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Abstract. In this paper, we consider four-point coupled boundary value problem for systems of the nonlinear
semipositone fractional differential equation



















Dα
0+u + λf(t, u, v) = 0, 0 < t < 1, λ > 0,

Dα
0+v + λg(t, u, v) = 0,

u(i)(0) = v(i)(0) = 0, 0 ≤ i ≤ n − 2,

u(1) = av(ξ), v(1) = bu(η), ξ, η ∈ (0, 1)

where λ is a parameter, a, b, ξ, η satisfy ξ, η ∈ (0, 1), 0 < abξη < 1, α ∈ (n − 1, n] is a real number and n ≥ 3,
and Dα

0+ is the Riemann-Liouville’s fractional derivative, and f, g are continuous and semipositone. We derive
an interval on λ such that for any λ lying in this interval, the semipositone boundary value problem has multiple
positive solutions.

Key words. Riemann-Liouville’s fractional derivative; semipositone fractional differential equation; four-point
coupled boundary value problem; positive solution; fixed-point theorem.
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1 Introduction

We consider the four-point coupled boundary value problem for nonlinear fractional differential equation in-
volving the Riemann-Liouville’s derivative



















Dα
0+u + λf(t, u, v) = 0, 0 < t < 1, λ > 0,

Dα
0+v + λg(t, u, v) = 0,

u(i)(0) = v(i)(0) = 0, 0 ≤ i ≤ n − 2,

u(1) = av(ξ), v(1) = bu(η), ξ, η ∈ (0, 1)

(1.1)

where λ is a parameter, a, b, ξ, η satisfy ξ, η ∈ (0, 1), 0 < abξη < 1, α ∈ (n − 1, n] is a real number and n ≥ 2, Dα
0+

is the Riemann-Liouville’s fractional derivative, and f, g are sign-changing continuous functions.

Fractional differential equation’s modeling capabilities in engineering, science, economics, and other fields, over
the last few decades has resulted in the rapid development of the theory of fractional differential equations, see
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[1]-[7] for a good overview. To our knowledge there are only a few papers which deal with the boundary value
problem for nonlinear fractional differential equations (see for example [8]-[20]). Coupled boundary conditions arise
in the study of reaction-diffusion equations and Sturm-Liouvillie problems, see [21, 22] and have wide applications
in various fields of sciences and engineering, for example the heat equation [23, 24, 25] and mathematical biology
[26, 27].

In [23], the authors study the case of two equations

ut = △u, vt = △v, x ∈ Ω, 0 < t < T,
∂u
∂η

= vp, ∂v
∂η

= up, X ∈ ∂Ω, 0 < t < T,

and it was shown that if pq ≤ 1, all nonnegative solutions are global, while if pq > 1, every nonnegative solution
blows up in finite time.

In [26], the authors study the blow-up properties of the positive solutions to the system of heat equations with
nonlinear boundary conditions

uit = △ui, i = l, · · · , k, uk+l := ul, x ∈ Ω, 0 < t < T,
∂ui

∂η
= u

pi

i+1, X ∈ ∂Ω, 0 < t < T,

ui(x, 0) = ui,0(x), x ∈ Ω,

where pi > 0, i = 1, · · · , k. Ω ∈ RN is a bounded domain with smooth boundary ∂Ω, η is the unit outward normal
vector, ui,0(x) are nonnegative nontrivial functions and satisfy appropriate compatibility conditions. The upper
and lower bounds of the blow-up rate is derived.

In [28], Leung studied the reaction-diffusion system for prey-predator interaction

ut(t, x) = σ1△u + u(a + f(u, v)), t ≥ 0; x ∈ Ω ⊂ Rn,

vt(t, x) = σ2△v + v(r + g(u; v)), t ≥ 0; x ∈ Ω ⊂ Rn,

subject to the coupled boundary conditions

∂u
∂η

= 0; ∂v
∂η

− p(u) − q(v) = 0 on ∂Ω,

where the functions u(t, x), v(t, x) respectively represent the density of prey and predator at time t ≥ 0 and at
position x = (x1, · · · , xn). Similar coupled boundary conditions are also studied in [27] for a biochemical system.

The above mentioned work and wide applications of coupled boundary conditions motivate us to study equation
(1.1). In this paper, we give sufficient conditions for the existence of positive solution of the semipositone boundary
value problems (1.1) for a sufficiently small λ > 0 where f, g may change sign. Our analysis relies on a nonlinear
alternative of Leray-Schauder type and Krasnosel’skii’s fixed-point theorems.

2 Preliminaries

For completeness, in this section, we first present some fundamental facts of the Riemann-Liouville’s derivatives
of fractional order which can been found in [3].

Definition 2.1 [3] The integral

Iα
0+f(x) =

1

Γ(α)

∫ x

0

f(t)

(x − t)1−α
dt, x > 0,

where α > 0, is called Riemann-Liouville fractional integral of order α.

Definition 2.2 [3] For a function f(x) given in the interval [0,∞), the expression

Dα
0+f(x) =

1

Γ(n − α)
(

d

dx
)n

∫ x

0

f(t)

(x − t)α−n+1
dt,

where n = [α] + 1, [α] denotes the integer part of number α, is called the Riemann-Liouville fractional derivative
of order s.
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As examples, for µ > −1, we have

Dα
0+xµ =

Γ(1 + µ)

Γ(1 + µ − α)
xµ−α

giving in particular Dα
0+xα−m, m = i, 2, 3, · · · , N , where N is the smallest integer greater than or equal to α.

Lemma 2.1 Let α > 0. Then the differential equation

Dα
0+u(t) = 0

has solutions u(t) = c1t
α−1 + c2t

α−2 + · · ·+ cntα−n, ci ∈ R, i = 1, , 2 . . . , n, where n is the smallest integer greater
than or equal to α.

Lemma 2.2 Let α > 0. Then

Iα
0+Dα

0+u(t) = u(t) + c1t
α−1 + c2t

α−2 + · · · + cntα−n,

for some ci ∈ R, i = 1, 2, . . . , n, n is the smallest integer greater than or equal to α.

