BIFURCATION OF A NONLINEAR ELLIPTIC SYSTEM FROM THE FIRST EIGENVALUE

ABDELOUAHED EL KHALIL, MOHAMMED OUANAN
\&
ABDELFATTAH TOUZANI

Abstract. We study the following bifurcation problem in a bounded domain Ω in \mathbb{R}^{N} :

$$
\left\{\begin{array}{lll}
-\Delta_{p} u= & \lambda|u|^{\alpha}|v|^{\beta} v+f(x, u, v, \lambda) & \text { in } \Omega \\
-\Delta_{q} v= & \lambda|u|^{\alpha}|v|^{\beta} u+g(x, u, v, \lambda) & \text { in } \Omega \\
(u, v) \in & W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega) . &
\end{array}\right.
$$

We prove that the principal eigenvalue λ_{1} of the following eigenvalue problem
is simple and isolated and we prove that $\left(\lambda_{1}, 0,0\right)$ is a bifurcation point of the system mentioned above.

1. Introduction

The purpose of this paper is to illustrate a global bifurcation phenomenon for the nonlinear elliptic system

$$
\begin{cases}-\Delta_{p} u=\lambda|u|^{\alpha}|v|^{\beta} v+f(x, u, v, \lambda) & \text { in } \Omega \tag{BS}\\ -\Delta_{q} v=\lambda|u|^{\alpha}|v|^{\beta} u+g(x, u, v, \lambda) & \text { in } \Omega \\ (u, v) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega), & \end{cases}
$$

where Ω is a bounded domain not necessary regular in $\mathbb{R}^{N}, N \geq 1$, α, β, p and q are real numbers satisfying suitable conditions which ensure the results. The system $(B S)$ is weakly coupled in the sense that the interaction is present only in the " source terms", while the differential terms have only one dependent variable each. The differential operator involved is the well-known p-Laplacian $\Delta_{p} u=\nabla \cdot\left(|\nabla u|^{p-2} \nabla u\right)$ which reduces to the ordinary Laplacian Δu, when $p=2$. The nonlinearities f and g satisfy some hypotheses to be specified later. To

[^0]system $(B S)$ we associate the eigenvalue problem system
\[

(E S) \quad $$
\begin{cases}-\Delta_{p} u=\lambda|u|^{\alpha}|v|^{\beta} v & \text { in } \Omega \\ -\Delta_{q} v=\lambda|u|^{\alpha}|v|^{\beta} u & \text { in } \Omega \\ (u, v) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega) .\end{cases}
$$
\]

We say that λ is an eigenvalue of $(E S)$ if there exists a nontrivial pair $(u, v) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$ that satisfies $(E S)$ in the following sense

$$
\left\{\begin{aligned}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \phi d x & =\int_{\Omega}\left[\lambda|u|^{\alpha}|v|^{\beta} v \phi d x\right. \\
\int_{\Omega}|\nabla v|^{q-2} \nabla v \nabla \psi d x & =\int_{\Omega}\left[\lambda|u|^{\alpha}|v|^{\beta} u \psi d x\right.
\end{aligned}\right.
$$

for any $(\phi, \psi) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$.
The goal of this work is the study of the main properties (simplicity, isolation) of the least positive eigenvalue denote λ_{1} of $(E S)$ in theorem 3.1. These properties are well-known in the scalar case of one equation, we refer the reader to the bibliography contained in [14] where several results are cited.

We prove that the eigenvectors (u, v) associated to λ_{1} have definite sign in Ω. So, we show that this property implies that λ_{1} is simple and isolated in the spectrum. Note that our result of isolation follows by adaptation a technique used by Anane [1] for scalar p-Laplacian in a smooth bounded domain. Concerning the bifurcation problem, we prove the existence of bifurcation branch of nontrivial solutions of $(B S)$ from λ_{1}, (see Theorem 3.2.). Here we use abstract methods of nonlinear functional analysis based on the generalized topological degree in order to get a new result.

System $(B S)$ has been studied by Chaïb [6] in the case $\Omega=\mathbb{R}^{N}$. The author extended Diaz-Saás inequality in \mathbb{R}^{N} and claimed that λ_{1} is simple. In [12], the authors obtained similar result by considering for a quite different system. In the case of a bounded domain sufficiently regular the following eigenvalue system

$$
\begin{cases}-\Delta_{p} u=\lambda|u|^{\alpha-1}|v|^{\beta+1} u & \text { in } \Omega \\ -\Delta_{q} v=\lambda|u|^{\alpha+1}|v|^{\beta-1} v & \text { in } \Omega \\ (u, v) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega) & \end{cases}
$$

was studied in [5], where the author proved only the simplicity result of the first eigenvalue.

Here, we address to $(E S)$ and $(B S)$ without any regularity assumption on the boundary $\partial \Omega$.

EJQTDE, 2003 No. 21, p. 2

Bifurcation problems in the case of one equation in a smooth bounded domain involving p-Laplacian operator were studied by [2],[9] and [10] under some restrictive conditions on the nonlinearity sources. In any bounded domain, we cite recent results of [7] and [8].

A global bifurcation result from the first eigenvalue of a particular system is considered in [13] under some restrictive hypotheses on the nonlinearities f and g to be specified at the end of this paper.

In this work, we consider a bifurcation system for which we investigate the system improving the conditions on the nonlinearities f and g in any bounded domain with some condition of homogeneity type connecting p, q, α and β. For this end we use a generalized degree of Leray-Shauder.

This paper is organized as follows: in Section 2 we introduce some assumptions, definitions and we prove some auxiliary results that are the key point for proving our results; Section 3 contains a results and proofs of simplicity and isolation of λ_{1}, finally we verify that the topological degree has a jump when λ crosses λ_{1}, which implies the bifurcation results.

2. Assumptions and Preliminaries

Through this paper Ω will be a bounded domain of \mathbb{R}^{N}. $W_{0}^{1, p}(\Omega)$ will denote the usual Sobolev space endowed with norm $\|\nabla u\|_{p}=$ $\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{\frac{1}{p}}$. We will write $\|.\|_{p}$ for the $L^{p}-$ norm. We will also denote for $p>1, p^{\prime}=\frac{p}{p-1}$ the Hölder conjugate exponent of p and p^{*} the critical exponent, that is $p^{*}=\infty$ if $p \geq N$ and $p^{*}=\frac{N p}{N-p}$ if $1<p<N$.

