Spectrum of one dimensional p-Laplacian Operator with indefinite weight

A. Anane ${ }^{1}$, O. Chakrone ${ }^{1}$ and M. Moussa ${ }^{2}$
${ }^{1}$ Département de mathématiques, Faculté des Sciences,
Université Mohamed $\mathrm{I}^{e r}$, Oujda. Maroc.
e-mail: anane@sciences.univ-oujda.ac.ma chakrone@sciences.univ-oujda.ac.ma
${ }^{2}$ Départment de mathématiques, Faculté des Sciences, Université Ibn Tofail, Kénitra. Maroc. e-mail: moussa@univ-ibntofail.ac.ma

Abstract

This paper is concerned with the nonlinear boundary eigenvalue problem $$
\left.-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}=\lambda m|u|^{p-2} u \quad u \in I=\right] a, b[, \quad u(a)=u(b)=0,
$$

where $p>1, \lambda$ is a real parameter, m is an indefinite weight, and a, b are real numbers. We prove there exists a unique sequence of eigenvalues for this problem. Each eigenvalue is simple and verifies the strict monotonicity property with respect to the weight m and the domain I, the k -th eigenfunction, corresponding to the k -th eigenvalue, has exactly $k-1$ zeros in (a, b). At the end, we give a simple variational formulation of eigenvalues.
MSC 2000 35P30.
Key words and phrases: p-Laplacian spectrum, simplicity, isolation, strict monotonicity property, zeros of eigenfunctions, variational formulation.

1 Introduction

The spectrum of the p-Laplacian operator with indefinite weight is defined as the set $\sigma_{p}\left(-\Delta_{p}, m\right)$ of $\lambda:=\lambda(m, I)$ for which there exists a nontrivial (weak) solution $u \in W_{0}^{1, p}(\Omega)$ of problem

$$
\left(\mathcal{V} . \mathcal{P}_{(m, \Omega)}\right) \quad\left\{\begin{array}{rlrl}
-\Delta_{p} u & =\lambda m|u|^{p-2} u & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega,
\end{array}\right.
$$

where $p>1, \Delta_{p}$: is the p-Laplacian operator, defined by $\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$, in a bounded domain $\Omega \subset \mathbb{R}^{N}$, and $m \in M(\Omega)$ is an indefinite weight, with

$$
M(\Omega):=\left\{m \in L^{\infty}(\Omega) / \text { meas }\{x \in \Omega, m(x)>0\} \neq 0\right\} .
$$

The values $\lambda(m, \Omega)$ for which there exists a nontrivial solution of $\left(\mathcal{V} . \mathcal{P}_{(m, \Omega)}\right)$ are called eigenvalues and the corresponding solutions are the eigenfunctions. We will denote $\sigma_{p}^{+}\left(-\Delta_{p}, m\right)$ the set of all positive eigenvalues, and by $\sigma_{p}^{-}\left(-\Delta_{p}, m\right)$ the set of negative eigenvalues.

For $p=2\left(\Delta_{p}=\Delta\right.$ Laplacian operator) it is well known $(c f[4,7,8])$ that,

- $\sigma_{2}^{+}(-\Delta, m)=\left\{\mu_{k}(m, \Omega), k=1,2, \cdots\right\}$, with $0<\mu_{1}(m, \Omega)<\mu_{2}(m, \Omega) \leq \mu_{3}(m, \Omega)$ $\leq \cdots \rightarrow+\infty, \mu_{k}(m, \Omega)$ repeated according to its multiplicity.
- The k-th eigenfunction corresponding to $\mu_{k}(m, \Omega)$, has at most k nodal domains.
- The eigenvalues $\mu_{k}(m, \Omega), k \geq 1$, verify the strict monotonicity property (SMP in brief), i.e if $m, m^{\prime} \in M(\Omega), m(x) \leq m^{\prime}(x)$ a.e in Ω and $m(x)<m^{\prime}(x)$ in some subset of nonzero measure, then $\mu_{k}(m, \Omega)>\mu_{k}\left(m^{\prime}, \Omega\right)$.
- Equivalence between the SMP and the unique continuation one.

For $p \neq 2$ (nonlinear problem), it is well known that the critical point theory of Ljusternik-Schnirelmann ($c f[15]$), provides a sequence of eigenvalues for those problems. Whether or not this sequence, denoted $\lambda_{k}(m, \Omega)$, constitutes the set of all eigenvalues is an open question when $N \geq 1, m \not \equiv 1$, and $p \neq 2$. The principal results for the problem seems to be given in $(c f[1,2,3,5,6,9,10,11,12,13])$, where is shown that there exists a sequence of eigenvalues of $\left(\mathcal{V} \cdot \mathcal{P}_{(m, \Omega)}\right)$ given by,

$$
\begin{equation*}
\lambda_{n}(m, \Omega)=\inf _{K \in \mathcal{B}_{n}} \max _{v \in K} \frac{\int_{\Omega}|\nabla v|^{p} d x}{\int_{\Omega} m|v|^{p} d x} \tag{1}
\end{equation*}
$$

$\mathcal{B}_{n}=\{K$, symmetrical compact, $0 \notin K$, and $\gamma(K) \geq n\}, \gamma$ is the genus function, or equivalently,

$$
\begin{equation*}
\frac{1}{\lambda_{n}(m, \Omega)}=\sup _{K \in \mathcal{B}_{n}} \min _{v \in K} \frac{\int_{\Omega} m|v|^{p} d x}{\int_{\Omega}|\nabla v|^{p} d x} \tag{2}
\end{equation*}
$$

which can be written simply,

$$
\begin{equation*}
\frac{1}{\lambda_{n}(m, \Omega)}=\sup _{K \in \mathcal{A}_{n}} \min _{v \in K} \int_{\Omega} m|v|^{p} d x \tag{3}
\end{equation*}
$$