Lemma 2.3 Let x, y ∈ C[0, 1] be given functions. Then the boundary-value problem



















Dα
0+u + x(t) = 0, 0 < t < 1, λ > 0,

Dα
0+v + y(t) = 0,

u(i)(0) = v(i)(0) = 0, 0 ≤ i ≤ n − 2,

u(1) = av(ξ), v(1) = bu(η), ξ, η ∈ (0, 1)

(2.1)

has an integral representation

{

u(t) =
∫ 1

0
Gξη(t, s)x(s)ds +

∫ 1

0
Kξη(t, s)y(s)ds,

v(t) =
∫ 1

0 Gηξ(t, s)y(s)ds +
∫ 1

0 Kηξ(t, s)x(s)ds
(2.2)

where

Gξη(t, s) =



























tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) −
abξα−1tα−1(η−s)α−1

(1−abξα−1ηα−1)Γ(α) −
(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1, s ≤ η,
tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) −
(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1, s ≥ η,
tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) −
abξα−1tα−1(η−s)α−1

(1−abξα−1ηα−1)Γ(α) , 0 ≤ t ≤ s ≤ 1, s ≤ η,
tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) , 0 ≤ t ≤ s ≤ 1, s ≥ η

(2.3)

Gηξ(t, s) =



























tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) −
abηα−1tα−1(ξ−s)α−1

(1−abξα−1ηα−1)Γ(α) −
(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1, s ≤ ξ,
tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) −
(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1, s ≥ ξ,
tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) −
abηα−1tα−1(ξ−s)α−1

(1−abξα−1ηα−1)Γ(α) , 0 ≤ t ≤ s ≤ 1, s ≤ ξ,
tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) , 0 ≤ t ≤ s ≤ 1, s ≥ ξ

(2.4)

Kξη(t, s) =

{

aξα−1tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) −
atα−1(ξ−s)α−1

(1−abξα−1ηα−1)Γ(α) , s ≤ ξ,
aξα−1tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) , s ≥ ξ
(2.5)

Kηξ(t, s) =

{

bηα−1tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) −
btα−1(η−s)α−1

(1−abξα−1ηα−1)Γ(α) , s ≤ η,
bηα−1tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) , s ≥ η.
(2.6)

Proof. From Lemma 2.2 we can reduce (2.1) to an equivalent integral equation

u(t) = c11t
α−1 + c12t

α−2 + · · · + c1ntα−n −
∫ t

0
(t−s)α−1

Γ(α) x(s)ds

v(t) = c21t
α−1 + c22t

α−2 + · · · + c2ntα−n −
∫ t

0
(t−s)α−1

Γ(α) y(s)ds.
(2.7)
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From u(j)(0) = v(j)(0) = 0, 0 ≤ j ≤ n − 2, we have cin = ci(n−1) = · · · = ci2 = 0, (i = 1, 2). Then

u(t) = c11t
α−1 −

∫ t

0
(t−s)α−1

Γ(α) x(s)ds

v(t) = c21t
α−1 −

∫ t

0
(t−s)α−1

Γ(α) y(s)ds

and from the condition u(1) = av(ξ), v(1) = bu(η) we have

c11 − aξα−1c21 =
∫ 1

0
(1−s)α−1

Γ(α) x(s)ds − a
∫ ξ

0
(ξ−s)α−1

Γ(α) y(s)ds,

c21 − bηα−1c11 =
∫ 1

0
(1−s)α−1

Γ(α) y(s)ds − b
∫ η

0
(η−s)α−1

Γ(α) x(s)ds.

Solving for c11 and c21, we have

c11 = 1
1−abξα−1ηα−1

∫ 1

0
(1−s)α−1

Γ(α) x(s)ds − a
1−abξα−1ηα−1

∫ ξ

0
(ξ−s)α−1

Γ(α) y(s)ds

+ aξα−1

1−abξα−1ηα−1

∫ 1

0
(1−s)α−1

Γ(α) y(s)ds − abξα−1

1−abξα−1ηα−1

∫ η

0
(η−s)α−1

Γ(α) x(s)ds,

c21 = 1
1−abξα−1ηα−1

∫ 1

0
(1−s)α−1

Γ(α) y(s)ds − b
1−abξα−1ηα−1

∫ η

0
(η−s)α−1

Γ(α) x(s)ds

+ bηα−1

1−abξα−1ηα−1

∫ 1

0
(1−s)α−1

Γ(α) x(s)ds − abηα−1

1−abξα−1ηα−1

∫ ξ

0
(ξ−s)α−1

Γ(α) y(s)ds.

Hence, we have

u(t) = 1
1−abξα−1ηα−1

∫ 1

0
tα−1(1−s)α−1

Γ(α) x(s)ds − abξα−1

1−abξα−1ηα−1

∫ η

0
tα−1(η−s)α−1

Γ(α) x(s)ds −
∫ t

0
(t−s)α−1

Γ(α) x(s)ds

+ aξα−1

1−abξα−1ηα−1

∫ 1

0
tα−1(1−s)α−1

Γ(α) y(s)ds − a
1−abξα−1ηα−1

∫ ξ

0
tα−1(ξ−s)α−1

Γ(α) y(s)ds,

v(t) = 1
1−abξα−1ηα−1

∫ 1

0
tα−1(1−s)α−1

Γ(α) y(s)ds − abηα−1

1−abξα−1ηα−1

∫ ξ

0
tα−1(ξ−s)α−1

Γ(α) y(s)ds −
∫ t

0
(t−s)α−1

Γ(α) y(s)ds

+ bηα−1

1−abξα−1ηα−1

∫ 1

0
tα−1(1−s)α−1

Γ(α) x(s)ds − b
1−abξα−1ηα−1

∫ η

0
tα−1(η−s)α−1

Γ(α) x(s)ds.