Here we use the following norm in product space $W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$

$$
\|(u, v)\|=\|\nabla u\|_{p}+\|\nabla v\|_{q} .
$$

and $\|.\|_{*}$ is the dual norm.
2.1. Assumptions. We assume that $p, q>1, \alpha>0, \beta>0$ and

$$
\begin{equation*}
\frac{\alpha+1}{p}+\frac{\beta+1}{q}=1 \tag{2.1}
\end{equation*}
$$

(f) $\quad f: \Omega \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ satisfies Carathéodory's conditions in the first three variables and

$$
\begin{gathered}
\lim _{|(r, s)| \rightarrow+\infty \mid} \frac{f(x, r, s, \lambda)}{|r|^{\gamma-1} r|s|^{\delta+1}}=0 ; \\
f(x, r, s, \lambda)=o\left(|r|^{p-1}\right) \text { as }|(r, s)| \rightarrow 0
\end{gathered}
$$

uniformly a.e. with respect to x and uniformly with respect to λ in bounded intervals of \mathbb{R}.
(g) $g: \Omega \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ satisfies Carathéodory's conditions in the first three variables and

$$
\begin{gather*}
\lim _{|(r, s)| \rightarrow+\infty \mid} \frac{g(x, r, s, \lambda)}{|r|^{\gamma+1}|s|^{\delta-1} s}=0 ; \tag{2.4}\\
g(x, r, s, \lambda)=o\left(|s|^{q-1}\right) \text { as }|(r, s)| \rightarrow 0 \tag{2.5}
\end{gather*}
$$

uniformly a.e. with respect to x and uniformly with respect to λ in bounded intervals of \mathbb{R}; with

$$
\gamma+1>p \text { or } \delta+1>q
$$

and

$$
\delta+\gamma+2<\min \left(p^{*}, q^{*}\right),
$$

for some nonnegative reals γ and δ.
Remark 2.1. The homogeneity assumption (2.1) justifies the notion of eigenvalues.
2.2. Definitions. 1.We say that $(\lambda,(u, v))$ in $\mathbb{R} \times W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$ is a solution of $(B S)$ if for any $(\phi, \psi) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$,

$$
\left\{\begin{align*}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \phi d x & =\int_{\Omega}\left[\lambda|u|^{\alpha}|v|^{\beta} v+f(x, u, v, \lambda)\right] \phi d x \tag{2.6}\\
\int_{\Omega}|\nabla v|^{q-2} \nabla v \nabla \psi d x & =\int_{\Omega}\left[\lambda|u|^{\alpha}|v|^{\beta} u+g(x, u, v, \lambda)\right] \psi d x
\end{align*}\right.
$$

for all $(\phi, \psi) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$. We note that the pair $(\lambda,(0,0))$ is a solution of $(B S)$ for every $\lambda \in \mathbb{R}$. The pairs of this form will be called the trivial solutions of $(B S)$. We say that $P=(\bar{\lambda},(0,0))$ is a bifurcation point of $(B S)$ if in any neighbourhood of P in $\mathbb{R} \times W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$ there exists a nontrivial solution of $(B S)$.
2. Let X be a real reflexive Banach space and let X^{*} stand for its dual with respect to the pairing $\langle.,$.$\rangle . We shall deal with mapping T$ acting from X into X^{*}. T is demicontinuous at u in X, if $u_{n} \rightarrow u$ strongly in X, implies that $T u_{n} \rightharpoonup T u$ weakly in X^{*}. T is said to belong to the class $\left(S_{+}\right)$, if for any sequence u_{n} weakly convergent to u in X and $\limsup _{n \rightarrow+\infty}\left\langle T u_{n}, u_{n}-u\right\rangle \leq 0$, it follows that $u_{n} \rightarrow u$ strongly in X.

EJQTDE, 2003 No. 21, p. 4
2.3. Degree theory. If $T \in\left(S_{+}\right)$and T is demicontinuous, then it is possible to define the degree

$$
\operatorname{Deg}[T ; D ; 0]
$$

where $D \subset X$ is a bounded open set such that $T u \neq 0$ for any $u \in \partial D$. Its properties are analogous to the ones of the Leray-Schauder degree (cf.[3]).

A point $u_{0} \in X$ will be called a critical point of T if $T u_{0}=0$. We say that u_{0} is an isolated critical point of T if there exists $\epsilon>0$ such that for any $u \in B_{\epsilon}\left(u_{0}\right)$ (open ball in X centered to u_{0} and the radius $\epsilon), \quad T u \neq 0$ if $u \neq u_{0}$. Then the limit

$$
\operatorname{Ind}\left(T, u_{0}\right)=\lim _{\epsilon \rightarrow 0^{+}} \operatorname{Deg}\left[T ; B_{\epsilon}\left(u_{0}\right) ; 0\right]
$$

exists and is called the index of the isolated critical point u_{0}.
Assume, furthermore, that T is a potential operator, i.e., for some continuously differentiable functional $\Phi: X \rightarrow \mathbb{R}, \Phi^{\prime}(u)=T u, u \in X$. Then we have the following two lemmas which we can find in [9] or [10]. These lemmas are crucial results in our bifurcation argument.

Lemma 2.1. Let u_{0} be a local minimum of Φ and an isolated critical point of T. Then

$$
\operatorname{Ind}\left(T, u_{0}\right)=1
$$

Lemma 2.2. Assume that $\langle T u, u\rangle>0$ for all $u \in X,\|u\|_{X}=\rho$. Then

$$
\operatorname{Deg}\left[T ; B_{\rho}(0) ; 0\right]=1
$$

2.4. Preliminaries. This subsection establishes an abstract framework used to prove our main results.
Let define, for $(u, v) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$ and $(\phi, \psi) \in W_{0}^{1, p}(\Omega) \times$ $W_{0}^{1, q}(\Omega)$, the operators

$$
\begin{aligned}
&\left\langle A_{u}(u, v),(\phi, \psi)\right\rangle=\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \phi d x, \\
&\left\langle A_{v}(u, v),(\phi, \psi)\right\rangle=\int_{\Omega}|\nabla v|^{q-2} \nabla v \nabla \psi d x, \\
&\left\langle B_{u}(u, v),(\phi, \psi)\right\rangle=\int_{\Omega}|u|^{\alpha}|v|^{\beta} v \phi d x, \\
&\left\langle B_{v}(u, v),(\phi, \psi)\right\rangle=\int_{\Omega}|u|^{\alpha}|v|^{\beta} u \psi d x \\
& \text { EJQTDE, } 2003 \text { No. 21, p. } 5
\end{aligned}
$$

with
$A(u, v)=\frac{\alpha+1}{p} \int_{\Omega}|\nabla u|^{p} d x+\frac{\beta+1}{q} \int_{\Omega}|\nabla v|^{q} d x$ and $B(u, v)=\int_{\Omega}|u|^{\alpha}|v|^{\beta} u v d x$ are functionals of class C^{1} and

$$
A_{u}=\frac{1}{\alpha+1} \frac{\partial A}{\partial u}, \quad A_{v}=\frac{1}{\beta+1} \frac{\partial A}{\partial v}, B_{u}=\frac{1}{\alpha+1} \frac{\partial B}{\partial u}, B_{v}=\frac{1}{\beta+1} \frac{\partial B}{\partial v} .
$$

Define also

$$
\begin{aligned}
\left\langle F^{\lambda}(u, v),(\phi, \psi)\right\rangle & =\int_{\Omega} f(x, u, v, \lambda) \phi d x \\
\left\langle G^{\lambda}(u, v),(\phi, \psi)\right\rangle & =\int_{\Omega} g(x, u, v, \lambda) \psi d x
\end{aligned}
$$

Remarks 2.1. (i) Due to (2.6) a pair (u, v) is a weak solution of $(B S)$ if and only if

$$
A_{u}(u, v)-\lambda B_{u}(u, v)=F^{\lambda}(u, v) \text { in }\left(W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)\right)^{\prime}
$$

and

$$
A_{v}(u, v)-\lambda B_{v}(u, v)=G^{\lambda}(u, v) \text { in }\left(W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)\right)^{\prime}
$$

(ii) The operators A_{u} and A_{v} are odd and satisfy $\left(S_{+}\right)$.