$\mathcal{A}_{n}=\left\{K \cap S, K \in \mathcal{B}_{n}\right\} . \quad \mathrm{S}$ is the unit sphere of $W_{0}^{1, p}(\Omega)$ endowed with the usual norm $\left(\|v\|_{1, p}^{p}=\int_{\Omega}|\nabla v|^{p} d x\right)$, the equation (2) is the generalized Rayleigh quotient for the $\operatorname{problem}\left(\mathcal{V} \cdot \mathcal{P}_{(m, \Omega)}\right)$. The sequence is ordered as $0<\lambda_{1}(m, \Omega)<\lambda_{2}(m, \Omega) \leq \lambda_{3}(m, \Omega) \leq$ $\cdots \rightarrow+\infty$. The first eigenvalue $\lambda_{1}(m, \Omega)$ is of special importance. We give some of its properties which will be of interest for us (cf[1]). First, $\lambda_{1}(m, \Omega)$ is given by,

$$
\begin{equation*}
\frac{1}{\lambda_{1}(m, \Omega)}=\sup _{v \in S} \int_{\Omega} m|v|^{p} d x=\int_{\Omega} m\left|\phi_{1}\right|^{p} d x \tag{4}
\end{equation*}
$$

$\phi_{1} \in S$ is any eigenfunction corresponding to $\lambda_{1}(m, \Omega)$, for this reason $\lambda_{1}(m, \Omega)$ is called the principal eigenvalue, also we know that $\lambda_{1}(m, \Omega)>0$, simple (i.e if v and u are two
eigenfunctions corresponding to $\lambda_{1}(m, \Omega)$ then $v=\alpha u$ for some $\alpha \in \mathbb{R}$), isolate (i.e there is no eigenvalue in $] 0, a\left[\right.$ for some $a>\lambda_{1}(m, \Omega)$, finally it is the unique eigenvalue which has an eigenfunction with constant sign. We denote $\phi_{1}(x)$ the positive eigenfunction corresponding to $\lambda_{1}(m, \Omega), \phi_{1}(x)$ verifies the strong maximum principle $(c f[17]), \frac{\partial \phi_{1}}{\partial n}(x)<0$, for x in $\partial \Omega$ satisfying the interior ball condition.

In [14] Otani considers the case $N=1, m(x) \equiv 1$, and proves that, $\sigma_{p}\left(-\Delta_{p}, 1\right)=$ $\left\{\mu_{k}(m, I), k=1,2, \cdots\right\}$, the sequence can be ordered as $0<\mu_{1}(m, \Omega)<\mu_{2}(m, \Omega)<$ $\mu_{3}(m, \Omega)<\cdots \rightarrow+\infty$, the k-th eigenfunction has exactly $k-1$ zeros in $I=(a, b)$. In [10] Elbert proved the same results in the case $N=1, m(x) \geq 0$ and continuous, the author gives an asymptotic relation of eigenvalues.

In this paper we consider the general case, $N=1$ and $m(x)$ can change sign and is not necessarily continuous. We prove that $\sigma_{p}^{+}\left(-\Delta_{p}, m\right)=\left\{\lambda_{k}(m, I), k=1,2, \cdots\right\}$, the sequence can be ordered as $0<\lambda_{1}(m, \Omega)<\lambda_{2}(m, \Omega)<\lambda_{3}(m, \Omega)<\cdots \lambda_{k}(m, I) \rightarrow+\infty$ as $k \rightarrow+\infty$, the k-th eigenfunction has exactly $k-1$ zeros in $I=(a, b)$. The eigenvalues verify the SMP with respect to the weight m and the domain I.

In the next section we denote by: $M(I):=\left\{m \in L^{\infty}(I) / \operatorname{meas}\{x \in I, m(x)>0\} \neq 0\right\}$, $m_{/ J}$ the restriction of m on J for a subset J of $I, Z(u)=\{t \in I / u(t)=0\}$, a nodal domain ω of u is a component of $I \backslash Z(u)$, where $(u, \lambda(m, I))$ is a solution of $\left(\mathcal{V} . \mathcal{P}_{(m, I)}\right)$. $\tilde{u_{/ \omega}}$ is the extension, by zero, on I of $u_{/ \omega}$

2 Results and technical Lemmas

We first state our main results
Theorem 1 Assume that $N=1(\Omega=] a, b[=I), m \in M(I)$ such that $m \not \equiv 1$ and $p \neq 2$, we have

1. Every eigenfunction corresponding to the k-th eigenvalue $\lambda_{k}(m, I)$, has exactly $k-1$ zeros.
2. For every $k, \lambda_{k}(m, I)$ is simple and verifies the strict monotonicity property with respect to the weight m and the domain I.
3. $\sigma_{p}^{+}\left(-\Delta_{p}, m\right)=\left\{\lambda_{k}(m, I), k=1,2, \cdots\right\}$, for any $m \in M(I)$. The eigenvalues are ordered as $0<\lambda_{1}(m, \Omega)<\lambda_{2}(m, \Omega)<\lambda_{3}(m, \Omega)<\cdots \lambda_{k}(m, I) \rightarrow+\infty$ as $k \rightarrow+\infty$.

Corollary 1 For any integer n, we have the simple variational formulation,

$$
\begin{equation*}
\frac{1}{\lambda_{n}(m, I)}=\sup _{F \in \mathcal{F}_{n}} \min _{F \cap S} \int_{a}^{b} m|v|^{p} d x \tag{5}
\end{equation*}
$$

$\mathcal{F}_{n}=\left\{F / F\right.$ is a n dimensional subspace of $\left.W_{0}^{1, p}(I)\right\}$.

For the proof of Theorem 1 we need some technical Lemmas.
Lemma 1 Let $m, m^{\prime} \in M(I), m(x) \leq m^{\prime}(x)$, then for any $n, \lambda_{n}\left(m^{\prime}, I\right) \leq \lambda_{n}(m, I)$
Proof Making use of equation (2), we obtain immediately $\lambda_{n}\left(m^{\prime}, I\right) \leq \lambda_{n}(m, I)$.
Lemma 2 Let $(u, \lambda(m, I))$ be a solution of $\left(\mathcal{V} \cdot \mathcal{P}_{(m, I)}\right)$, $m \in M(I)$, then $m_{/ \omega} \in M(\omega)$ for any nodal domain ω of u.