Thus
{

u(t) =
∫ 1

0 Gξη(t, s)x(s)ds +
∫ 1

0 Kξη(t, s)y(s)ds,

v(t) =
∫ 1

0 Gηξ(t, s)y(s)ds +
∫ 1

0 Kηξ(t, s)x(s)ds.

Lemma 2.4 The function Gξη(t, s) and Kξη(t, s) defined respectively by (2.3) and (2.5) have the following prop-
erties:

(R1) c0t
α−1(1 − s)α−1s ≤ Gξη(t, s) ≤ C0(1 − s)α−1s, Gξη(t, s) ≤ C0t

α−1 for t, s ∈ [0, 1],

(R2) c0t
α−1(1 − s)α−1s ≤ Kξη(t, s) ≤ C0t

α−1(1 − s)α−1s for t, s ∈ [0, 1],

where

cG = abξα−1(1−ξ)ηα−1(1−η)(1−abξη)
(1−abξα−1ηα−1)Γ(α) , CG = (α−1)(1−abξα−1ηα−1+abξα−2ηα−2)

(1−abξα−1ηα−1)Γ(α) , C∗
G = 1

(1−abξα−1ηα−1)Γ(α) ,

cK = min{aξα−2(1−ξ), bηα−2(1−η)}
(1−abξα−1ηα−1)Γ(α) , CK = (α−1)(aξα−2+bηα−2)

(1−abξα−1ηα−1)Γ(α) ,

c0 = min{cG, cK}, C0 = min{CG, C∗
G, CK}.

(2.8)

Proof. (R1) For (t, s) ∈ [0, 1]× [0, 1], from (2.3), we discuss various cases.
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Case 1. For s ≤ t, s ≤ η, we have

Gξη(t, s) = tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) −
abξα−1tα−1(η−s)α−1

(1−abξα−1ηα−1)Γ(α) −
(t−s)α−1

Γ(α)

= tα−1(1−s)α−1−abξα−1tα−1(η−s)α−1−(1−abξα−1ηα−1)(t−s)α−1

(1−abξα−1ηα−1)Γ(α)

= (1−abξα−1ηα−1)(tα−1(1−s)α−1−(t−s)α−1)+abξα−1tα−1(ηα−1(1−s)α−1−(η−s)α−1)
(1−abξα−1ηα−1)Γ(α)

≥ abξα−1tα−1(ηα−1(1−s)α−1−(η−s)α−1)
(1−abξα−1ηα−1)Γ(α)

= abξα−1tα−1((η−ηs)α−1−(η−s)α−1)
(1−abξα−1ηα−1)Γ(α)

= abξα−1tα−1((η−ηs)α−1−[α−1](η−ηs)[α−1]−(η−s)α−1−[α−1](η−s)[α−1])
(1−abξα−1ηα−1)Γ(α)

≥ abξα−1tα−1((η−ηs)α−1−[α−1](η−ηs)[α−1]−(η−ηs)α−1−[α−1](η−s)[α−1])
(1−abξα−1ηα−1)Γ(α)

= abξα−1tα−1(η−ηs)α−1−[α−1]((η−ηs)[α−1]−(η−s)[α−1])
(1−abξα−1ηα−1)Γ(α)

≥ abξα−1tα−1(η−ηs)α−1−[α−1](η−ηs)[α−1]−1((η−ηs)−(η−s))
(1−abξα−1ηα−1)Γ(α)

= abξα−1tα−1(η−ηs)α−2(s−ηs)
(1−abξα−1ηα−1)Γ(α)

= abξα−1ηα−2tα−1(1−s)α−2(1−η)s
(1−abξα−1ηα−1)Γ(α)

≥ abξα−1ηα−2(1−η)tα−1(1−s)α−1s

(1−abξα−1ηα−1)Γ(α)

≥ cGtα−1(1 − s)α−1s,

Gξη(t, s) = (1−abξα−1ηα−1)(tα−1(1−s)α−1−(t−s)α−1)+abξα−1tα−1(ηα−1(1−s)α−1−(η−s)α−1)
(1−abξα−1ηα−1)Γ(α)

=
(1−abξα−1ηα−1)(α−1)

R

t−ts

t−s
zα−2dz+abξα−1tα−1(α−1)

R

η−ηs

η−s
zα−2dz

(1−abξα−1ηα−1)Γ(α)

≤ (1−abξα−1ηα−1)(α−1)(t−ts)α−2(t−ts−t+s)+abξα−1tα−1(α−1)(η−ηs)α−2(η−ηs−η+s)
(1−abξα−1ηα−1)Γ(α)

= (1−abξα−1ηα−1)(α−1)tα−2(1−s)α−2(1−t)s+abξα−1(α−1)ηα−2tα−1(1−s)α−2(1−η)s
(1−abξα−1ηα−1)Γ(α)

≤ (1−abξα−1ηα−1)(α−1)tα−2(1−s)α−2(1−s)s+abξα−1(α−1)ηα−2tα−1(1−s)α−2(1−s)s
(1−abξα−1ηα−1)Γ(α)

≤ (1−abξα−1ηα−1)(α−1)(1−s)α−1s+abξα−1(α−1)ηα−2(1−s)α−1s

(1−abξα−1ηα−1)Γ(α)

= (α−1)((1−abξα−1ηα−1)+abξα−1ηα−2)(1−s)α−1s

(1−abξα−1ηα−1)Γ(α)

= (α−1)(1−abξα−1ηα−1+abξα−1ηα−2)(1−s)α−1s

(1−abξα−1ηα−1)Γ(α)

≤ CG(1 − s)α−1s,

Gξη(t, s) = tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) −
abξα−1tα−1(η−s)α−1

(1−abξα−1ηα−1)Γ(α) −
(t−s)α−1

Γ(α) ≤ tα−1

(1−abξα−1ηα−1)Γ(α) ≤ C∗
Gtα−1.

Case 2. For s ≤ t, s ≥ η, from (2.3), we have

Gξη(t, s) = tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) −
(t−s)α−1

Γ(α)

= (1−abξα−1ηα−1)(tα−1(1−s)α−1−(t−s)α−1)+abξα−1ηα−1tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α)

≥ abξα−1ηα−1tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α)

≥ abξα−1ηα−1tα−1(1−s)α−1s

(1−abξα−1ηα−1)Γ(α)

≥ cGtα−1(1 − s)α−1s,

Gξη(t, s) = (1−abξα−1ηα−1)(tα−1(1−s)α−1−(t−s)α−1)+abξα−1ηα−1tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α)

= (1−abξα−1ηα−1)(tα−1(1−s)α−1−(t−s)α−1)+abξα−1ηα−2tα−1(1−s)α−1η

(1−abξα−1ηα−1)Γ(α)