Lemma 2.3. B_{u} and B_{v} are well defined, completely continuous and odd functionals.

Proof.

Step 1. Definition of B_{u} and B_{v}.
By Hölder's inequality, we have

$$
\left|\left\langle B_{u}(u, v),(\phi, \psi)\right\rangle\right|=\left.\left|\int_{\Omega}\right| u\right|^{\alpha}|v|^{\beta} v \phi d x \mid \leq\|u\|_{p}^{\alpha}\|v\|_{q}^{\beta+1}\|\phi\|_{p}<+\infty
$$

for any $(u, v) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$ and $(\phi, \psi) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$. Thus B_{u} is well defined. Similarly, we prove that B_{v} is also well defined.

Step 2. Compactness of B_{u} and B_{v}.
Let $\left\{\left(u_{n}, v_{n}\right)\right\}_{n \geq 0} \subset W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$ be a sequence such that $\left(u_{n}, v_{n}\right) \rightharpoonup$ (u, v) weakly in $W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$. We claim that $B_{u}\left(u_{n}, v_{n}\right) \rightarrow$ $B_{u}(u, v)$ strongly in $W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$, i.e. for all $(\phi, \psi) \in W_{0}^{1, p}(\Omega) \times$ $W_{0}^{1, q}(\Omega)$,

$$
\sup _{\|\nabla \phi\|_{p}+\|\nabla \psi\|_{q} \leq 1} \mid\left\langle B_{u}\left(u_{n}, v_{n}\right)-B_{u}(u, v),(\phi, \psi)\langle |=o(1) \text { as } n \rightarrow+\infty .\right.
$$

EJQTDE, 2003 No. 21, p. 6

Indeed, Hölder's inequality implies

$$
\begin{aligned}
\left|\left\langle B_{u}\left(u_{n}, v_{n}\right)-B_{u}(u, v),(\phi, \psi)\right\rangle\right|= & \left|\int_{\Omega}\left(\left|u_{n}\right|^{\alpha}\left|v_{n}\right|^{\beta} v_{n}-|u|^{\alpha}|v|^{\beta} v\right) \phi d x\right| \\
\leq & \int_{\Omega}\left|v_{n}\right|^{\beta+1}\left|\left(\left|u_{n}\right|^{\alpha}-|u|^{\alpha}\right)\right||\phi| d x \\
+ & \left.\int_{\Omega}|u|^{\alpha}| | v_{n}\right|^{\beta} v_{n}-|v|^{\beta} v| | \phi \mid d x \\
\leq & \left\|\left|u_{n}\right|^{\alpha}-|u|^{\alpha}\right\|_{\frac{p}{\alpha}}\|\phi\|_{p}\left\|v_{n}\right\|_{q}^{\beta+1} \\
& +\|u\|_{p}^{\alpha}\|\phi\|_{p}\left\|\left|v_{n}\right|^{\beta} v_{n}-|v|^{\beta} v \mid\right\|_{\frac{q}{\beta+1}} .
\end{aligned}
$$

Due to the continuity of Nemytskii operator $u \longrightarrow|u|^{\alpha}$ (resp. $v \longrightarrow$ $\left.|v|^{\beta} v\right)$
from $L^{p}(\Omega)$ into $L^{\frac{p}{\alpha}}(\Omega)$ (resp. from $L^{q}(\Omega)$ into $L^{\frac{q}{\beta+1}}(\Omega)$) and Rellich's Theorem, there exists $n_{0} \geq 0$ such that for all $n \geq n_{0}$ we have

$$
\begin{gather*}
\left\|\left|u_{n}\right|^{\alpha}-|u|^{\alpha}\right\|_{\frac{p}{\alpha}}=o(1), \tag{2.7}\\
\left\|\left|v_{n}\right|^{\beta} v_{n}-|v|^{\beta} v\right\|_{\frac{q}{\beta+1}}=o(1) . \tag{2.8}
\end{gather*}
$$

Thus $\left(v_{n}\right)$ is bounded in $L^{p}(\Omega)$. Finally from (2.7) and (2.8) we have the claim.
The compactness of B_{v} can be proved by the same argument.
The oddness of B_{u} and B_{v} is obvious. The proof is completed.

Lemma 2.4. $F^{\lambda}(.,$.$) and G^{\lambda}(.,$.$) are well defined, completely continu-$ ous and $F^{\lambda}(0,0)=G^{\lambda}(0,0)=0$ and we have

$$
\begin{equation*}
\lim _{\substack{\|\nabla u\|_{p} \rightarrow 0 \\\|\nabla v\|_{q} \rightarrow 0}} \frac{F^{\lambda}(u, v)}{\|\nabla u\|_{p}^{p-1}+\|\nabla v\|_{q}^{q-1}}=0 \text { in }\left(W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)\right)^{\prime}, \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\substack{\|\nabla u\|_{p} \rightarrow 0 \\\|\nabla v\|_{q} \rightarrow 0}} \frac{G^{\lambda}(u, v)}{\|\nabla u\| p^{p-1}+\|\nabla v\|_{q}^{q-1}}=0 \text { in }\left(W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)\right)^{\prime}, \tag{2.10}
\end{equation*}
$$

uniformly with respect to λ in bounded subsets of \mathbb{R}.
EJQTDE, 2003 No. 21, p. 7

Proof.

(2.2) and (2.3) imply that for any $\epsilon>0$ there are two real $\xi=\xi(\epsilon)$ and $M=M(\xi)>0$ such that for a.e, $x \in \Omega$

$$
|f(x, u, v, \lambda)| \leq \epsilon|u|^{p-1}+M|u|^{\gamma}|v|^{\delta+1} .
$$

- Compactness:

Here, we show the compactness of F^{λ}.
If $\delta+1>p$, let $\theta \in \mathbb{R}^{+}$such that:

$$
\left\{\begin{array}{lll}
\delta+\gamma+2<\theta<\min \left(p^{*}, q^{*}\right) & \text { if } & \gamma+1>p \\
\max (\delta+\gamma+2, p)<\theta<\min \left(p^{*}, q^{*}\right) & \text { if } & \gamma+1 \leq p
\end{array}\right.
$$

By using Hölder's and Young's inequalities we have

$$
\begin{aligned}
\int_{\Omega}|f(x, \lambda, u, v)|^{\theta^{\prime}} d x & \leq \epsilon \int_{|u(x)|+|v(x)| \leq \xi}|u|^{\theta^{\prime}(p-1)} d x+M \int_{|u(x)|+|v(x)| \geq \xi}|u|^{\theta^{\prime} \delta}|v|^{\theta^{\prime}(\gamma+1)} d x \\
& \leq \epsilon \int_{\Omega}|u|^{\theta^{\prime}(p-1)} d x+M \int_{\Omega}|u|^{\theta^{\prime} \gamma}|v|^{\theta^{\prime}(\delta+1)} d x \\
& \leq M_{1} \int_{\Omega}|u|^{\theta} d x+M_{2}\left(\int_{\Omega}|u|^{\theta} d x\right)^{\frac{\gamma}{\theta-1}}\left(\int_{\Omega}|v|^{\theta} d x\right)^{\frac{\delta+1}{\theta-1}}
\end{aligned}
$$