Proof Let ω be a nodal domain of u and multiply $\left(\mathcal{V} . \mathcal{P}_{(m, I)}\right)$ by $\tilde{\mu_{/ \omega}}$ so that we obtain

$$
\begin{equation*}
0<\int_{\omega}\left|u^{\prime}\right|^{p} d x=\lambda(m, I) \int_{\omega} m|u|^{p} d x . \tag{6}
\end{equation*}
$$

This completes the proof.
Lemma 3 The restriction of a solution $(u, \lambda(m, I))$ of problem $\left(\mathcal{V} . \mathcal{P}_{(m, I)}\right)$, on a nodal domain ω, is an eigenfunction of problem $\left(\mathcal{V} \cdot \mathcal{P}_{\left(m_{/ \omega}, \omega\right)}\right)$, and we have $\lambda(m, I)=\lambda_{1}(m / \omega, \omega)$.

Proof Let $v \in W_{0}^{1, p}(\omega)$ and let \tilde{v} be the extension by zero of v on Ω. It is obvious that $\tilde{v} \in W_{0}^{1, p}(\Omega)$. Multiply $\left(\mathcal{V} . \mathcal{P}_{(m, \Omega)}\right)$ by \tilde{v}

$$
\begin{equation*}
\int_{\omega}\left|u^{\prime}\right|^{p-2} u^{\prime} v^{\prime} d x=\lambda(m, I) \int_{\omega} m|u|^{p-2} u v d x \tag{7}
\end{equation*}
$$

for all $v \in W_{0}^{1, p}(\omega)$. Hence the restriction of u in ω is a solution of problem $\left(\mathcal{V} \cdot \mathcal{P}_{\left(m_{/ \omega}, \omega\right)}\right)$ with constant sign. We then have $\left.\lambda(m, \Omega)=\lambda_{1}\left(m_{/ \omega}, \omega\right), \omega\right)$, which completes the proof.

Lemma 4 Each solution $(u, \lambda(m, I))$ of the problem $\left(\mathcal{V} . \mathcal{P}_{(m, I)}\right)$ has a finite number of zeros.

Proof This Lemma plays an essential role in our work. We start by showing that u has a finite number of nodal domains. Assume that there exists a sequence $I_{k}, k \geq 1$, of nodal domains (intervals), $I_{i} \cap I_{j}=\emptyset$ for $i \neq j$. We deduce by Lemmas 3 and 1, respectively, that

$$
\begin{equation*}
\lambda(m, I)=\lambda_{1}\left(m, I_{k}\right) \geq \lambda_{1}\left(C, I_{k}\right)=\frac{\lambda_{1}\left(1, I_{k}\right)}{C}=\frac{\lambda_{1}(1,] 0,1[)}{C\left(\operatorname{meas}\left(I_{k}\right)\right)^{p}}, \tag{8}
\end{equation*}
$$

where $C=\|m\|_{\infty}$.
From equation (8) we deduce $\left(\operatorname{meas}\left(I_{k}\right)\right) \geq\left(\frac{\left.\lambda_{1}(1,] 0,1\right]}{\lambda(m, I) C}\right)^{\frac{1}{p}}$, for all k , so

$$
\operatorname{meas}(I)=\sum_{k \geq 1}\left(\operatorname{meas}\left(I_{k}\right)\right)=+\infty
$$

This yields a contradiction.
Let $\left\{I_{1}, I_{2}, \cdots I_{k}\right\}$ be the nodal domains of u. Put $\left.I_{i}=\right] a_{i}, b_{i}\left[\right.$, where $a \leq a_{1}<b_{1} \leq$ $a_{2}<b_{2} \leq \cdots a_{k}<b_{k} \leq b$. It is clear that the restriction of u on $] a, b_{1}[$ is a nontrivial eigenfunction with constant sign corresponding to $\lambda(m, I)$. The maximum principle ($c f$ [17]) yields $u(t)>0$ for all $t \in] a, b_{1}\left[\right.$, so $a=a_{1}$. By a similar argument we prove that $b_{1}=a_{2}, b_{2}=a_{3}, \cdots b_{k}=b$, which completes the proof.

Lemma 5 (cf [16]) Let u be a solution of problem $\left(\mathcal{V} \cdot \mathcal{P}_{(m, \Omega)}\right)$ and $u \in W^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ then $u \in C^{1, \alpha}(\Omega) \cap C^{1}(\bar{\Omega})$ for some $\alpha \in(0,1)$.

3 Proof of main results

Proof of Theorem 1

For $n=1$, we know that $\lambda_{1}(m, I)$ is simple, isolate and the corresponding eigenfunction has constant sign. Hence it has no zero in (a, b) and it remains to prove the SMP.

Proposition $1 \lambda_{1}(m, I)$ verifies the strict monotonicity property with respect to weight m and the domain I. i.e If $m, m^{\prime} \in M(I), m(x) \leq m^{\prime}(x)$ and $m(x)<m^{\prime}(x)$ in some subset of I of nonzero measure then,

$$
\begin{equation*}
\lambda_{1}\left(m^{\prime}, I\right)<\lambda_{1}(m, I) \tag{9}
\end{equation*}
$$

and, if J is a strict sub interval of I such that $m_{/ J} \in M(J)$ then,

$$
\begin{equation*}
\lambda_{1}(m, I)<\lambda_{1}\left(m_{/ J}, J\right) . \tag{10}
\end{equation*}
$$

Proof Let $m, m^{\prime} \in M(I)$ as in Proposition 1 and recall that the principal eigenfunction $\phi_{1} \in S$ corresponding to $\lambda_{1}(m, I)$ has no zero in I; i.e $\phi_{1}(t) \neq 0$ for all $t \in I$. By (3), we get

$$
\begin{equation*}
\frac{1}{\lambda_{1}(m, I)}=\int_{I} m\left|\phi_{1}\right|^{p} d x<\int_{I} m^{\prime}\left|\phi_{1}\right|^{p} d x \leq \sup _{v \in S} \int_{I} m^{\prime}|v|^{p} d x=\frac{1}{\lambda_{1}\left(m^{\prime}, I\right)} . \tag{11}
\end{equation*}
$$

