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Abstract

By constructing a special cone and using fixed point index theory, this paper

investigates the existence of positive solutions of singular superlinear coupled

integral boundary value problems for differential systems



















−x′′(t) = f1(t, x(t), y(t)), t ∈ (0, 1),

−y′′(t) = f2(t, x(t), y(t)), t ∈ (0, 1),

x(0) = y(0) = 0, x(1) = α[y], y(1) = β[x],

where α[x], β[x] are bounded linear functionals on C[0, 1] given by

α[x] =

∫ 1

0

x(t)dA(t), β[x] =

∫ 1

0

x(t)dB(t)

with A, B functions of bounded variation with positive measures.
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1. Introduction

In this paper, we consider the following nonlinear singular second order

ordinary differential system (ODS for short) with coupled integral boundary

value conditions


















−x′′(t) = f1(t, x(t), y(t)), t ∈ (0, 1),

−y′′(t) = f2(t, x(t), y(t)), t ∈ (0, 1),

x(0) = y(0) = 0, x(1) = α[y], y(1) = β[x],

(1.1)

where f1 and f2 : (0, 1) × [0, +∞)2 → [0, +∞) are continuous and may be

singular at t = 0, 1; α[x], β[x] are bounded linear functionals on C[0, 1] given by

α[x] =

∫ 1

0

x(t)dA(t), β[x] =

∫ 1

0

x(t)dB(t),

involving Stieltjes integrals, in particular, A, B are functions of bounded varia-

tion with positive measures.

Boundary value problems for an ODS arise from many fields in physics,

biology and chemistry, which play a very important role in both theory and

application. In recent years, there were many works to be done for a variety

of nonlinear second order ordinary differential systems. However, most papers

only focus on attention to the differential system with uncoupled boundary

conditions; we refer the readers to [1, 2, 3, 5, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20,

21, 25] and the reference therein. On the other hand, there are several model

problems where the differential system are coupled not only in the differential

system but also through the boundary conditions ([24, 27]). In a recent article

[4] the author studied the following singular system with coupled four-point

boundary value conditions



















−x′′(t) = f1(t, x(t), y(t)), t ∈ (0, 1),

−y′′(t) = f2(t, x(t), y(t)), t ∈ (0, 1),

x(0) = y(0) = 0, x(1) = αy(ξ), y(1) = βx(η).

By using the Guo-Krasnosel’skĭı fixed-point theorem [7], some existence results

were obtained when the nonlinearities f1 and f2 are sublinear in x and y. In
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[26], the authors considered the existence of positive solutions of systems of the

nonlinear semipositone fractional differential equation with four-point coupled

boundary value problem































Dα
0+u + λf(t, u, v) = 0, t ∈ (0, 1), λ > 0,

Dα
0+v + λg(t, u, v) = 0,

u(i)(0) = v(i)(0) = 0, 0 ≤ i ≤ n − 2,

u(1) = av(ξ), v(1) = bu(η),

where λ is a parameter, a, b, ξ, η satisfy ξ, η ∈ (0, 1), 0 < abξη < 1, α ∈ (n−1, n]

is a real number and n ≥ 3, and Dα
0+u is the Riemann-Liouville’s fractional

derivative. They established the existence results by a nonlinear alternative of

Leray-Schauder type and Guo-Krasnosel’skĭı fixed-point theorem in a cone.

Nonlocal boundary value problems have been well studied especially on a

compact interval. For example, Webb and Infante have made an extensive study

of nonlocal boundary value problems involving integral conditions in [18, 19]

by giving a general approach to cover many nonlocal boundary conditions in

a unified way. We should note that the work of Webb and Infante does not

require the functionals α[x], β[x] to be positive for all positive x.

To the best of our knowledge, differential system (1.1) has not been treated

in the superlinear case even for uncoupled boundary conditions. Motivated by

[4, 18, 19], the purpose of this paper is to establish the existence of at least one

positive solution for differential system with coupled integral boundary value

problems (1.1) when the nonlinearities f1 and f2 are superlinear in x and y.

By a positive solution of the system (1.1), we mean that (x, y) ∈ (C[0, 1] ∩

C2(0, 1)) × (C[0, 1] ∩ C2(0, 1)), (x, y) satisfies (1.1), x > 0 and y > 0 on (0, 1].