Thus F^{λ} is the Nemytskii continuous operator from $L^{\theta}(\Omega) \times L^{\theta}(\Omega)$ into $L^{\theta^{\prime}}(\Omega)$.
On the other hand, let $\left\{\left(u_{n}, v_{n}\right)\right\}_{n} \subset W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$ such that $\left(u_{n}, v_{n}\right) \rightharpoonup(u, v)$ in $W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$ and strongly in $L^{\theta}(\Omega) \times L^{\theta}(\Omega)$. So,

$$
\begin{aligned}
\left\|F^{\lambda}\left(u_{n}, v_{n}\right)-F^{\lambda}(u, v)\right\|_{*} & =\sup _{\mid(\phi, \psi) \| \leq 1}\left|\int_{\Omega}\left(f\left(x, \lambda, u_{n}, v_{n}\right)-f(x, \lambda, u, v)\right) \phi d x\right| \\
& \leq \| f\left(x, \lambda, u_{n}, v_{n}\right)-f\left(x, \lambda, u, v \|_{\theta^{\prime}} \rightarrow 0, \text { as } n \rightarrow \infty .\right.
\end{aligned}
$$

Hence F^{λ} is compact.
By a similar argument, we can show that G^{λ} is compact.

- For the limit (2.9) and (2.10), we argue as follows:

EJQTDE, 2003 No. 21, p. 8

Hölder's inequality yields for all $(\phi, \psi) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$,

$$
\begin{aligned}
\left\|F^{\lambda}(u, v)\right\|_{*} & \leq \sup _{\|(\phi, \psi)\| \leq 1}\left|\left(\epsilon \int_{\Omega}|u|^{p-1} \phi d x+M \int_{\Omega}|u|^{\gamma}|v|^{\delta+1} \phi d x\right)\right| \\
& \leq \sup _{\|(\phi, \psi)\| \leq 1}\left(\epsilon\|u\|_{p}^{p-1}\|\phi\|_{p}+M|\Omega|^{\omega_{0}}\|u\|_{p *}^{\gamma}\|v\|_{q^{*}}^{\delta+1}\|\phi\|_{p *}\right) \\
& \leq c \sup _{\|(\phi, \psi)\| \leq 1}\left(\epsilon\|\nabla u\|_{p}^{p-1}+M\|\nabla u\|_{p}^{\gamma}\|\nabla v\|_{q}^{\delta+1}\right)\|\nabla \phi\|_{p}
\end{aligned}
$$

where $\omega_{0}=\frac{p^{*} q^{*}}{p^{*} q^{*}-(\gamma+1) p^{*}-(\delta+1) q^{*}}$ and $c \in \mathbb{R}^{+}$is a constant.
So, we distinguish two cases:
If $\gamma+1>p$ then,

$$
\begin{equation*}
\frac{\left\|F^{\lambda}(u, v)\right\|_{*}}{\|\nabla u\|_{p}^{p-1}+\|\nabla v\|_{q}^{q-1}} \leq c\left(\epsilon+M\|\nabla u\|_{p}^{\gamma-(p-1)}\|\nabla v\|_{q}^{\delta+1}\right) . \tag{2.11}
\end{equation*}
$$

If $\delta+1>q$ then,

$$
\begin{equation*}
\frac{\left\|F^{\lambda}(u, v)\right\|_{*}}{\|\nabla u\|_{p}^{p-1}+\|\nabla v\|_{q}^{q-1}} \leq c \epsilon+c M\|\nabla u\|_{p}^{\gamma}\|\nabla v\|_{q}^{(\delta+1)-(q-1)} . \tag{2.12}
\end{equation*}
$$

Therefore, by passing to the limit in (2.11) or (2.12), (2.9) follows. There is the same proof of (2.10).

Remark 2.2. Note that every continuous map $T: X \longrightarrow X^{*}$ is also demicontinuous. Note also, that if $T \in\left(S_{+}\right)$then $(T+K) \in\left(S_{+}\right)$for any compact operator $K: X \longrightarrow X^{*}$.

Remark 2.3. λ is an eigenvalue of $(E S)$ if and only if the system

$$
\left\{\begin{array}{l}
A_{u}(u, v)-\lambda B_{u}(u, v)=0 \\
A_{v}(u, v)-\lambda B_{v}(u, v)=0
\end{array}\right.
$$

has a nontrivial solution $(u, v) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$.
Proposition 2.1. Under the assumption (2.1), (ES) has a principal eigenvalue λ_{1} characterized variationally as follows

$$
\lambda_{1}=\inf \left\{A(u, v) ;(u, v) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega), B(u, v)=1\right\}
$$

The proof of this proposition is more or less the same as F. De Thélin [5] for the system case ($E S$) modulo a suitable modification.

EJQTDE, 2003 No. 21, p. 9

Now, let

$$
\begin{aligned}
\Gamma_{p}(u, \phi) & =\int_{\Omega}|\nabla u|^{p} d x+(p-1) \int_{\Omega}|\nabla \phi|^{p}\left(\frac{|u|}{\phi}\right)^{p} d x \\
& -p \int_{\Omega}|\nabla \phi|^{p-2} \nabla \phi \nabla u\left(\frac{|u|^{p-2} u}{\phi^{p-1}}\right) d x \\
& =\int_{\Omega}|\nabla u|^{p} d x+\int_{\Omega} \frac{\Delta_{p} \phi}{\phi^{p-1}}|u|^{p} d x
\end{aligned}
$$

for all $(u, \phi) \in\left(W_{0}^{1, p}(\Omega) \cap C^{1}(\Omega)\right)^{2}$ with $\phi>0$ in Ω.
The following lemma is the heart on the proof of the simplicity.
Lemma 2.5. For all $(u, \phi) \in\left(W_{0}^{1, p}(\Omega) \cap C^{1, \nu}(\Omega)\right)^{2}$ with $\phi>0$ in Ω and $\nu \in(0,1)$, we have $\Gamma_{p}(u, \phi) \geq 0$ i.e

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p} d x \geq \int_{\Omega} \frac{-\Delta_{p} \phi}{\phi^{p-1}}|u|^{p} d x \tag{2.13}
\end{equation*}
$$

and if $\Gamma_{p}(u, \phi)=0$ there is $c \in \mathbb{R}$ such that $u=c \phi$.

Proof.