Then inequality (9) is proved. To prove inequality (10), let J be a strict sub interval of I and $m_{/ J} \in M(J)$. Let $u_{1} \in S$ be the (principal) positive eigenfunction of $\left(\mathcal{V} . \mathcal{P}_{(m, J)}\right)$ corresponding to $\lambda_{1}\left(m_{/ J}, J\right)$, and denote by \tilde{u}_{1} the extension by zero on I. Then

$$
\begin{equation*}
\frac{1}{\lambda_{1}\left(m_{/ J}, J\right)}=\int_{J} m\left|u_{1}\right|^{p} d x=\int_{I} m\left|\tilde{u}_{1}\right|^{p} d x<\sup _{v \in S} \int_{I} m|v|^{p} d x=\frac{1}{\lambda_{1}(m, I)} . \tag{12}
\end{equation*}
$$

The last strict inequality holds from the fact that \tilde{u}_{1} vanishes in I / J so can't be an eigenfunction corresponding to the principal eigenvalue $\lambda_{1}(m, I)$.

For $n=2$ we start by proving that $\lambda_{2}(m, I)$ has a unique zero in (a, b).
Proposition 2 There exists a unique real $c_{2,1} \in I$, for which we have $Z(u)=\left\{c_{2,1}\right\}$ for any eigenfunction u corresponding to $\lambda_{2}(m, I)$. For this reason, we will say that $c_{2,1}$ is the zero of $\lambda_{2}(m, I)$.

Proof Let u be an eigenfunction corresponding to $\lambda_{2}(m, I)$. u changes sign in I. Consider $\left.I_{1}=\right] a, c\left[\right.$ and $\left.I_{2}=\right] c^{\prime}, b\left[\right.$ two nodal domains of u, by Lemma $3, \lambda_{1}\left(m_{/ I_{1}}, I_{1}\right)=\lambda_{2}(m, I)=$ $\lambda_{1}\left(m_{/ I_{2}}, I_{2}\right)$. Assume that $c<c^{\prime}$, choose $\left.d \in\right] c, c^{\prime}\left[\right.$ and put $\left.J_{1}=\right] a, d\left[, J_{2}=\right] d, b[$; hence $J_{1} \cap J_{2}=\emptyset$, and for $i=1,2, I_{i} \subset J_{i}$ strictly, and $m_{/ J_{i}} \in M\left(J_{i}\right)$. Making use of Lemma 3, by (10), we get

$$
\begin{equation*}
\lambda_{1}\left(m_{/ J_{1}}, J_{1}\right)<\lambda_{1}\left(m_{/ I_{1}}, I_{1}\right)=\lambda_{2}(m, I) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{1}\left(m_{/ J_{2}}, J_{2}\right)<\lambda_{1}\left(m_{/ I_{2}}, I_{2}\right)=\lambda_{2}(m, I) . \tag{14}
\end{equation*}
$$

Let $\phi_{i} \in S$ be an eigenfunction corresponding to $\lambda_{1}\left(m_{/ J_{i}}, J_{i}\right)$, by (4) we have for $i=1,2$

$$
\begin{equation*}
\frac{1}{\lambda_{1}\left(m, J_{i}\right)}=\int_{J_{i}} m\left|\phi_{i}\right|^{p} d x \tag{15}
\end{equation*}
$$

$\tilde{\phi}_{i}$ is the extension by zero of ϕ_{i} on I. Consider the two dimensional subspace $F=$ $\left\langle\tilde{\phi}_{1}, \tilde{\phi}_{2}\right\rangle$ and put $K_{2}=F \cap S \subset W_{0}^{1, p}(I)$. Obviously $\gamma\left(K_{2}\right)=2$ and we remark that for $v=\alpha \tilde{\phi}_{1}+\beta \tilde{\phi}_{2},\|v\|_{1, p}=1 \Longleftrightarrow|\alpha|^{p}+|\beta|^{p}=1$. Hence by (3), (13), (14) and (15) we obtain,

$$
\begin{aligned}
& \frac{1}{\lambda_{2}(m, I)} \geq \min _{v \in K_{2}} \int_{I} m|v|^{p} d x \\
& =\min _{v=\alpha \tilde{\phi}_{1}+\beta \tilde{\phi}_{2} \in K_{2}}\left(|\alpha|^{p} \int_{J_{1}} m\left|\phi_{1}\right|^{p}+|\beta|^{p} \int_{J_{2}} m\left|\phi_{2}\right|^{p}\right) \\
& \left.=\left|\alpha_{0}\right|^{p} \int_{J_{1}} m\left|\phi_{1}\right|^{p}+\left|\beta_{0}\right|^{p} \int_{J_{2}} m\left|\phi_{2}\right|^{p}\right) \\
& =\frac{\left|\alpha_{0}\right|^{p}}{\lambda_{1}\left(m_{J_{1}}, J_{1}\right)}+\frac{\left|\alpha_{0}\right|^{p}}{\lambda_{1}\left(m_{/ J_{2}}, J_{2}\right)} \\
& >\frac{\left|\alpha_{0}\right|^{p}+\left|\beta_{0}\right|^{p}}{\lambda_{2}(m, I)} \\
& =\frac{1}{\lambda_{2}(m, I)},
\end{aligned}
$$

a contradiction; hence $c=c^{\prime}$. On the other hand, let v be another eigenfunction corresponding to $\lambda_{2}(m, I)$. Denote by d its unique zero in (a, b). Assume, for example, that $c<d$. By Lemma 3 and relation (10), we get

$$
\begin{equation*}
\lambda_{2}(m, I)=\lambda_{1}\left(m_{/] a, d[},\right] a, d[)<\lambda_{1}\left(m_{/] a, c},\right] a, c[)=\lambda_{2}(m, I) . \tag{16}
\end{equation*}
$$

This is a contradiction so $c=d$. We have proved that every eigenfunction corresponding to $\lambda_{2}(m, I)$ has one, and only one, zero in (a, b), and that the zero is the same for all eigenfunctions, which completes the proof of the Proposition.