Throughout the paper, we assume that the following conditions hold:

(H1) fi ∈ C((0, 1) × [0,∞)2, [0,∞))(i = 1, 2) and satisfy

0 <

∫ 1

0

s(1 − s)f1(s, 1, 1)ds < +∞, 0 <

∫ 1

0

s(1 − s)f2(s, 1, 1)ds < +∞.

(H2) There exist constants λij , µij(0 < λij ≤ µij , i, j = 1, 2, Σ2
j=1λij > 1, i =
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1, 2) such that for t ∈ (0, 1), x, y ∈ (0,∞),

cµi1fi(t, x, y) ≤ fi(t, cx, y) ≤ cλi1fi(t, x, y), if 0 < c ≤ 1, i = 1, 2, (1.2)

cµi2fi(t, x, y) ≤ fi(t, x, cy) ≤ cλi2fi(t, x, y), if 0 < c ≤ 1, i = 1, 2. (1.3)

(H3) α[t] =

∫ 1

0

tdA(t) > 0, β[t] =

∫ 1

0

tdB(t) > 0, κ = 1 − α[t]β[t] > 0.

Remark 1.1. Condition (H2) is used to discuss the existence of positive so-

lutions of higher-order differential equations/system. We refer the reader to

[21, 22, 23] for sublinear case (Σ2
j=1µij < 1, i = 1, 2) and to [6, 16] for superlin-

ear case (Σ2
j=1λij > 1, i = 1, 2).

(i) (1.2) and (1.3) implies

cλi1fi(t, x, y) ≤ fi(t, cx, y) ≤ cµi1fi(t, x, y), if c ≥ 1, i = 1, 2, (1.4)

cλi2fi(t, x, y) ≤ fi(t, x, cy) ≤ cµi2fi(t, x, y), if c ≥ 1, i = 1, 2. (1.5)

Conversely, (1.4) implies (1.2), (1.5) implies (1.3).

(ii) (1.2) and (1.3) implies

fi(t, x1, x2) ≤ fi(t, y1, y2), if 0 < xj ≤ yj , i, j = 1, 2. (1.6)

Remark 1.2. Typical functions that satisfy the above superlinear hypothesis

are those taking the form fi(t, x, y) = Σm
j=1pij(t)x

λi1j yλi2j ; here pij(t) ∈ C(0, 1),

pij(t) > 0 on (0, 1), λi1j > 0, λi2j > 0, λi1j + λi2j > 1, i = 1, 2, j = 1, 2, . . . , m.

The rest of paper is organized as follows. In section 2, we shall give some

preliminary results and lemmas to prove our main results. In section 3, we

establish the existence results of at least one positive solution for differential

system (1.1) by fixed point index theory on cones.

2. Preliminaries

For each u ∈ E := C[0, 1], we write ‖u‖ = max{|u(t)| : t ∈ [0, 1]}. Clearly,

(E, ‖ · ‖) is a Banach space. For each (x, y) ∈ E × E, we write ‖(x, y)‖1 =

max{‖x‖, ‖y‖}. Define

P = {(x, y) ∈ E × E : x(t) ≥ γt‖(x, y)‖1, y(t) ≥ γt‖(x, y)‖1, t ∈ [0, 1].},
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where

0 < γ =
ν

ρ
< 1, ρ = max

{

α[t]

κ
β[1] + 1,

β[t]

κ
α[1] + 1,

1

κ
β[1],

1

κ
α[1]

}

,

ν = min

{

α[t]

κ
β[t(1 − t)],

β[t]

κ
α[t(1 − t)],

1

κ
β[t(1 − t)],

1

κ
α[t(1 − t)]

}

.

Clearly, (E ×E, ‖ · ‖1) is a Banach space and P is a cone of E×E. For any real

constant r > 0, define Ωr = {(x, y) ∈ P : ‖(x, y)‖1 < r}.