By Young's inequality we have for $\epsilon>0$,

$$
\begin{align*}
\int_{\Omega} \nabla u|\nabla \phi|^{p-2} \nabla \phi \frac{u|u|^{p-2}}{\phi^{p-1}} d x & \leq \int_{\Omega}|\nabla u||\nabla \phi|^{p-1}\left(\frac{|u|}{\phi}\right)^{p-1} d x \\
& \leq \int_{\Omega}\left(\frac{\epsilon^{p}}{p}|\nabla u|^{p}+\frac{p-1}{p \epsilon^{p}}\left|\frac{u}{\phi}\right|^{p}|\nabla \phi|^{p}\right) d x . \tag{2.14}
\end{align*}
$$

For $\epsilon=1$ we have by integration over Ω,
$p \int_{\Omega}|\nabla \phi|^{p-2} \nabla \phi \nabla u\left(\frac{|u|^{p-2} u}{\phi^{p-1}}\right) d x \leq \int_{\Omega}|\nabla u|^{p} d x+(p-1) \int_{\Omega}\left|\frac{u}{\phi}\right|^{p}|\nabla \phi|^{p} d x$.
Thus

$$
\Gamma_{p}(u, \phi) \geq 0
$$

On the other hand, if $\Gamma_{p}(u, \phi)=0$ by (2.14), we obtain for $\epsilon=1$,

$$
\begin{equation*}
p \int_{\Omega}|\nabla \phi|^{p-2} \nabla \phi \nabla u\left(\frac{|u|^{p-2} u}{\phi^{p-1}}\right) d x-\int_{\Omega}|\nabla u|^{p} d x-(p-1) \int_{\Omega}\left|\frac{u}{\phi}\right|^{p}|\nabla \phi|^{p} d x=0 \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}\left\{\nabla u \nabla \phi|\nabla \phi|^{p-2} \frac{u|u|^{p-2}}{\phi^{p-1}}-|\nabla u||\nabla \phi|^{p-1}\left(\frac{|u|}{\phi}\right)^{p-1}\right\} d x=0 \tag{2.16}
\end{equation*}
$$

Thanks to (2.15) we find $|\nabla u|=\left|\frac{u}{\phi} \nabla \phi\right|$. Thus from (2.16), it follows that $\nabla u=\epsilon \frac{u}{\phi} \nabla \phi$, where $|\epsilon|=1$. Consequently, since $\Gamma_{p}(u, \phi)=0$, we obtain $\epsilon=1$ and $\nabla\left(\frac{u}{\phi}\right)=0$. Therefore, there is $c \in \mathbb{R}$ such that $u=c \phi$.

Remarks 2.2. (i) By adapting the argument of [5] we can show that the eigenvectors associated to λ_{1} without any additional smoothness assumption on $\partial \Omega$, are in $L^{\infty} \times L^{\infty}$.
(ii) Thanks to an advanced result in regularity theory of [4], we deduce with (i) that the positive solution of $\left(E S\right.$) associated to λ_{1} is in $C_{l o c}^{1}(\Omega) \times C_{l o c}^{1}(\Omega)$.
(iii) According to the Maximum principle of [17] applied to each equation we conclude that $(E S)$ has a priori a positive eigenvector associated to λ_{1}.

3. Main Results

3.1. Simplicity and isolation results.

Theorem 3.1. (i) λ_{1} is simple.
(ii) λ_{1} is the unique eigenvalue of $(E S)$ having an eigenvector (u, v) not changing its sign, i.e., $u v>0$ in Ω.
(iii) There is $c>0$ such that

$$
\left|\Omega^{-}\right| \geq(|\lambda| c)^{\omega}
$$

where $(\lambda,(u, v))$ is an eigenpair of $(E S), \Omega^{-}=\{x \in \Omega, u(x)<0$ and $v(x)<0\}$ and $\omega=\frac{p^{*} q^{*}}{p^{*} q^{*}-(\alpha+1) q^{*}-(\beta+1) p^{*}}$.
(iv) λ_{1} is isolated.

Proof.

(i) Let (u, v) and (ϕ, ψ) be two eigenvectors of $(E S)$ associated to λ_{1} with (u, v) is positive $(u \geq 0, v \geq 0)$. Thanks to definition of λ_{1} and EJQTDE, 2003 No. 21, p. 11

Hölder's inequality we have in view of remark 2.4 that

$$
\begin{aligned}
A(\phi, \psi) & =\lambda_{1} B(\phi, \psi) \\
& \leq \lambda_{1} \int_{\Omega} u^{\alpha+1} v^{\beta+1} \frac{|\phi|^{\alpha+1}|\psi|^{\beta+1}}{u^{\alpha+1} v^{\beta+1}} d x \\
& \leq \lambda_{1} \int_{\Omega} u^{\alpha+1} v^{\beta+1}\left[\frac{\alpha+1}{p} \frac{|\phi|^{p}}{u^{p}}+\frac{\beta+1}{q} \frac{|\psi|^{q}}{v^{q}}\right] d x \\
& \leq \lambda_{1} \int_{\Omega}\left[\frac{\alpha+1}{p} \frac{u^{\alpha} v^{\beta+1}}{u^{p-1}}|\phi|^{p}+\frac{\beta+1}{q} \frac{u^{\alpha+1} v^{\beta}}{v^{q-1}}|\psi|^{q}\right] d x \\
& \leq \frac{\alpha+1}{p} \int_{\Omega} \frac{-\Delta_{p} u}{u^{p-1}}|\phi|^{p} d x+\frac{\beta+1}{q} \int_{\Omega} \frac{-\Delta_{q} v}{v^{q-1}}|\psi|^{q} d x .
\end{aligned}
$$

Thanks to lemma 2.5 we have

$$
A(\phi, \psi)=\frac{\alpha+1}{p} \int_{\Omega} \frac{-\Delta_{p} u}{u^{p-1}}|\phi|^{p} d x+\frac{\beta+1}{q} \int_{\Omega} \frac{-\Delta_{q} v}{v^{q-1}}|\psi|^{q} d x .
$$

Thus

$$
\int_{\Omega}|\nabla \phi|^{p} d x=\int_{\Omega} \frac{-\Delta_{p} u}{u^{p-1}}|\phi|^{p} d x \text { and } \int_{\Omega}|\nabla \phi|^{p} d x=\int_{\Omega} \frac{-\Delta_{q} v}{v^{q-1}}|\phi|^{q} d x .
$$

Hence by Lemma 3.2 again, there exist k_{1} and k_{2} in \mathbb{R} such that $u=k_{1} \phi$ and $v=k_{2} \psi$.
(ii) Let (u, v) be a positive eigenvector of (ES) associated to λ and (ϕ, ψ) a positive solution of (ES) associated to λ_{1}. It is clear that $\lambda_{1} \leq \lambda$ and by Hölder's inequality we have

$$
\begin{aligned}
A(\phi, \psi) & =\lambda_{1} B(\phi, \psi) \\
& \leq \lambda \int_{\Omega} u^{\alpha+1} v^{\beta+1} \frac{\phi^{\alpha+1} \psi^{\beta+1}}{u^{\alpha+1} v^{\beta+1}} d x \\
& \leq \lambda \int_{\Omega} u^{\alpha+1} v^{\beta+1}\left[\frac{\alpha+1}{p} \frac{\phi^{p}}{u^{p}}+\frac{\beta+1}{q} \frac{\psi^{q}}{v^{q}}\right] d x \\
& \leq \lambda \int_{\Omega}\left[\frac{\alpha+1}{p} \frac{u^{\alpha} v^{\beta+1}}{u^{p-1}} \phi^{p}+\frac{\beta+1}{q} \frac{u^{\alpha+1} v^{\beta}}{v^{q-1}} \psi^{q}\right] d x \\
& \leq \frac{\alpha+1}{p} \int_{\Omega} \frac{-\Delta_{p} u}{u^{p-1}} \phi^{p} d x+\frac{\beta+1}{q} \int_{\Omega} \frac{-\Delta_{q} v}{v^{q-1}} \psi^{q} d x .
\end{aligned}
$$