Lemma $6 \lambda_{2}(m, I)$ is simple, hence $\lambda_{2}(m, I)<\lambda_{3}(m, I)$.
Proof Let u and v be two eigenfunctions corresponding to $\lambda_{2}(m, I)$. By Lemma 3 the restrictions of u and v on $] a, c_{2,1}[$ and $] c_{2,1}, b[$ are eigenfunctions corresponding to $\lambda_{1}\left(m_{/] a, c_{2,1}[},\right] a, c_{2,1}[)$ and $\lambda_{1}\left(m_{/] c_{2,1}, b[},\right] c_{2,1}, b[)$, respectively. Making use of the simplicity of the first eigenvalue, we get $u=\alpha v$ in $] a, c_{2,1}[$ and $u=\beta v$ in $] c_{2,1}, b[$. But both of u and v are eigenfunctions, so then by Lemma 5, there are $C^{1}(I)$. The maximum principle ($c f$ [17]) tell us that $u^{\prime}\left(c_{2,1}\right) \neq 0$, so $\alpha=\beta$. Finally, by the simplicity of $\lambda_{2}(m, I)$ and the theorem of multiplicity ($c f[15]$) we conclude that $\lambda_{2}(m, I)<\lambda_{3}(m, I)$.

Proposition $3 \lambda_{2}(m, I)$ verifies the SMP with respect to the weight m and the domain I.

Proof Let $m, m^{\prime} \in M(I)$ such that, $m(x) \leq m^{\prime}(x)$ a.e in I and $m(x)<m^{\prime}(x)$ in some subset of nonzero measure. Let $c_{2,1}$ and $c_{2,1}^{\prime}$ be the zeros of $\lambda_{2}(m, I)$ and $\lambda_{2}\left(m^{\prime}, I\right)$ respectively. We distinguish three cases :

1. $c_{2,1}=c_{2,1}^{\prime}=c$, then $\operatorname{meas}\left(\left\{x \in I / m(x)<m^{\prime}(x) \cap\right] a, c[\}\right) \neq 0$, or meas $(\{x \in$ $\left.\left.I / m(x)<m^{\prime}(x) \cap\right] c, b[\}\right) \neq 0$, by Lemma 3 and (9) we obtain

$$
\begin{equation*}
\lambda_{2}\left(m^{\prime}, I\right)=\lambda_{1}\left(m_{/] a, c[}^{\prime},\right] a, c[)<\lambda_{1}\left(m_{/] a, c[},\right] a, c[)=\lambda_{2}(m, I), \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda_{2}\left(m^{\prime}, I\right)=\lambda_{1}\left(m_{/ J c, b[}^{\prime},\right] c, b[)<\lambda_{1}\left(m_{/ J c, b l},\right] c, b[)=\lambda_{2}(m, I) \tag{18}
\end{equation*}
$$

2. $c_{2,1}<c_{2,1}^{\prime}$, by Lemmas 1,3 and (10), we get

$$
\begin{align*}
\lambda_{2}\left(m^{\prime}, I\right)=\lambda_{1}\left(m_{/] a, c_{2,1}^{\prime}}^{\prime},\right] a, c_{2,1}^{\prime}[) & \leq \lambda_{1}\left(m_{/] a, c_{2,1}^{\prime}[},\right] a, c_{2,1}^{\prime}[) \tag{19}\\
& <\lambda_{1}\left(m_{/] a, c_{2,1}[}\right] a, c_{2,1}[)=\lambda_{2}(m, I) .
\end{align*}
$$

3. $c_{2,1}^{\prime}<c_{2,1}$, as before, by Lemmas 1,3 and (10), we have

$$
\begin{align*}
\lambda_{2}\left(m^{\prime}, I\right)=\lambda_{1}\left(m_{/] c_{2,1}^{\prime}, b l}^{\prime},\right] c_{2,1}^{\prime}, b[) & \leq \lambda_{1}\left(m_{/ / c_{2,1}^{\prime}, b[},\right] c_{2,1}^{\prime}, b[) \tag{20}\\
& <\lambda_{1}\left(m_{/] c_{2,1}, b[},\right] c_{2,1}, b[)=\lambda_{2}(m, I) .
\end{align*}
$$

For the SMP with respect to the domain, put $J=] c, d[$ a strict sub interval of I with $m_{/ J} \in M(J)$, and denote $c_{2,1}^{\prime}$ the zero of $\lambda_{2}\left(m_{/ J}, J\right)$. As in the SMP with respect to the weight, three cases are distinguished:

1. $c_{2,1}=c_{2,1}^{\prime}=l$, then $] c, l[$ is a strict sub interval of $] a, l[$ or $] l, d[$ is a strict sub interval of $] l, b[$. By Lemma 3 and (10), we get

$$
\begin{equation*}
\lambda_{2}(m, I)=\lambda_{1}\left(m_{/ J a, l[},\right] a, l[)<\lambda_{1}\left(m_{/ J c, l l},\right] c, l[)=\lambda_{2}\left(m_{/ J}, J\right) \tag{21}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda_{2}(m, I)=\lambda_{1}\left(m_{/ l l, b l},\right] l, b[)<\lambda_{1}\left(m_{/] l, d[},\right] l, d[)=\lambda_{2}\left(m_{/ J}, J\right) . \tag{22}
\end{equation*}
$$

2. $c_{2,1}<c_{2,1}^{\prime}$, again by Lemma 3 and (10), we obtain

$$
\begin{equation*}
\lambda_{2}(m, I)=\lambda_{1}\left(m_{/] c_{2,1}, b[},\right] c_{2,1}, b[)<\lambda_{1}\left(m_{/] c_{2,1}^{\prime}, d[},\right] c_{2,1}^{\prime}, b[)=\lambda_{2}\left(m_{/ J}, J\right) . \tag{23}
\end{equation*}
$$

3. $c_{2,1}^{\prime}<c_{2,1}$, for the same reason as in the last case, we get

$$
\begin{equation*}
\lambda_{2}(m, I)=\lambda_{1}\left(m_{/] a, c_{2,1}}[] a, c_{2,1}[)<\lambda_{1}\left(m_{/ / c, c_{2,1}^{\prime}[}\right] c, c_{2,1}[)=\lambda_{2}\left(m_{/ J}, J\right) .\right. \tag{24}
\end{equation*}
$$

The proof is complete.