≤ (1−abξα−1ηα−1)(α−1)tα−2(1−s)α−2(1−t)s+abξα−1ηα−2tα−1(1−s)α−1s

(1−abξα−1ηα−1)Γ(α)

≤ (1−abξα−1ηα−1)(α−1)tα−2(1−s)α−1s+abξα−1ηα−2tα−1(1−s)α−1s

(1−abξα−1ηα−1)Γ(α)

≤ (1−abξα−1ηα−1)(α−1)(1−s)α−1s+abξα−1ηα−2(1−s)α−1s

(1−abξα−1ηα−1)Γ(α)

≤ CG(1 − s)α−1s,

Gξη(t, s) = tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) −
(t−s)α−1

Γ(α) ≤ tα−1

(1−abξα−1ηα−1)Γ(α) ≤ C∗
Gtα−1.
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Case 3. For t ≤ s, s ≤ η, from (2.3), we have

Gξη(t, s) = tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) −
abξα−1tα−1(η−s)α−1

(1−abξα−1ηα−1)Γ(α)

= tα−1(1−s)α−1−abξα−1tα−1(η−s)α−1

(1−abξα−1ηα−1)Γ(α)

= (1−abξα−1)tα−1(1−s)α−1+abξα−1tα−1((1−s)α−1−(η−s)α−1)
(1−abξα−1ηα−1)Γ(α)

≥ (1−abξα−1)tα−1(1−s)α−1+abξα−1tα−1(1−s)α−2(1−η)
(1−abξα−1ηα−1)Γ(α)

≥ (1−abξα−1)tα−1(1−s)α−1+abξα−1(1−η)tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α)

≥ (1−abξα−1+abξα−1(1−η))tα−1(1−s)α−1s

(1−abξα−1ηα−1)Γ(α)

≥ (1−abξα−1η)tα−1(1−s)α−1s

(1−abξα−1ηα−1)Γ(α)

≥ cGtα−1(1 − s)α−1s,

Gξη(t, s) = tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) −
abξα−1tα−1(η−s)α−1

(1−abξα−1ηα−1)Γ(α)

≤ tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α)

≤ tα−2(1−s)α−1s

(1−abξα−1ηα−1)Γ(α)

≤ (1−s)α−1s

(1−abξα−1ηα−1)Γ(α)

≤ CG(1 − s)α−1s,

Gξη(t, s) ≤ tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) ≤ tα−1

(1−abξα−1ηα−1)Γ(α) ≤ C∗
Gtα−1.

Case 4. For t ≤ s, s ≥ η, from (2.3), we have

Gξη(t, s) = tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) ≥ tα−1(1−s)α−1s

(1−abξα−1ηα−1)Γ(α) ≥ cGtα−1(1 − s)α−1s,

Gξη(t, s) = tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) ≤ tα−2(1−s)α−1s

(1−abξα−1ηα−1)Γ(α) ≤ (1−s)α−1s

(1−abξα−1ηα−1)Γ(α) ≤ CG(1 − s)α−1s,

Gξη(t, s) = tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) ≤ tα−1

(1−abξα−1ηα−1)Γ(α) ≤ C∗
Gtα−1.

Then, c0t
α−1(1 − s)α−1s ≤ Gξη(t, s) ≤ C0(1 − s)α−1s, Gξη(t, s) ≤ C0t

α−1 for t, s ∈ [0, 1].

(R2) For (t, s) ∈ [0, 1] × [0, 1], from (2.5), we also discuss various cases.

Case 1. For s ≤ ξ, we have

Kξη(t, s) = aξα−1tα−1(1−s)α−1−atα−1(ξ−s)α−1

(1−abξα−1ηα−1)Γ(α)

= atα−1(ξα−1(1−s)α−1−(ξ−s)α−1)
(1−abξα−1ηα−1)Γ(α)

≥ atα−1ξα−2(1−s)α−2(1−ξ)s
(1−abξα−1ηα−1)Γ(α)

≥ aξα−2(1−ξ)tα−1(1−s)α−1s

(1−abξα−1ηα−1)Γ(α)

≥ cKtα−1(1 − s)α−1s,

Kξη(t, s) = aξα−1tα−1(1−s)α−1−atα−1(ξ−s)α−1

(1−abξα−1ηα−1)Γ(α)

= atα−1(ξα−1(1−s)α−1−(ξ−s)α−1)
(1−abξα−1ηα−1)Γ(α)

≤ atα−1(α−1)ξα−2(1−s)α−2(1−ξ)s
(1−abξα−1ηα−1)Γ(α)

≤ atα−1(α−1)ξα−2(1−s)α−2(1−s)s
(1−abξα−1ηα−1)Γ(α)

≤ (α−1)aξα−2tα−1(1−s)α−1s

(1−abξα−1ηα−1)Γ(α)

≤ CKtα−1(1 − s)α−1s.

Case 2. For s ≥ ξ, we have

Kξη(t, s) = aξα−1tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) ≥ aξα−1tα−1(1−s)α−1s

(1−abξα−1ηα−1)Γ(α) ≥ cKtα−1(1 − s)α−1s,
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Kξη(t, s) = aξα−1tα−1(1−s)α−1

(1−abξα−1ηα−1)Γ(α) = aξα−2tα−1(1−s)α−1ξ

(1−abξα−1ηα−1)Γ(α) ≤ aξα−2tα−1(1−s)α−1s

(1−abξα−1ηα−1)Γ(α) ≤ CKtα−1(1 − s)α−1s.

Thus, we have c0t
α−1(1 − s)α−1s ≤ Kξη(t, s) ≤ C0t

α−1(1 − s)α−1s for t, s ∈ [0, 1].

Similarly we have the following lemma.

Lemma 2.5 The function Gηξ(t, s) and Kηξ(t, s) defined respectively by (2.4) and (2.6) have the following prop-
erties:

(R1) c0t
α−1(1 − s)α−1s ≤ Gηξ(t, s) ≤ C0(1 − s)α−1s, Gξη(t, s) ≤ C0t

α−1 for t, s ∈ [0, 1],

(R2) c0t
α−1(1 − s)α−1s ≤ Kηξ(t, s) ≤ C0t

α−1(1 − s)α−1s for t, s ∈ [0, 1],

where c0, C0 are as in Lemma 2.4

Employing Lemma 2.3, the system (1.1) can be expressed as

{

u(t) = λ(
∫ 1

0 Gξη(t, s)f(s, u(s), v(s))ds +
∫ 1

0 Kξη(t, s)g(s, u(s), v(s))ds),

v(t) = λ(
∫ 1

0
Gηξ(t, s)g(s, u(s), v(s))ds +

∫ 1

0
Kηξ(t, s)f(s, u(s), v(s))ds).

(2.9)

The following theorems (the first a nonlinear alternative of Leray-Schauder type and the second Krasnosel’skii’s
fixed-point theorem) will play a major role in Section 3.