Therefore, we deduce from Lemma 2.5 that $A(\phi, \psi)=A(u, v)$ i.e

$$
\lambda_{1} \int_{\Omega}|\phi|^{\alpha+1}|\psi|^{\beta+1} d x=\lambda \int_{\Omega_{\text {EJQTDE, }}}|u|^{\alpha+1}|v|^{\beta+1} d x
$$

EJQTDE, 2003 No. 21, p. 12

So, by normalization, we conclude that $\lambda_{1}=\lambda$.
(iii) Let $(\lambda,(u, v))$ be an eigenpair of $(E S), u^{-}(x)=\min (u(x), 0)$ and $v^{-}(x)=$ $\min (v(x), 0)$.
Thus, by multiplying the first equation of $(E S)$ by u^{-}we have

$$
\begin{align*}
\int_{\Omega}\left|\nabla u^{-}\right|^{p} d x & =\lambda \int_{\Omega^{2}}|u|^{\alpha}|v|^{\beta} v u^{-} d x \\
& =\lambda\left[\int_{\Omega^{-}}\left|u^{-}\right|^{\alpha+1}\left|v^{-}\right|^{\beta+1}+\int_{\Omega}|u|^{\alpha}|v|^{\beta} u^{-} v^{+}\right] d x \\
& \leq|\lambda| \int_{\Omega^{-}}\left|u^{-}\right|^{\alpha+1}\left|v^{-}\right|^{\beta+1} d x \\
& \leq\left.|\lambda| \Omega^{-}\right|^{\omega}\left\|u^{-}\right\|_{p^{*}}^{\alpha+1}\left\|v^{-}\right\|_{q^{*}}^{\beta+1} \\
& \leq c|\lambda|\left|\Omega^{-}\right|^{\omega}\left\|u^{-}\right\|_{1, p}^{\alpha+1}\left\|v^{-}\right\|_{1, q}^{\beta+1} \\
& \leq c|\lambda|\left|\Omega^{-}\right|^{\omega}\left(\frac{\alpha+1}{p} \int_{\Omega}\left|\nabla u^{-}\right|^{p} d x+\frac{\beta+1}{q} \int_{\Omega}\left|\nabla v^{-}\right|^{q} d x\right) . \tag{3.1}
\end{align*}
$$

Similarly, multiplying the second equation of $(E S)$ by v^{-}, we obtain

$$
\begin{equation*}
\int_{\Omega}\left|\nabla v^{-}\right|^{q} d x \leq c|\lambda|\left|\Omega^{-}\right|^{\omega}\left(\frac{\alpha+1}{p} \int_{\Omega}\left|\nabla u^{-}\right|^{p} d x+\frac{\beta+1}{q} \int_{\Omega}\left|\nabla v^{-}\right|^{q} d x\right) . \tag{3.2}
\end{equation*}
$$

Hence by (3.1) and (3.2) we complete the proof of (iii).
(iv) The proof is a rather a simple adaptation of argument of [1] modulo suitable modification.
3.2. Bifurcation Result. Once we have proved in the previous subsection that λ_{1} is simple and isolated, we can study the bifurcation when λ is near λ_{1}.

Proposition 3.1. If $(\bar{\lambda} ;(0,0))$ is a bifurcation point of $(B S)$, then $\bar{\lambda}$ is an eigenvalue of $(E S)$.

Proof.

$(\bar{\lambda},(0,0))$ is a bifurcation point of $(B S)$ then there is a sequence $\left\{\lambda_{n},\left(u_{n}, v_{n}\right)\right\}_{n} \subset$ $\mathbb{R} \times W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$ of nontrivial solutions of (ES) such that

$$
\begin{array}{ll}
\lambda_{n} & \longrightarrow \\
\left(u_{n}, v_{n}\right) & \longrightarrow \\
\text { in } \mathbb{R} \\
& (0,0) \text { in } W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega) . \\
& \quad \text { EJQTDE, } 2003 \text { No. 21, p. } 13
\end{array}
$$

Thus
$A_{u}\left(u_{j}, v_{j}\right)-\lambda_{j} B_{u}\left(u_{j}, v_{j}\right)=F^{\lambda_{j}}\left(u_{j}, v_{j}\right)$
$A_{v}\left(u_{j}, v_{j}\right)-\lambda_{j} B_{v}\left(u_{j}, v_{j}\right)=G^{\lambda_{j}}\left(u_{j}, v_{j}\right)$.
Set $\bar{u}_{j}=\frac{u_{j}}{\left\|\nabla u_{j}\right\|_{p}^{p-1}+\left\|\nabla v_{j}\right\|_{q}^{q-1}}$ and $\bar{v}_{j}=\frac{v_{j}}{\left\|\nabla u_{j}\right\|_{p}^{p-1}+\left\|\nabla v_{j}\right\|_{q}^{q-1}}$. Then \bar{u}_{j} and \bar{v}_{j} are bounded, it follows that there exist a pair $(\bar{u}, \bar{v}) \in W_{0}^{1, p}(\Omega) \times$ $W_{0}^{1, q}(\Omega)$ such that $\left(\bar{u}_{j}, \bar{v}_{j}\right) \rightharpoonup(\bar{u}, \bar{v})$ weakly in $W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$ and a.e in Ω. Thanks to Lemma 2.5 and Lemma 2.4 we deduce the following convergence

$$
\lambda_{j} B_{u}\left(\bar{u}_{j}, \bar{v}_{j}\right)+\frac{F^{\lambda_{j}}\left(u_{j}, v_{j}\right)}{\left\|\nabla u_{j}\right\|_{p}^{p-1}+\left\|\nabla v_{j}\right\|_{q}^{q-1}} \longrightarrow \bar{\lambda} B_{u}(\bar{u}, \bar{v})
$$

and

$$
\lambda_{j} B_{v}\left(u_{j}, v_{j}\right)+\frac{G^{\lambda_{j}}\left(u_{j}, v_{j}\right)}{\left\|\nabla u_{j}\right\|_{p}^{p-1}+\left\|\nabla v_{j}\right\|_{q}^{q-1}} \longrightarrow \bar{\lambda} B_{v}(\bar{u}, \bar{v}) .
$$

According to (3.3), we have

$$
A_{u}\left(\bar{u}_{j}, \bar{v}_{j}\right) \longrightarrow \bar{\lambda} B_{u}(\bar{u}, \bar{v})
$$

and

$$
A_{v}\left(\bar{u}_{j}, \bar{v}_{j}\right) \longrightarrow \bar{\lambda} B_{v}(\bar{u}, \bar{v}),
$$