Lemma 2.1. Let u, v ∈ E, then the differential system of BVPs






−x′′(t) = u(t), −y′′(t) = v(t), t ∈ [0, 1],

x(0) = y(0) = 0, x(1) = α[y], y(1) = β[x]
(2.1)

has integral representation















x(t) =

∫ 1

0

G1(t, s)u(s)ds +

∫ 1

0

H1(t, s)v(s)ds,

y(t) =

∫ 1

0

G2(t, s)v(s)ds +

∫ 1

0

H2(t, s)u(s)ds,

(2.2)

where

G1(t, s) =
α[t]t

κ

∫ 1

0

K(s, τ)dB(τ) + K(t, s), H1(t, s) =
t

κ

∫ 1

0

K(s, τ)dA(τ),

G2(t, s) =
β[t]t

κ

∫ 1

0

K(s, τ)dA(τ) + K(t, s), H2(t, s) =
t

κ

∫ 1

0

K(s, τ)dB(τ),

K(t, s) =











t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1.

Proof. It is easy to see that (2.1) is equivalent to the system of integral equations

x(t) = x(1)t +

∫ 1

0

K(t, s)u(s)ds, t ∈ [0, 1], (2.3)

y(t) = y(1)t +

∫ 1

0

K(t, s)v(s)ds, t ∈ [0, 1]. (2.4)

Applying β and α to (2.3) and (2.4) respectively we obtain

∫ 1

0

x(t)dB(t) = x(1)

∫ 1

0

tdB(t) +

∫ 1

0

∫ 1

0

K(t, s)u(s)dsdB(t),
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∫ 1

0

y(t)dA(t) = y(1)

∫ 1

0

tdA(t) +

∫ 1

0

∫ 1

0

K(t, s)v(s)dsdA(t).

Therefore,





−β[t] 1

1 −α[t]









x(1)

y(1)



 =









∫ 1

0

∫ 1

0

K(t, s)u(s)dsdB(t)
∫ 1

0

∫ 1

0

K(t, s)v(s)dsdA(t)









and so





x(1)

y(1)



 =
1

κ





α[t] 1

1 β[t]













∫ 1

0

∫ 1

0

K(t, s)u(s)dsdB(t)
∫ 1

0

∫ 1

0

K(t, s)v(s)dsdA(t)









. (2.5)

Substituting (2.5) into (2.3) and (2.4), we have

x(t) =
α[t]t

κ

∫ 1

0

∫ 1

0

K(t, s)u(s)dsdB(t) +
t

κ

∫ 1

0

∫ 1

0

K(t, s)v(s)dsdA(t)

+

∫ 1

0

K(t, s)u(s)ds,

y(t) =
t

κ

∫ 1

0

∫ 1

0

K(t, s)u(s)dsdB(t) +
β[t]t

κ

∫ 1

0

∫ 1

0

K(t, s)v(s)dsdA(t)

+

∫ 1

0

K(t, s)v(s)ds,

which is equivalent to the system (2.2).�

Remark 2.1. It is easy to show that the function K(t, s) has the following

properties:

t(1 − t)s(1 − s) ≤ K(t, s) = K(s, t) ≤ s(1 − s), ∀ t, s ∈ [0, 1].

From this and (H3), for t ∈ [0, 1], we have

Gi(t, s) ≤ ρs(1 − s), Hi(t, s) ≤ ρs(1 − s), i = 1, 2, (2.6)

and

Gi(t, s) ≥ νts(1 − s), Hi(t, s) ≥ νts(1 − s), i = 1, 2. (2.7)

Define an operator T : P → Q × Q by

T (x, y) = (T1(x, y), T2(x, y)),
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where operators T1, T2 : P → Q = {u ∈ E |u(t) ≥ 0, t ∈ [0, 1]} are defined by

T1(x, y)(t) =

∫ 1

0

G1(t, s)f1(s, x(s), y(s))ds+

∫ 1

0

H1(t, s)f2(s, x(s), y(s))ds, t ∈ [0, 1],

T2(x, y)(t) =

∫ 1

0

G2(t, s)f2(s, x(s), y(s))ds+

∫ 1

0

H2(t, s)f1(s, x(s), y(s))ds, t ∈ [0, 1].

For (x, y) ∈ P , let c be a positive number such that ‖(x,y)‖1

c
< 1 and c > 1.

From (1.5) and (1.6), we have

fi(t, x(t), y(t)) ≤ fi(t, c, c) ≤ cµi1+µi2fi(t, 1, 1), i = 1, 2.

Hence for any t ∈ [0, 1], by Remark 2.1, we get

Ti(x, y)(t) ≤ ρ

∫ 1

0

s(1 − s)f1(s, x(s), y(s))ds + ρ

∫ 1

0

s(1 − s)f2(s, x(s), y(s))ds

≤ ρcµ11+µ12

∫ 1

0

s(1 − s)f1(s, 1, 1)ds + ρcµ21+µ22

∫ 1

0

s(1 − s)f2(s, 1, 1)ds, i = 1, 2.