Theorem 2.6 [29] Let X be a Banach space with Ω ⊂ X closed and convex. Assume U is a relatively open subset
of Ω with 0 ∈ U , and let S : U → Ω be a compact, continuous map. Then either

1. S has a fixed point in U , or

2. there exists u ∈ ∂U and ν ∈ (0, 1), with u = νSu.

Theorem 2.7 [30] Let X be a Banach space, and let P ⊂ X be a cone in X. Assume Ω1, Ω2 are bounded open
subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let S : P → P be a completely continuous operator such that, either

1. ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω2, or

2. ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≤ ‖w‖ w ∈ P ∩ ∂Ω2.

Then S has a fixed point in P ∩ (Ω2\Ω1).

3 Main Results

We make the following assumption:

(H1) f(t, u, v), g(t, u, v) ∈ C([0, 1] × [0, +∞) × [0, +∞), (−∞, +∞)), moreover there exist function ei(t) ∈
L1([0, 1], (0, +∞)) (i = 1, 2) such that f(t, u, v) ≥ −e1(t) and g(t, u, v) ≥ −e2(t), for any t ∈ [0, 1], u, v ∈ [0, +∞).

(H∗
1) f(t, u, v), g(t, u, v) ∈ C((0, 1) × [0, +∞), (−∞, +∞)), f, g may be singular at t = 0, 1, moreover there

exist functions ei(t) ∈ L1((0, 1), (0, +∞)) (i = 1, 2) such that f(t, u, v) ≥ −e1(t) and g(t, u, v) ≥ −e2(t), for any
t ∈ (0, 1), u, v ∈ [0, +∞).

(H2) f(t, 0, 0) > 0, g(t, 0, 0) > 0 for t ∈ [0, 1].

(H3) There exists [θ1, θ2] ⊂ (0, 1) such that lim
u↑+∞

inf min
t∈[θ1,θ2]

f(t,u,v)
u

= +∞, lim
v↑+∞

inf min
t∈[θ1,θ2]

g(t,u,v)
v

= +∞.

(H∗
3) There exists [θ1, θ2] ⊂ (0, 1) such that lim

v↑+∞
inf min

t∈[θ1,θ2]

f(t,u,v)
v

= +∞, lim
u↑+∞

inf min
t∈[θ1,θ2]

g(t,u,v)
u

= +∞.

(H4)
∫ 1

0 (1− s)α−1sei(s)ds < +∞,
∫ 1

0 (1− s)α−1sf(s, u, v)ds < +∞ and
∫ 1

0 (1− s)α−1sg(s, u, v)ds < +∞ for any
u, v ∈ [0, m], m > 0 is any constant (i = 1, 2).
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We consider the boundary value problem



















Dα
0+x + λ(f(t, [x(t) − w1(t)]

∗, [y(t) − w2(t)]
∗) + e1(t)) = 0, 0 < t < 1, λ > 0,

Dα
0+y + λ(g(t, [x(t) − w1(t)]

∗, [y(t) − w2(t)]
∗) + e2(t)) = 0,

x(i)(0) = y(i)(0) = 0, 0 ≤ i ≤ n − 2,

x(1) = ay(ξ), y(1) = bx(η), ξ, η ∈ (0, 1)

(3.1)

where

z(t)∗ =

{

z(t), z(t) ≥ 0,

0, z(t) < 0,

and
{

w1(t) = λ
∫ 1

0 Gξη(t, s)e1(s)ds + λ
∫ 1

0 Kξη(t, s)e2(s)ds,

w2(t) = λ
∫ 1

0
Gηξ(t, s)e2(s)ds + λ

∫ 1

0
Kηξ(t, s)e1(s)ds,

which is the solution of the coupled boundary value problem



















Dα
0+w1 + λe1(t) = 0, 0 < t < 1, λ > 0,

Dα
0+w2 + λe2(t) = 0,

w
(i)
1 (0) = w

(i)
2 (0) = 0, 0 ≤ i ≤ n − 2,

w1(1) = aw2(ξ), w2(1) = bw1(η), ξ, η ∈ (0, 1).

We will show there exists a solution (x, y) for the boundary value problem (3.1) with x(t) ≥ w1(t) and y(t) ≥
w2(t) for t ∈ [0, 1]. If this is true, then u(t) = x(t)−w1(t) and v(t) = y(t)−w2(t) is a nonnegative solution (positive
on (0, 1)) of the boundary value problem (1.1). Since for any t ∈ (0, 1),

−Dα
0+x = −Dα

0+u + (−Dα
0+w1) = λ[f(t, u, v) + e1(t)],

−Dα
0+y = −Dα

0+v + (−Dα
0+w2) = λ[g(t, u, v) + e2(t)],

we also have
−Dα

0+u = λf(t, u, v) and − Dα
0+v = λg(t, u, v).

On the other hand, from the coupled value condition x(i)(0) = y(i)(0) = 0, 0 ≤ i ≤ n − 2 and x(1) = ay(ξ), y(1) =
bx(η), we have

u(i)(0) = v(i)(0) = 0 for 0 ≤ i ≤ n − 2; u(1) = av(ξ), v(1) = bu(η) for ξ, η ∈ (0, 1).

As a result, we will concentrate our study on the boundary value problem (3.1).

Employing Lemma 2.3, we note that the system (3.1) is equivalent to



















x(t) = λ
∫ 1

0 Gξη(t, s)(f(s, [x(t) − w1(t)]
∗, [y(t) − w2(t)]

∗) + e1(s))ds

+λ
∫ 1

0
Kξη(t, s)(g(s, [x(t) − w1(t)]

∗, [y(t) − w2(t)]
∗) + e2(s))ds,

y(t) = λ
∫ 1

0
Gηξ(t, s)(g(s, [x(t) − w1(t)]

∗, [y(t) − w2(t)]
∗) + e2(s))ds

+λ
∫ 1

0 Kηξ(t, s)(f(s, [x(t) − w1(t)]
∗, [y(t) − w2(t)]

∗) + e1(s))ds.