Since $-\Delta_{p}$ and $-\Delta_{q}$ are homeomorphisms, it is clear that

$$
\left(\bar{u}_{j}, \bar{v}_{j}\right) \longrightarrow\left(A_{u}\right)^{-1}\left(\bar{\lambda} B_{u}(\bar{u}, \bar{v})\right)
$$

and

$$
\left(\bar{u}_{j}, \bar{v}_{j}\right) \longrightarrow\left(A_{v}\right)^{-1}\left(\bar{\lambda} B_{v}(\bar{u}, \bar{v})\right) .
$$

Consequently by the convergence a.e in Ω we conclude that

$$
(\bar{u}, \bar{v})=\left(A_{u}\right)^{-1}\left(\bar{\lambda} B_{u}(\bar{u}, \bar{v})\right)
$$

and

$$
(\bar{u}, \bar{v})=\left(A_{v}\right)^{-1}\left(\bar{\lambda} B_{v}(\bar{u}, \bar{v})\right) .
$$

Finally, since $\left\|\nabla \bar{u}_{j}\right\|_{p}^{p-1}+\left\|\nabla \bar{v}_{j}\right\|_{q}^{q-1}=1$ we must have $\bar{u} \not \equiv 0$ and $\bar{v} \not \equiv 0$. It follows that (\bar{u}, \bar{v}) solves $(E S)$. This complete the proof in view of Remark 2.4.

Let $X=\mathbb{R} \times W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$ be equipped with the norm

$$
\|(\lambda, u, v)\|=\left(|\lambda|^{2}+\|\nabla u\|_{p}^{2}+\|\nabla v\|_{q}^{2}\right)^{\frac{1}{2}} .
$$

EJQTDE, 2003 No. 21, p. 14

Definition 3.1. We say that

$$
C=\{(\lambda,(u, v)):(\lambda,(u, v)) \text { solves }(B S), u \neq 0, v \neq 0\}
$$

is a continuum of nontrivial solutions of ($B S$), if it is a connected subset in E.

Now let, $L=\frac{\alpha+1}{p} A_{u}+\frac{\beta+1}{q} A_{v}, \quad G=\frac{1}{2}\left(B_{u}+B_{v}\right)$ and $F=F^{\lambda}+G^{\lambda}$. In virtue of the preceding results $\operatorname{Deg}\left[L-\lambda G-F, B_{\epsilon}(0,0),(0,0)\right]$ is well defined. By homotopic we have

$$
\operatorname{Deg}\left[L-\lambda G-F, B_{\epsilon}(0,0),(0,0)\right]=\operatorname{Deg}\left[L-\lambda G, B_{\epsilon}(0,0),(0,0)\right]
$$

The main bifurcation result in this paper is the following
Theorem 3.2. Under the assumptions (f) and (g), the pair $\left(\lambda_{1},(0,0)\right)$ is a bifurcation point of $(B S)$. Moreover, there is a continuum of nontrivial solutions C of $(B S)$ such that $\left(\lambda_{1},(0,0)\right) \in \bar{C}$ and C is either unbounded in E or there is $\bar{\lambda} \neq \lambda_{1}$, an eigenvalue of $(E S)$, with $(\bar{\lambda},(0,0)) \in \bar{C}$.

Proof.

We will give only a sketch of the proof since it follows the lines of the proof of Theorem 14.18 in [9]. The key point in the proof is the fact that the value of

$$
\begin{equation*}
\operatorname{Deg}\left[L-\lambda G ; B_{\epsilon}(0), 0\right] \tag{3.4}
\end{equation*}
$$

changes when λ crosses λ_{1}. If this fact is proved then the result follows exactly as in the classical bifurcation result of Rabinowitz [15]. Choose $a>0$ such that $\left(\lambda_{1}, \lambda_{1}+a\right)$ does not contain any eigenvalue of $(E S)$. Then the variational characterization of λ_{1} and lemma 2.2 yield

$$
\begin{equation*}
\operatorname{Deg}\left[L-\lambda G ; B_{\epsilon}(0), 0\right]=1, \tag{3.5}
\end{equation*}
$$

when $\lambda \in\left(\lambda_{1}-a, \lambda_{1}\right)$. To evaluate (3.4) for $\lambda \in\left(\lambda_{1}, \lambda_{1}+a\right)$ we use the following trick. Fix a number $K>0$ and define a function $\psi: \mathbb{R} \longrightarrow \mathbb{R}$ by

$$
\psi(s)=\left\{\begin{array}{lll}
0 & \text { for } & s \leq K \\
\frac{2 a}{\lambda_{1}}(s-2 K) & \text { for } & s \geq 3 K
\end{array}\right.
$$

and ψ is positive and strictly convex in $(\mathrm{K}, 3 \mathrm{~K})$. Define a functional

$$
\bar{\psi}_{\lambda}(u, v)=\langle L(u, v),(u, v)\rangle-\lambda\langle G(u, v),(u, v)\rangle+\psi(\langle L(u, v),(u, v)\rangle) .
$$

Then $\bar{\psi}_{\lambda}$ is continuously Frèchet differentiable and its critical point $\left(u_{0}, v_{0}\right) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$ corresponds to a solution of the following EJQTDE, 2003 No. 21, p. 15
system

$$
\frac{\partial \bar{\psi}_{\lambda}}{\partial u}=\frac{\partial \bar{\psi}_{\lambda}}{\partial v}=0
$$

where
$\left\langle\frac{\partial \bar{\psi}_{\lambda}}{\partial u}(u, v),(u, v)\right\rangle=(\alpha+1)\left[\left\langle A_{u}(u, v),(u, v)\right\rangle\left(1+\psi^{\prime}(\langle L(u, v),(u, v)\rangle)-\lambda\left\langle B_{u}(u, v),(u, v)\right\rangle\right]\right.$, and
$\left\langle\frac{\partial \bar{\psi}_{\lambda}}{\partial v}(u, v),(u, v)\right\rangle=(\beta+1)\left[\left\langle A_{v}(u, v),(u, v)\right\rangle\left(1+\psi^{\prime}(\langle L(u, v),(u, v)\rangle)-\lambda\left\langle B_{v}(u, v),(u, v)\right\rangle\right]\right.$,
However, since $\lambda \in\left(\lambda_{1}-a, \lambda_{1}\right)$, only nontrivial critical points of the derivative of $\bar{\psi}$ noted $D \bar{\psi}_{\lambda}$ occur if

$$
\begin{equation*}
\psi^{\prime}\left(\left\langle L\left(u_{0}, v_{0}\right),\left(u_{0}, v_{0}\right)\right\rangle\right)=\frac{\lambda}{\lambda_{1}}-1 . \tag{3.6}
\end{equation*}
$$