Lemma 7 If any eigenfunction u corresponding to some eigenvalue $\lambda(m, I)$ is such that $Z(u)=\{c\}$ for some real number c, then $\lambda(m, I)=\lambda_{2}(m, I)$.

Proof We shall prove that $c=c_{2,1}$. Assume, for example, that $c<c_{2,1}$. By Lemma 1 and (10) we get

$$
\begin{equation*}
\lambda(m, I)=\lambda_{1}\left(m_{/] c, b l},\right] c, b[)<\lambda_{1}\left(m_{/] c_{2,1}, b l},\right] c_{2,1}, b[)=\lambda_{2}(m, I) . \tag{25}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\lambda_{2}(m, I)=\lambda_{1}\left(m_{/] a, c_{2,1}[},\right] a, c_{2,1}[)<\lambda_{1}\left(m_{/] a, c[},\right] a, c[)=\lambda(m, I), \tag{26}
\end{equation*}
$$

a contradiction. Hence, $c=c_{2,1}$ and $\lambda(m, I)=\lambda_{2}(m, I)$. The proof is complete.
For $n>2$, we use a recurrence argument. Assume that, for any $\mathrm{k}, 1 \leq k \leq n$, that the following hypothesis:

1. H.R. 1 For any eigenfunction u corresponding to the k-th eigenvalue $\lambda_{k}(m, I)$, there exists a unique $c_{k, i}, 1 \leq i \leq k-1$, such that $Z(u)=\left\{c_{k, i}, 1 \leq i \leq k-1\right\}$.
2. H.R. $2 \lambda_{k}(m, I)$ is simple.
3. H.R. $3 \lambda_{1}(m, I)<\lambda_{2}(m, I)<\cdots<\lambda_{n+1}(m, I)$.
4. H.R. 4 If $(u, \lambda(m, I))$ is a solution of $\left(\mathcal{V} . \mathcal{P}_{(m, I)}\right)$ such that $Z(u)=\left\{c_{i}, 1 \leq i \leq k-1\right\}$, then $\lambda(m, I)=\lambda_{k}(m, I)$.
5. H.R. $5 \lambda_{k}(m, I)$ verifies the SMP with respect to the weight m and the domain I.

Holds, and prove them for $n+1$.
Proposition 4 There exists a unique family $\left\{c_{n+1, i}, 1 \leq i \leq n\right\}$ such that $Z(u)=$ $\left\{c_{n+1, i}, 1 \leq i \leq n\right\}$, for any eigenfunction u corresponding to $\lambda_{n+1}(m, I)$.

Proof Let u be an eigenfunction corresponding to $\lambda_{n+1}(m, I)$. By H.R. 3 and H.R.4, u has at least n zeros. According to Lemma 4, we can consider the $n+1$ nodal domains of $\left.u, I_{1}=\right] a, c_{1}\left[, I_{2}=\right] c_{1}, c_{2}\left[, \ldots, I_{n}=\right] c_{n-1}, c_{n}\left[, I_{n+1}=\right] c, b\left[\right.$. We shall prove that $c=c_{n}$. Remark that the restrictions of u on $] a, c_{i+1}[, 1 \leq i \leq n-1$, are eigenfunctions with i zeros, by H.R. $4 \lambda_{n+1}(m, I)=\lambda_{i}\left(m_{/] a, c_{i+1}[},\right] a, c_{i+1}[)$. Assume that $c_{n}<c$, choose d in $] c_{n}, c[$ and put, $\left.J_{1}=\right] a, d\left[, J_{2}=\right] d, b\left[\right.$. Remark that $\left.J_{1} \cap J_{2}=\emptyset,\right] a, c_{n}[$ is a strict sub interval of $J_{1} \subset I$, and $] c, b\left[\right.$ is a strict sub interval of $J_{2} \subset I$. It is clear that $m_{/ J_{i}} \in M\left(J_{i}\right)$ for $i=1,2$, by H.R. 4 and H.R.5. We have

$$
\begin{equation*}
\lambda_{n}\left(m_{/ J_{1}}, J_{1}\right)<\lambda_{n}\left(m_{/] a, c_{n}[},\right] a, c_{n}[)=\lambda_{n+1}(m, I), \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{1}\left(m_{/ J_{2}}, J_{2}\right)<\lambda_{1}\left(m_{/] c, b[},\right] c, b[)=\lambda_{n+1}(m, I) . \tag{28}
\end{equation*}
$$

Denote by $\left(\phi_{n+1}, \lambda_{1}\left(m_{/ J_{2}}, J_{2}\right)\right)$ a solution of $\left(\mathcal{V} \cdot \mathcal{P}_{\left(m, J_{2}\right)}\right),\left(v, \lambda_{n}\left(m_{/ J_{1}}, J_{1}\right)\right)$ a solution of $\left(\mathcal{V} . \mathcal{P}_{\left(m, J_{1}\right)}\right), \phi_{i}, 1 \leq i \leq n$ the restrictions of v on I_{i}, and $\tilde{\phi}_{i}, 1 \leq i \leq n$, their extensions, by zero, on I. Let $F_{n+1}=\left\langle\tilde{\phi}_{1}, \tilde{\phi}_{2}, \cdots, \tilde{\phi}_{n+1}\right\rangle$ and $K_{n+1}=F_{n+1} \cap S$, then $\gamma\left(K_{n+1}\right)=n+1$. We obtain by (3) and the same proof as in Proposition 2

$$
\begin{equation*}
\frac{1}{\lambda_{n+1}(m, I)} \geq \min _{K_{n+1}} \int_{I} m|v|^{p} d x>\frac{1}{\lambda_{n+1}(m, I)}, \tag{29}
\end{equation*}
$$

a contradiction, so $c=c_{n}$. On the other hand, let v be an eigenfunction corresponding to $\lambda_{n+1}(m, I)$. Denote by $d_{1}, d_{2}, \cdots, d_{n}$ the zeros of v. If $d_{1} \neq c_{1}$, then $\lambda_{n+1}(m, I)=$ $\lambda_{1}\left(m_{/] a, d_{1}[},\right] a, d_{1}[) \neq \lambda_{1}\left(m_{/] a, c_{1}[},\right] a, c_{1}[)=\lambda_{n+1}(m, I)$, so $d_{1}=c_{1}$, by the same argument we conclude that $d_{i}=c_{i}$ for all $1 \leq i \leq n$.