(3.2)

We consider the Banach space E = C[0, 1] equipped with the standard norm ‖x‖ = max
0≤t≤1

|x(t)|, x ∈ X . We

define a cone P of E by

P = {x ∈ X |x(t) ≥
c0t

α−1

C0
‖x‖, t ∈ [0, 1], α ∈ (n − 1, n], n ≥ 3}.

For each (x, y) ∈ E × E, we write ||(x, y)||1 = ||x|| + ||y||. Clearly, (E × E, || · ||1) is a Banach space and P × P is
a cone of E × E.

Define an integral operator T : P × P → P × P by

T (x, y) = (A(x, y), B(x, y)),
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where the operators A, B : P × P → P are defined by



















A(x, y)(t) = λ
∫ 1

0
Gξη(t, s)(f(s, [x(t) − w1(t)]

∗, [y(t) − w2(t)]
∗) + e1(s))ds

+λ
∫ 1

0 Kξη(t, s)(g(s, [x(t) − w1(t)]
∗, [y(t) − w2(t)]

∗) + e2(s))ds,

B(x, y)(t) = λ
∫ 1

0 Gηξ(t, s)(g(s, [x(t) − w1(t)]
∗, [y(t) − w2(t)]

∗) + e2(s))ds

+λ
∫ 1

0
Kηξ(t, s)(f(s, [x(t) − w1(t)]

∗, [y(t) − w2(t)]
∗) + e1(s))ds.

(3.3)

Clearly, if (x, y) ∈ P × P is a fixed point of T , then (x, y) is a solution of system (3.1).

Notice, from Lemma 2.4, we have T (x, y)(t) ≥ (0, 0) on [0, 1] and for (x, y) ∈ P × P

A(x, y)(t) = λ
∫ 1

0 Gξη(t, s)(f(s, [x(t) − w1(t)]
∗, [y(t) − w2(t)]

∗) + e1(s))ds

+ λ
∫ 1

0
Kξη(t, s)(g(s, [x(t) − w1(t)]

∗, [y(t) − w2(t)]
∗) + e2(s))ds,

≤ λ
∫ 1

0
C0(1 − s)α−1s(f(s, [x(t) − w1(t)]

∗, [y(t) − w2(t)]
∗) + e1(s))ds

+ λ
∫ 1

0 C0(1 − s)α−1s(g(s, [x(t) − w1(t)]
∗, [y(t) − w2(t)]

∗) + e2(s))ds,

and then ‖A(x, y)‖ ≤ λ
∫ 1

0 C0(1−s)α−1s(f(s, [x(t)−w1(t)]
∗, [y(t)−w2(t)]

∗)+e1(s))ds+λ
∫ 1

0 C0(1−s)α−1s(g(s, [x(t)−
w1(t)]

∗, [y(t) − w2(t)]
∗) + e2(s))ds.

On the other hand, for (x, y) ∈ P × P , t ∈ [0, 1] we have

A(x, y)(t) = λ
∫ 1

0
Gξη(t, s)(f(s, [x(t) − w1(t)]

∗, [y(t) − w2(t)]
∗) + e1(s))ds

+ λ
∫ 1

0 Kξη(t, s)(g(s, [x(t) − w1(t)]
∗, [y(t) − w2(t)]

∗) + e2(s))ds,

≥ λ
∫ 1

0 c0t
α−1(1 − s)α−1s(f(s, [x(t) − w1(t)]

∗, [y(t) − w2(t)]
∗) + e1(s))ds

+ λ
∫ 1

0
c0t

α−1(1 − s)α−1s(g(s, [x(t) − w1(t)]
∗, [y(t) − w2(t)]

∗) + e2(s))ds,

≥ c0

C0
tα−1λ

∫ 1

0 C0(1 − s)α−1s(f(s, [x(t) − w1(t)]
∗, [y(t) − w2(t)]

∗) + e1(s))ds

+ c0

C0
tα−1λ

∫ 1

0 C0(1 − s)α−1s(g(s, [x(t) − w1(t)]
∗, [y(t) − w2(t)]

∗) + e2(s))ds,

≥ c0

C0
tα−1‖A(x, y)‖.

Consequently, A(x, y) ∈ P , i.e. A(P ×P ) ∈ P . Similarly, we can show that B(P ×P ) ∈ P . Hence, T (P ×P ) ⊂ P .
In addition, standard arguments in the literature guarantee that T is a completely continuous operator.

Theorem 3.1 Suppose that (H1) and (H2) hold. Then there exists a constant λ > 0 such that, for any 0 < λ ≤ λ,
the boundary value problem (1.1) has at least one positive solution.

Proof. Fix δ ∈ (0, 1). From (H2), let 0 < ε < 1 be such that

f(t, u, v) ≥ δf(t, 0, 0), g(t, u, v) ≥ δg(t, 0, 0), for 0 ≤ t ≤ 1, 0 ≤ z1, z2 ≤ ε. (3.4)

Let f(ε) = max
0≤t≤1,0≤u,v≤ε

{f(t, u, v)+ e1(t)}, g(ε) = max
0≤t≤1,0≤u,v≤ε

{g(t, u, v)+ e2(t)} and c =
∫ 1

0
C0(1− s)α−1sds.

We have

lim
z↓0

f(z)

z
= +∞, lim

z↓0

g(z)

z
= +∞.