Thus, if (H1) and (H2) hold, T is well defined on P . Moreover, by Lemma 2.1,

if (x, y) ∈ P is a fixed point of T , then (x, y) is a solution of differential system

(1.1).

Lemma 2.2.If (H1) and (H2) hold, then T (P ) ⊂ P .

Proof. By Remark 2.1, for τ, t, s ∈ [0, 1], we obtain

Gi(t, s) ≥ γtGi(τ, s), Hi(t, s) ≥ γtHi(τ, s), i = 1, 2,

H1(t, s) ≥ γtG2(τ, s), G1(t, s) ≥ γtH2(τ, s)

and

H2(t, s) ≥ γtG1(τ, s), G2(t, s) ≥ γtH1(τ, s).

Hence, for (x, y) ∈ P , t ∈ [0, 1], we have

T1(x, y)(t) =

∫ 1

0

G1(t, s)f1(s, x(s), y(s))ds +

∫ 1

0

H1(t, s)f2(s, x(s), y(s))ds

≥ γt

∫ 1

0

G1(τ, s)f1(s, x(s), y(s))ds + γt

∫ 1

0

H1(τ, s)f2(s, x(s), y(s))ds

= γtT1(x, y)(τ)
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and

T1(x, y)(t) =

∫ 1

0

G1(t, s)f1(s, x(s), y(s))ds +

∫ 1

0

H1(t, s)f2(s, x(s), y(s))ds

≥ γt

∫ 1

0

H2(τ, s)f1(s, x(s), y(s))ds + γt

∫ 1

0

G2(τ, s)f2(s, x(s), y(s))ds

= γtT2(x, y)(τ).

Then T1(x, y)(t) ≥ γt‖T1(x, y)‖ and T1(x, y)(t) ≥ γt‖T2(x, y)‖, i.e.,. T1(x, y)(t) ≥

γt‖(T1(x, y), T2(x, y))‖1. In the same way, we can prove that T2(x, y)(t) ≥

γt‖(T1(x, y), T2(x, y))‖1. Therefore, T (P ) ⊂ P .�

Lemma 2.3 If (H1) and (H2) hold, then T is a completely continuous operator

on P .

Proof. This is a standard textbook result using Ascoli-Arzela theorem, see for

example [7], and is omitted.

3. Main result

Theorem 3.1. If (H1) − (H3) hold, the differential system (1.1) has at least

one positive solution.

Proof. Choose a constant R > 0 such that

R > max{
1

γ
+ 1,

(

σγλ11+λ12
)− 1

λ11+λ12−1 ,
(

σγλ21+λ22
)− 1

λ21+λ22−1 },

where σ =
ν

4

∫ 1

0

(γs)µ11+µ12s(1 − s)f1(s, 1, 1)ds > 0.

We may suppose that T has no fixed point on ∂ΩR (otherwise, the proof is

finished). Now we show that

(x, y) − T (x, y) 6= τ(t, t), ∀ (x, y) ∈ ∂ΩR, τ ≥ 0. (3.1)

If otherwise, there exist (x1, y1) ∈ ∂ΩR and τ1 > 0 such that

(x1, y1) − T (x1, y1) = τ1(t, t),

that is,

x1 = T1(x1, y1) + τ1t, y1 = T2(x1, y1) + τ1t. (3.2)
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Without loss of generality, we assume that ‖x1‖ = ‖(x1, y1)‖1 > 1
γ
. By the

definition of P , we have ‖y1‖ > 1.

Let E1 = {s ∈ [0, 1] : sγ‖x1‖ ≤ 1}, E2 = {s ∈ [0, 1] : sγ‖x1‖ > 1},

F1 = {s ∈ [0, 1] : sγ‖y1‖ ≤ 1}, F2 = {s ∈ [0, 1] : sγ‖y1‖ > 1}. Clearly, E1 ⊂ F1,

E1 6= ∅, E2 6= ∅ and F2 6= ∅.

