0) =
1

2

∫ ∞

0

e−sx(s)ds,

lim
t→∞

x′(t) = 0,

(5.2)

where k > 0, σ > 0 and λ > 2 are constants, and ψ1 is nonnegative and satisfies

∫ ∞

0

Φ−1

(∫ ∞

s

ψ1(u)du

)

ds <∞.

Corresponding to BVP (1.2), we have Φ(x) = 1
k3 x

3 + 3
k6 |x|5x, f(t, x) = ψ1(t) + λe−2tΦ(|x|σ),

g(t) = 1
2e

−t. It is easy to see that Φ is a pseudo sup-multiplicative function and the supporting

function of Φ is ω(x) = min{x6, x} for x ≥ 0.

It is easy to show that (A3) holds and (A5)σ holds with ψ2(t) = λe−2t and ψ1(t) given in (5.2).
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The inverse function of Φ is

Φ−1(x) =







k 3

√

−1+
√

1+12x
6 , x ≥ 0,

−k 3

√

−1+
√

1−12x
6 , x ≤ 0.

Since
−1 +

√
1 + 12xy

−1 +
√

1 + 12y
= x

1 +
√

1 + 12y

1 +
√

1 + 12xy
≤
{

x, x ≥ 1,√
x, x ∈ [0, 1],

the supporting function of Φ−1 is

ν(x) =

{

3
√
x, x ≥ 1,

6
√
x, x ∈ [0, 1].

(5.3)

It is well known that ap − bp ≤ (a − b)p for all p ∈ (0, 1] and a ≥ b ≥ 0. Then, for x, y ≥ 0,

without loss of generality x ≥ y, we have

|Φ−1(x) − Φ−1(y)| = Φ−1(x) − Φ−1(y)

= k
3

√

−1 +
√

1 + 12x

6
− k

3

√

−1 +
√

1 + 12y

6

≤ k
3

√√
1 + 12x−√

1 + 12y

6

≤ k
3

√

√

12(x− y)

6

≤ 6
√

2k
3

√

−1 +
√

1 + 12(x− y)

6

=
6
√

2Φ−1(|x− y|).

Hence, (A4) holds with ν defined by (5.3) and µ = 6
√

2.

Note that

µ
∫∞
0
ν
(∫∞
s
ψ2(u)du

)

ds

1 −
∫∞
0
g(s)ds

=
6
√

2k
∫∞
0
ν
(∫∞
s
λe−2udu

)

ds

1 − 1
2

= 2
6
√

2k

∫ ∞

0

ν

(

λ

2
e−2s

)

ds

= 2
6
√

2k

[

∫ 1

2
ln λ

2

0

3

√

λ

2
e−

2

3
sds+

∫ ∞

1

2
ln λ

2

6

√

λ

2
e−

1

3
sds

]

= 3
6
√

2k

(

3

√

λ

2
+ 1

)

.

Also, we have

ψ0(t) =
1

1 −
∫∞
0
g(s)ds

∫ ∞

0

g(t)

∫ t

0

Φ−1

(∫ ∞

s

ψ1(u)du

)

dsdt+

∫ ∞

0

Φ−1

(∫ ∞

s

ψ1(u)du

)

ds.

By Theorem 4.1, we conclude that BVP (5.2) has at least one positive solution if
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(i) σ > 1 and

‖ψ0‖1−σ ≥ 3
6
√

2k

[

3

√

λ

2
+ 1

]

σσ

(σ − 1)σ−1

or

(ii) σ ∈ (0, 1), or

(iii) σ = 1 and 3 6
√

2k

[

3

√

λ
2 + 1

]

< 1.

Remark 5.2. Suppose ψ1(t) = e−3t in Example 5.2. Then, we have

ψ0(t) =
1

1 −
∫∞
0 g(s)ds

∫ ∞

0

g(t)

∫ t

0

Φ−1

(∫ ∞

s

ψ1(u)du

)

dsdt

+

∫ ∞

0

Φ−1

(∫ ∞

s

ψ1(u)du

)

ds

=
1

1 −
∫∞
0
g(s)ds

∫ ∞

0

g(t)

∫ t

0

Φ−1

(∫ ∞

s

e−3udu

)

dsdt

+

∫ ∞

0

Φ−1

(∫ ∞

s

e−3udu

)

ds

=
1

1 −
∫∞
0 g(s)ds

∫ ∞

0

g(t)

∫ t

0

Φ−1

(

1

3
e−3s

)

dsdt

+

∫ ∞

0

Φ−1

(

1

3
e−3s

)

ds

= k
1

1 −
∫∞
0
g(s)ds

∫ ∞

0

g(t)

∫ t

0

3

√

−1 +
√

1 + 4e−3s

6
dsdt

+k

∫ ∞

0

3

√

−1 +
√

1 + 4e−3s

6
ds.

Since

3

√

−1 +
√

1 + 4e−3s

6
= 3

√

4e−3s

6(1 +
√

1 + 4e−3s
≤ 3

√

e−3s

3
=
e−s

3
√

3
,

we get

‖ψ0‖ ≤ 2k

∫ ∞

0

g(t)

∫ ∞

0

e−s

3
√

3
dsdt+ k

∫ ∞

0

e−s

3
√

3
ds =

3k

2 3
√

3
.

Hence, from Theorem 4.1 we conclude that BVP (5.2) (when ψ1(t) = e−3t) has at least one positive

solution if σ > 1 and

3
6
√

2k

[

3

√

λ

2
+ 1

]

≤
(

3k

2 3
√

3

)1−σ
(σ − 1)σ−1

σσ
.
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