Suppose

0 < λ <
ε

8ch(ε)
:= λ,

where h(ε) = max{f(ε), g(ε)}. Since

lim
z↓0

h(z)

z
= +∞

and
h(ε)

ε
<

1

8cλ
,

then exists a R0 ∈ (0, ε) such that
h(R0)

R0
=

1

8cλ
.
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Let U = {(x, y) ∈ P × P : ‖(x, y)‖1 < R0}, (x, y) ∈ ∂U and ν ∈ (0, 1) be such that (x, y) = νT (x, y), i.e.
x = νA(x, y), y = νB(x, y). We claim that ‖(x, y)‖1 6= R0. In fact, for (x, y) ∈ ∂U and ‖(x, y)‖1 = R0, we have

x(t) = νA(x, y)(t)

≤ λ
∫ 1

0
Gξη(t, s)(f(s, [x(t) − w1(t)]

∗, [y(t) − w2(t)]
∗) + e1(s))ds

+ λ
∫ 1

0
Kξη(t, s)(g(s, [x(t) − w1(t)]

∗, [y(t) − w2(t)]
∗) + e2(s))ds,

≤ λ
∫ 1

0 Gξη(t, s)f(R0)ds + λ
∫ 1

0 Kξη(t, s)g(R0)ds,

≤ λ
∫ 1

0
C0(1 − s)α−1sh(R0)ds + λ

∫ 1

0
C0(1 − s)α−1sh(R0)ds,

≤ 2λ
∫ 1

0
C0(1 − s)α−1sdsh(R0),

≤ 2λch(R0),

(3.5)

and similarly, we also have
y(t) = νB(x, y)(t) ≤ 2λch(R0). (3.6)

It follows that
R0 = ‖(x, y)‖1 ≤ 4λch(R0),

that is
h(R0)

R0
≥

1

4cλ
>

1

8cλ
=

h(R0)

R0
,

which implies that ‖(x, y)‖1 6= R0. By the nonlinear alternative of Leray-Schauder type, T has a fixed point
(x, y) ∈ U . Moreover, combining (3.4)-(3.6) and the fact that R0 < ε, we obtain

x(t) = λ
∫ 1

0 Gξη(t, s)(f(s, [x(t) − w1(t)]
∗, [y(t) − w2(t)]

∗) + e1(s))ds

+ λ
∫ 1

0
Kξη(t, s)(g(s, [x(t) − w1(t)]

∗, [y(t) − w2(t)]
∗) + e2(s))ds,

≥ λ
∫ 1

0
Gξη(t, s)(δf(s, 0, 0) + e1(s))ds + λ

∫ 1

0
Kξη(t, s)(δg(s, 0, 0) + e2(s))ds,

> λ
∫ 1

0 Gξη(t, s)e1(s)ds + λ
∫ 1

0 Kξη(t, s)e2(s)ds,

= w1(t) for t ∈ (0, 1),

and similarly, we also have
y(t) > w2(t) for t ∈ (0, 1).

Then T has a positive fixed point (x, y) and ‖(x, y)‖1 ≤ R0 < 1. Namely, (x, y) is positive solution of the boundary
value problem (3.1) with x(t) > w1(t) and y(t) > w2(t) for t ∈ (0, 1).

Let u(t) = x(t) − w1(t) ≥ 0 and v(t) = y(t) − w2(t) ≥ 0. Then (u, v) is a nonnegative solution (positive on
(0, 1)) of the boundary value problem (1.1).

Theorem 3.2 Suppose that (H∗
1) and (H3)-(H4) hold. Then there exists a constant λ∗ > 0 such that, for any

0 < λ ≤ λ∗, the boundary value problem (1.1) has at least one positive solution.

Proof. Let Ω1 = {(x, y) ∈ E × E : ‖x‖ < R1, ‖y‖ < R1}, where R1 = max{1, r} and r =
C2

0

c0

∫ 1

0
(e1(s) +

e2(s))ds). Choose

λ∗ = min{1,
R1

2
(R + 1)−1,

R1

2r
},

where R =
∫ 1

0 C0(1 − s)α−1s[ max
0≤z1,z2≤R1

f(s, z1, z2) + max
0≤z1,z2≤R1

g(s, z1, z2) + e1(s) + e2(s)]ds and R ≥ 0.

Then, for any (x, y) ∈ (P ×P )∩∂Ω1, we have ‖x‖ = R1 or ‖y‖ = R1. Moreover x(s)−w1(s) ≤ x(s) ≤ ‖x‖ ≤ R1,
y(s) − w2(s) ≤ y(s) ≤ ‖y‖ ≤ R1, and it follows that

‖A(x, y)(t)‖ ≤ λ
∫ 1

0 C0(1 − s)α−1s(f(s, [x(t) − w1(t)]
∗, [y(t) − w2(t)]

∗) + e1(s))ds

+ λ
∫ 1

0
C0(1 − s)α−1s(g(s, [x(t) − w1(t)]

∗, [y(t) − w2(t)]
∗) + e2(s))ds,

≤ λ
∫ 1

0
C0(1 − s)α−1s( max

0≤z1,z2≤R1

f(s, z1, z2) + e1(s))ds

+ λ
∫ 1

0
C0(1 − s)α−1s( max

0≤z1,z2≤R1

g(s, z1, z2) + e2(s))ds,

≤ λ
∫ 1

0
C0(1 − s)α−1s[ max

0≤z1,z2≤R1

f(s, z1, z2) + max
0≤z1,z2≤R1

g(s, z1, z2) + e1(s) + e2(s)]ds,

≤ λR,

≤ R1

2 ,
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and similarly, we also have
‖B(x, y)(t)‖ ≤ R1

2 .

This implies
‖T (x, y)‖1 = ‖A(x, y)‖ + ‖B(x, y)‖ ≤ R1 ≤ ‖(x, y)‖1, (x, y) ∈ (P × P ) ∩ ∂Ω1.

On the other hand, choose a constant N > 1 such that

λN
c2
0

2C0
γ

∫ θ2

θ1

(1 − s)α−1sαds ≥ 1,

where γ = min
θ1≤t≤θ2

{tα−1}.

By assumptions (H3) and (H4), there exists a constant B > R1 such that

f(t, z1, z2)

z1
> N, namely f(t, z1, z2) > Nz1, for t ∈ [θ1, θ2], z2 > 0, z1 > B

and
g(t, z1, z2)

z2
> N, namely g(t, z1, z2) > Nz2, for t ∈ [θ1, θ2], z1 > 0, z2 > B.