By (3.2), (H2) and (2.7), for t ∈ [ 14 , 1], we obtain

x1(t) ≥ T1(x1, y1)(t) ≥

∫ 1

0

G1(t, s)f1(s, x1(s), y1(s))ds

≥
ν

4

∫ 1

0

s(1 − s)f1(s, γ‖x1‖s, γ‖y1‖s)ds

=
ν

4
(

∫

E1∩F1

+

∫

E2∩F1

+

∫

E2∩F2

)

≥
ν

4

(∫

E1∩F1

s(1 − s)(sγ‖x1‖)
µ11(sγ‖y1‖)

µ12f1(s, 1, 1)ds

+

∫

E2∩F1

s(1 − s)(sγ‖x1‖)
λ11(sγ‖y1‖)

µ12f1(s, 1, 1)ds

+

∫

E2∩F2

s(1 − s)(sγ‖x1‖)
λ11(sγ‖y1‖)

λ12f1(s, 1, 1)ds

)

≥
ν

4

(∫

E1∩F1

s(1 − s)(γs)µ11+µ12‖x1‖
λ11‖y1‖

λ12f1(s, 1, 1)ds

+

∫

E2∩F1

s(1 − s)(γs)µ11+µ12‖x1‖
λ11‖y1‖

λ12f1(s, 1, 1)ds

+

∫

E2∩F2

s(1 − s)(γs)µ11+µ12‖x1‖
λ11‖y1‖

λ12f1(s, 1, 1)ds

)

≥
ν

4
‖x1‖

λ11‖y1‖
λ12

∫ 1

0

s(1 − s)(γs)µ11+µ12f1(s, 1, 1)ds

= σ‖x1‖λ11‖y1‖λ12 .

Consequently,

‖(x1, y1)‖1 = ‖x1‖ ≥ σ‖x1‖
λ11‖y1‖

λ12 ≥ σγλ11+λ12‖(x1, y1)‖
λ11+λ12

1 . (3.3)

namely

R = ‖(x1, y1)‖1 ≤
(

σγλ11+λ12
)− 1

λ11+λ12−1

which is a contradiction.
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Summing up, (3.1) is true and by properties of fixed point index we have

i(T, ΩR, P ) = 0. (3.4)

Next we claim that

T (x, y) 6= τ(x, y), ∀ (x, y) ∈ ∂Ωr, τ ≥ 1, (3.5)

where

0 < r < min{
1

2
, δ−

1
λ−1 }, λ = min{λ11 + λ12, λ21 + λ22} > 1,

δ = ρ

(
∫ 1

0

s(1 − s)f1(s, 1, 1)ds +

∫ 1

0

s(1 − s)f2(s, 1, 1)ds

)

.

If otherwise, there exist (x2, y2) ∈ ∂Ωr and τ2 ≥ 1 such that

T (x2, y2) = τ2(x2, y2). (3.6)

We may suppose that τ2 > 1, otherwise T has a fixed point on ∂Ωr and

the proof is finished. Without loss of generality, we assume that ‖x2‖ =

‖(x2, y2)‖1 = max{‖x2‖, ‖y2‖} = r. By the definition of P , we have 0 < γr ≤

‖y2‖ ≤ r < 1. From (3.6) and (2.6), it follows that

τ2x2(t) = T1(x2, y2)(t)

=

∫ 1

0

G1(t, s)f1(s, x2(s), y2(s))ds +

∫ 1

0

H1(t, s)f2(s, x2(s), y2(s))ds

≤ ρ

∫ 1

0

s(1 − s)f1(s, r, r)ds + ρ

∫ 1

0

s(1 − s)f2(s, r, r)ds

≤ ρrλ11+λ12

∫ 1

0

s(1 − s)f1(s, 1, 1)ds + ρrλ21+λ22

∫ 1

0

s(1 − s)f2(s, 1, 1)ds

≤ δrλ, t ∈ [0, 1].

Consequently,

r = ‖x2‖ < τ2‖x2‖ ≤ δrλ,

namely

r ≥ δ−
1

λ−1 ,
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which is a contradiction. Hence (3.5) is true and by properties of fixed point

index we have

i(T, Ωr, P ) = 1. (3.7)

By (3.4) and (3.7) we have

i(T, ΩR\Ωr, P ) = i(T, ΩR, P ) − i(T, Ωr, P ) = −1.

Then T has at least one fixed on ΩR\Ωr. This means that differential system

(1.1) has at least one positive solution.
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