Lemma $8 \lambda_{n+1}(m, I)$ is simple, hence. $\lambda_{n+1}(m, I)<\lambda_{n+2}(m, I)$.

Proof Let u and v be two eigenfunctions corresponding to $\lambda_{n+1}(m, I)$. The restrictions of u and v on $] a, c_{n+1,1}$ [and $] c_{n+1,1}, b[$ respectively, are eigenfunctions corresponding to $\lambda_{1}\left(m_{/] a, c_{n+1,1}[},\right] a, c_{n+1,1}[)$ and $\lambda_{n}\left(m_{/] c_{n+1,1}, b},\right] c_{n+1,1}, b[)$. By H.R. 2 and H.R. 4 we have $u=$ αv in $] a, c_{n+1,1}[$ and $u=\beta v$ in $] c_{n+1,1}, b\left[\right.$. On the other hand, u and v are $C^{1}(I)$ and $u^{\prime}\left(c_{n+1,1}\right) \neq 0$, so $\alpha=\beta$. From the simplicity of $\lambda_{n+1}(m, I)$ and theorem of multiplicity we conclude that $\lambda_{n+1}(m, I)<\lambda_{n+2}(m, I)$.

Proposition $5 \lambda_{n+1}(m, I)$ verifies the SMP with respect to the weight m and the domain I.

Proof Let $m, m^{\prime} \in M(I)$, such that $m(x) \leq m^{\prime}(x)$ with $m(x)<m^{\prime}(x)$ in some subset of nonzero measure and $\left(c_{n+1, i}^{\prime}\right)_{1 \leq i \leq n}$ the zeros of $\lambda_{n+1}\left(m^{\prime}\right)$ three cases are distinguished,

1. $c_{n+1,1}=c_{n+1,1}^{\prime}=c$, one of the subsets is of nonzero measure,

$$
\left.\left\{x \in I / m(x)<m^{\prime}(x)\right\} \cap\right] a, c\left[\quad \text { and } \quad\left\{x \in I / m(x)<m^{\prime}(x)\right\} \cap\right] c, b[.
$$

By Lemma 3 and (9), we have

$$
\begin{equation*}
\lambda_{n+1}\left(m^{\prime}, I\right)=\lambda_{1}\left(m_{/] a, c}^{\prime},\right] a, c[)<\lambda_{1}\left(m_{/ J a, c},\right] a, c[)=\lambda_{n+1}(m, I) \tag{30}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda_{n+1}\left(m^{\prime}, I\right)=\lambda_{n}\left(m_{/ \ c, b[}^{\prime},\right] c, b[)<\lambda_{n}\left(m_{/ j c, b[},\right] c, b[)=\lambda_{n+1}(m, I) \tag{31}
\end{equation*}
$$

2. $c_{n+1,1}<c_{n+1,1}^{\prime}$, by Lemmas 1,3 and (10) we have

$$
\begin{align*}
\lambda_{n+1}\left(m^{\prime}, I\right) & =\lambda_{1}\left(m_{/] a, c_{n+1,1}^{\prime}}^{\prime},\right] a, c_{n+1,1}^{\prime}[) \\
& \leq \lambda_{1}\left(m_{/] a, c_{n+1,1}^{\prime}},\right] a, c_{n+1,1}^{\prime}[) \tag{32}\\
& <\lambda_{1}\left(m_{/] a, c_{n+1,1} 1},\right] a, c_{n+1,1}[)=\lambda_{n+1}(m, I) .
\end{align*}
$$

3. $c_{n, 1}^{\prime}<c_{n, 1}$, from the same reason as before, we get

$$
\begin{align*}
\lambda_{n+1}\left(m^{\prime}, I\right) & =\lambda_{n}\left(m_{/] c_{n+1,1}^{\prime}, b[},\right] c_{n+1,1}^{\prime}, b[) \\
& \leq \lambda_{n}\left(m_{/] c_{n+1,1}^{\prime}, b[},\right] c_{n+1,1}^{\prime}[, b) \tag{33}\\
& <\lambda_{n}\left(m_{\left./] c_{n+1,1, b}, b\right]},\right] c_{n+1,1}, b[)=\lambda_{n+1}(m, I) .
\end{align*}
$$

By similar argument as in proof of Proposition 3, we prove the SMP with respect to the domain I.

Lemma 9 If $(u, \lambda(m, I))$ is a solution of $\left(\mathcal{V} \cdot \mathcal{P}_{(m, I)}\right)$ such that $Z(u)=\left\{d_{1}, d_{2}, \cdots d_{n}\right\}$, then $\lambda(m, I)=\lambda_{n+1}(m, I)$.
Proof It is sufficient to prove that $d_{i}=c_{n+1, i}$ for all $1 \leq i \leq n$. If $c_{n+1,1}<d_{1}$ then, by Lemma 1, (10), H.R. 4 and H.R.5,

$$
\begin{align*}
\lambda(m, I)=\lambda_{1}\left(m_{/] a, d_{1}[},\right] a, d_{1}[) & <\lambda_{1}\left(m_{/] a, c_{n+1,1}[},\right] a, c_{n+1,1}[) \\
& =\lambda_{n+1}(m, I) \\
& =\lambda_{n}\left(m_{/ / c_{n+1,1}, b[]}\right] c_{n+1,1}, b[) \tag{34}\\
& <\lambda_{n}\left(m_{/] d_{1}, b[},\right] d_{1}, b[) \\
& =\lambda(m, I),
\end{align*}
$$