Due to the definition of ψ we have $\left\langle L\left(u_{0}, v_{0}\right),\left(u_{0}, v_{0}\right)\right\rangle \in(K, 3 K)$; by (3.6) and the simplicity of λ_{1}, we conclude that $\left(u_{0}, v_{0}\right) \in\left\{\left(u_{1}, v_{1}\right),\left(-u_{1},-v_{1}\right)\right\}$, where $\left(u_{1}, v_{1}\right)$ is an eigenvector associated to λ_{1}. Therefore, for $\lambda \in$ $\left(\lambda_{1}, \lambda_{1}+a\right)$, the derivative $D \bar{\psi}_{\lambda}$ has precisely three isolated critical point.
The existence of such isolated critical points is ensured by the fact $\bar{\psi}_{\lambda}$ is weakly lower semicontinuous and

$$
\lim _{\|(u, v)\| \rightarrow+\infty}\left\|\bar{\psi}_{\lambda}\right\|_{1, p}=\infty
$$

due to the definition of ψ. So, $\bar{\psi}_{\lambda}$ attains local minima at $\left(u_{1}, v_{1}\right)$ and $\left(-u_{1},-v_{1}\right)$. Note that $(0,0)$ is an obvious isolated critical point. It follows from Lemma 2.1 that

$$
\begin{equation*}
\operatorname{ind}\left(D \bar{\psi}_{\lambda},\left(u_{1}, v_{1}\right)\right)=\operatorname{ind}\left(D \bar{\psi}_{\lambda},\left(-u_{1},-v_{1}\right)\right)=1 \tag{3.7}
\end{equation*}
$$

Since also

$$
\left\langle D \bar{\psi}_{\lambda}((u, v)),(u, v)\right\rangle>0
$$

for $\|u\|_{p}+\|v\|_{q}=R$, with $R>0$, sufficiently large, we have according to Lemma 2.2 that

$$
\begin{equation*}
\operatorname{Deg}\left[D \bar{\psi}_{\lambda} ; B_{R}(0), 0\right]=1 . \tag{3.8}
\end{equation*}
$$

Additivity property of the degree, (3.7) and (3.8) yield

$$
\begin{equation*}
\operatorname{Deg}\left[L-\lambda G ; B_{\epsilon}(0), 0\right]=-1 \tag{3.9}
\end{equation*}
$$

for any $\lambda \in\left(\lambda_{1}, \lambda_{1}+a\right)$ and $\epsilon>0$ sufficiently small. Since (3.5) and (3.9) establish the "jump" of the degree the proof is completed.

Remarks 3.1. (i) For the case of one equation and when $\partial \Omega$ of class $C^{2, \nu}$, a similar bifurcation theorem has proved by Del Pino and Manasevich [11] and Binding and Huang [2]. The first authors used the continuity of $\lambda_{1}(p)$ with respect to p; on the other hand, the second authors considered the following particular case $f \equiv f(x, s)$ which satisfies $f(x, s) \in C(\bar{\Omega} \times \mathbb{R})$ an odd function in s and $|f(x, s)| \leq c|s|^{q-1}$ uniformly in Ω; where $p<q<\bar{q}=p+\frac{p^{2}}{N}$. They use $C^{1, \nu}(\bar{\Omega})$ regularity of solutions.
(ii) Fleckinger, Manásevich and De Thelin show a similar bifurcation theorem for the following system

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\lambda|u|^{p-2} u+b|v|^{p-2} v+f\left(\lambda,|u|^{p-2} u\right) \text { in } \Omega \\
-\Delta_{p} v=c|u|^{p-2} u+d|v|^{p-2} v \text { in } \Omega \\
u_{\mid \partial \Omega}=v_{\mid \partial \Omega}=0
\end{array}\right.
$$

where Ω is sufficiently regular bounded open subset of \mathbb{R}^{N}. The function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and λ is a parameter; b, c and d are constants satisfying $b c>0, d \leq 0$.

Note that the methods used in all papers are not applicable in our case (any bounded domain). So the method used to evaluate the degree is different.

References

[1] A. Anane, Simplicité et isolation de la première valeur propre du p-Laplacien, C.R. Acad. Sci. Paris, 305, 725-728 (1987).
[2] P.A.Binding and Y.X.Huang, Bifurcation from eigencurves of the pLaplacian, Differential Integral Equations, 8, 415-428 (1995).
[3] F.E.Browder and W.F.Petryshyn, Approximation methods and the generalized topological for nonlinear mapping in Banach spaces, J. Funct. Anal.3, 217-245 (1969).
[4] E. Dibenedetto, $C^{1+\alpha}$-local regularity of weak solutions of degenerate elliptic equations, Nonlinear Analysis T.M.A.7, 827-859 (1983).
[5] F. De Thélin, Première valaur propre d'un système elliptique non linéaire, C. R. Acad. Paris, t.311, serie I, 603-606 (1990).
[6] K. Снаїв, Extension of Diaz-Saa's inequality in \mathbb{R}^{n} and application to a system of p-Laplacian (preprint).
[7] P. Drábek, A. Elkhalil and A. Touzani, A Result on the Bifurcation from the Principal Eigenvalue of the A_{p}-Laplacian, Abstract and Applied Analysis, 185-195 (1997).
[8] P. Drábek, A. Elkhalil and A. Touzani, A bifurcation problem for the principal eigencurve of the p-Laplacian, Applicable Analysis 72, N.3-4, 399410 (1999).
[9] P. Drábek, Solvability and bifurcation of nonlinear equations, Pitman Research Notes in Math. 264, Longman, Hrlow (1992).
[10] P. Drábek and Y.X. Huang: Bifurcation problems for the p-Laplacian in \mathbb{R}^{n}, Trans. Amer. Math. Soc. 349 ,171-188 (1997).
[11] M. A. Del Pino, R.F. Manasèvich, Global Bifurcation from the eigenvalue of the p-Laplacian, J. Diff. Equations, 92, 1-29 (1991).
[12] J. Fleckinger, R.F.Manasevich, N.M.Stavrakakis and F. De Thélin, Principal eigenvalue for some quasilinear elliptic equations on \mathbb{R}^{N}, Advances in Differential Equations, 2, N.6, 981-1003 (1997).
[13] J. Fleckinger, R. Manasevich, and F. de Thélin: Global Bifurcation from the First Eigenvalue for a System of p-Laplacians, Math. Nach. 182, 217-242 (1996).
[14] A. Elkhalil and A. Touzani:On the first eigencurve of p-Laplacian, Partial Differential Equations, Lecture Notes in Pure and Applied Mathematics, 222, Marcel Dekker Inc., 195-205 (2002).
[15] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal.7, 487-513 (1971).
[16] A. Szulkin, Ljustenik-Schnirelmann theory on C^{1}-manifolds, Ann. Inst. Henri Poincaré, Anal. No.5, 119-139 (1988).
[17] J.L Vazquez, A Strong Maximum Principle for some Quasilinear Elliptic Equations, Appl. Math. Optim., 12, 191-202 (1984).

Abdelouahed El Khalil
3-1390, boul. Decarie saint Laurent
Quebec H4L 3N1
E-mail address: lkhlil@hotmail.com
Mohammed Ouanan and Abdelfattah Touzani
Department of Mathematics, Faculty of Sciences Dhar-Mahraz
P.O. Box. 1796 Atlas, Fez (Morocco)

E-mail address: m_ouanan@hotmail.com
E-mail address: atouzani@iam.net.ma

[^0]: 2000 Mathematics Subject Classification. 35J20, 35J45, 35J50, 35J70.
 Key words and phrases. quasilinear system, p-Laplacian operator, principal eigenvalue, Degree theory, Bifurcation point.

 EJQTDE, 2003 No. 21, p. 1