a contradiction. If $d_{1}<c_{n+1,1}$ then, by Lemma 1, (10), H.R. 4 and H.R.5,

$$
\begin{align*}
\left.\lambda_{n+1}(m, I)=\lambda_{1}\left(m_{/] a, c_{n+1}[}\right]\right] a, c_{n+1}[) & <\lambda_{1}\left(m_{/] a, d_{1}[},\right] a, d_{1}[) \\
& =\lambda(m, I) \\
& =\lambda_{n}\left(m_{/] d_{1}, b[},\right] d_{1}, b[) \tag{35}\\
& <\lambda_{n}\left(m_{/] c_{n+1,1,}, b},\right] c_{n+1}, b[) \\
& =\lambda_{n+1}(m, I),
\end{align*}
$$

a contradiction. The proof is then complete, which completes the proof of Theorem 1.
Proof of Corollary 1. Since for $F \in \mathcal{F}_{n}$, the compact $F \cap S \in \mathcal{A}_{n}$, by (3) we have:

$$
\begin{equation*}
\sup _{F \in \mathcal{F}_{n}} \min _{v \in F \cap S} \int_{\Omega} m|v|^{p} d x \leq \frac{1}{\lambda_{n}(m, \Omega)} \tag{36}
\end{equation*}
$$

On the other hand, for a n dimensional subspace F of $W_{0}^{1, p}(I)$, the compact set $K=$ $F \cap S \in \mathcal{A}_{n}$. Let u be an eigenfunction corresponding to $\lambda_{n}(m, I)$ and put

$$
F=\left\langle\tilde{\phi}_{1}(] a, c_{n, 1}[), \tilde{\phi}_{1}(] c_{n, 1}, c_{n, 2}[), \cdots, \tilde{\phi}_{1}(] c_{n_{1}, n}, b[)\right\rangle
$$

to conclude $F \cap S \in \mathcal{A}_{n}$. By an elementary computation as in Proposition 2, one can show that

$$
\begin{equation*}
\frac{1}{\lambda_{n}(m, I)}=\min _{F \cap S} \int_{I} m|v|^{p} d x \tag{37}
\end{equation*}
$$

Then combine (36) with (37) to get (5). Which completes the proof.

3.1 Remark

The spectrum of p -Laplacian, with indefinite weight, in one dimension, is entirely determined by the sequence $\left(\lambda_{n}(m, I)\right)_{n \geq 1}$ if $m(x) \geq 0$ a.e in I. Therefore, if $m(x)<0$ in some subset $J \subset I$ of nonzero measure, replace m by $-m$; by Theorem 1 , since $-m \in M(I)$ we conclude that, the negative spectrum $\sigma_{p}^{-}\left(-\Delta_{p}, m\right)=-\sigma_{p}^{+}\left(-\Delta_{p},-m\right)$ of this operator is constituted by a sequence of eigenvalues $\lambda_{-n}(m, I)=-\lambda_{n}(-m, I)$. Thus the spectrum of the operator is,

$$
\sigma_{p}\left(-\Delta_{p}, m\right)=\sigma_{p}^{+}\left(-\Delta_{p}, m\right) \cup \sigma_{p}^{-}\left(-\Delta_{p}, m\right)
$$

References

[1] A. Anane, Simplicité et isolation de la première valeur propre du p-Laplacien avec poids, C. R. Acad. Sci. Paris, t.305, Série 1, (1987), pp. 725-728.
[2] A. Anane and O. Chakrone, Sur un théorème de point critique et application à un problème de non résonance entre deux valeurs propres du p-Laplacien, Annales de la Faculté des Sciences de Toulouse, Vol. IX, No.1, (2000), pp. 5-30.
[3] A. Anane and N. Tsouli, On the second eigenvalue of the p-Laplacian, Nonlinear Partial Differential Equations, Benkirane A., Gossez J.P., (Eds.), Pitman Res. Notes in Math. 343, (1996), pp. 1-9.
[4] R. Courant and D. Hilbert, Methods of Mathematical Physics, Intersience, New York, (1943).
[5] M. Cuesta, D.G. De Figueiredo and J.P. Gossez, The beginning of the Fucik spectrum for the p-Laplacian, J. Differential Equations, 159, (1999), pp. 212-238.
[6] M. Cuesta, D.G. De Figueiredo and J.P. Gossez, A nodal domain property for the p-Laplacian, C. R. Acad. Sci. Paris, t.330, Série I (2000), pp. 669-673.
[7] D.G. De Figueiredo, Positive solution of semi-linear elliptic equation, Lecture Notes in Mathematics, 957, (1982), pp. 34-87.
[8] D.G. De Figueiredo, and J.P. Gossez, Strict monotonicity of eigenvalues and unique continuation, Comm. Part. Diff. Equat., 17, (1992) pp. 339-346.
[9] M. Del Pino, M. Elgueta and R. Manàsevich, A Homotopic deformation along p of a Leray-Schauder degree result and existence for $\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+f(t, u)=0$, $u(0)=u(T)=0, p>1$, J. Differential Equations, 80, (1989), 1-13.
[10] A. Elbert, A half-linear second order differential equation, Colloquia Mathematica Societatis Janos Bolyai 30. Qualitative Theory of Differential Equations, Szeged, (Hungary) (1979), pp 124-143.
[11] S. Fučik, J. Nečas and V. Souček, Spectral analysis of nonlinear operators, Lect. Notes Math. 346, Springer Verlag, New York. Berlin. Heidelberg (1973).
[12] Y.X. Huang, Eigenvalues of the p-Laplacian in \mathbb{R}^{N} with indefinite weight, Comment. Math. Univ. Carolinae. (1995), pp 519-527.
[13] P. Lindqvist, On the equation $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{p-2} u=0$, Proc. Amer. Math. Soc. 109 (1990), pp. 157-164; addendum Proc. Amer. Math. Soc. 116, (1992), pp. 583-584.
[14] M. Otani, A remark on certain nonlinear elliptic equations, Pro. Fac. Sci. Tokai Univ. No. 19 (1984), pp. 23-28.
[15] A. Szulkin, Ljusternik-Schnirelmann theory on C^{1}-manifolds, Ann. I. H. Poincaré, Anal. non linéaire, 5, (1988), pp. 119-139.
[16] P. Tolksdorf, Regularity for more general class of quasilinear elliptic equations, J. Differential Equations, 51, (1984), pp. 126-150.
[17] J.L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12, (1984), pp. 191-202.