Choose R2 = max{R1 + 1, 2λr,
2C0(B+1)

c0γ
}, and let Ω2 = {(x, y) ∈ E × E : ‖x‖ < R2, ‖y‖ < R2}. Then for any

(x, y) ∈ (P × P ) ∩ ∂Ω2, we have ‖x‖ = R2 or ‖y‖ = R2. If ‖x‖ = R2, then

x(t) − w1(t) = x(t) − (λ
∫ 1

0 Gξη(t, s)e1(s)ds + λ
∫ 1

0 Kξη(t, s)e2(s)ds)

≥ x(t) − (λ
∫ 1

0
C0t

α−1e1(s)ds + λ
∫ 1

0
C0t

α−1e2(s)ds)

= x(t) − (λC0t
α−1

∫ 1

0 (e1(s) + e2(s))ds)

= x(t) − (λ c0

C0
tα−1 C2

0

c0

∫ 1

0 (e1(s) + e2(s))ds)

= x(t) − λ c0

C0
tα−1r

≥ x(t) − x(t)
‖x‖λr

≥ x(t) − x(t)
R2

λr

≥ (1 − λr
R2

)x(t)

≥ 1
2x(t) ≥ 0, t ∈ [0, 1],

and then

min
θ1≤t≤θ2

{[x(t) − w1(t)]
∗} = min

θ1≤t≤θ2

{x(t) − w1(t)} ≥ min
θ1≤t≤θ2

{ 1
2x(t)}

≥ min
θ1≤t≤θ2

{ c0

2C0
tα−1‖x‖} = c0

2C0
R2 min

θ1≤t≤θ2

{tα−1} ≥ B + 1 > B.

Since B > R1 ≥ m0, we have

f(t, [x(t) − w1(t)]
∗, [y(t) − w2(t)]

∗) > N [x(t) − w1(t)]
∗ ≥

N

2
x(t), for t ∈ [θ1, θ2].

It follows that

A(x, y)(t) = λ
∫ 1

0 Gξη(t, s)(f(s, [x(s) − w1(s)]
∗, [y(s) − w2(s)]

∗) + e1(s))ds

+ λ
∫ 1

0
Kξη(t, s)(g(s, [x(s) − w1(s)]

∗, [y(s) − w2(s)]
∗) + e2(s))ds,

≥ λ
∫ 1

0 Gξη(t, s)(f(s, [x(s) − w1(s)]
∗, [y(s) − w2(s)]

∗) + e1(s))ds

≥ λ
∫ θ2

θ1
Gξη(t, s)f(s, [x(s) − w1(s)]

∗, [y(s) − w2(s)]
∗)ds

≥ λ
∫ θ2

θ1
c0t

α(1 − s)α−1sN
2 x(s)ds

≥ λtα
∫ θ2

θ1
c0(1 − s)α−1sN

2
c0

C0
sα−1‖x‖ds

≥ λtα
∫ θ2

θ1
c0(1 − s)α−1sN c0

2C0
sα−1R2ds

≥ λN
c2
0

2C0
γ

∫ 1

0
(1 − s)α−1sαdsR2

≥ R2, t ∈ [θ1, θ2].
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If ‖y‖ = R2, we have

y(t) − w2(t) = y(t) − (λ
∫ 1

0
Gηξ(t, s)e1(s)ds + λ

∫ 1

0
Kηξ(t, s)e2(s)ds) ≥ 1

2y(t) ≥ 0, t ∈ [0, 1],

and
min

θ1≤t≤θ2

{[y(t) − w2(t)]
∗} = min

θ1≤t≤θ2

{y(t) − w2(t)} ≥ min
θ1≤t≤θ2

{ 1
2y(t)}

≥ min
θ1≤t≤θ2

{ c0

2C0
tα−1‖y‖} = c0

2C0
R2 min

θ1≤t≤θ2

{tα−1} ≥ B + 1 > B.

Then, for any (x, y) ∈ (P × P ) ∩ ∂Ω2, we also have

g(t, [x(t) − w1(t)]
∗, [y(t) − w2(t)]

∗) > N [y(t) − w2(t)]
∗ ≥

N

2
y(t), for t ∈ [θ1, θ2].

It follows that

A(x, y)(t) = λ
∫ 1

0 Gξη(t, s)(f(s, [x(s) − w1(s)]
∗, [y(s) − w2(s)]

∗) + e1(s))ds

+ λ
∫ 1

0 Kξη(t, s)(g(s, [x(s) − w1(s)]
∗, [y(s) − w2(s)]

∗) + e2(s))ds,

≥ λ
∫ θ2

θ1
Kξη(t, s)g(s, [x(s) − w1(s)]

∗, [y(s) − w2(s)]
∗)ds,

≥ λ
∫ θ2

θ1
c0t

α(1 − s)α−1sg(s, [x(s) − w1(s)]
∗, [y(s) − w2(s)]

∗)ds,

≥ λtα
∫ θ2

θ1
c0(1 − s)α−1sN

2 y(s)ds

≥ λtα
∫ θ2

θ1
c0(1 − s)α−1sN

2
c0

C0
sα−1‖y‖ds

≥ λtα
∫ θ2

θ1
c0(1 − s)α−1sαN c0

2C0
R2ds

≥ λN
c2
0

2C0
γ

∫ 1

0
(1 − s)α−1sαdsR2

≥ R2, t ∈ [θ1, θ2].

Thus, for any (x, y) ∈ (P × P ) ∩ ∂Ω2, we always have

A(x, y)(t) ≥ R2, t ∈ [θ1, θ2].

Similarly, for any (x, y) ∈ (P × P ) ∩ ∂Ω2, we also have

B(x, y)(t) ≥ R2, t ∈ [θ1, θ2].

This implies
‖T (x, y)‖1 ≥ ‖(x, y)‖1, (x, y) ∈ (P × P ) ∩ ∂Ω2.

Thus condition (2) of Krasnoesel’skii’s fixed-point theorem is satisfied. As a result T has a fixed point (x, y) with
r ≤ R1 < ‖x‖ < R2, r ≤ R1 < ‖y‖ < R2.

Also since r < R1 < ‖x‖ and r < R1 < ‖y‖, then

x(t) − w1(t) ≥ c0

C0
tα−1‖x‖ − (λ

∫ 1

0 Gξη(t, s)e1(s)ds + λ
∫ 1

0 Kξη(t, s)e2(s)ds)

≥ c0

C0
tα−1‖x‖ − λ c0

C0
tα−1r

≥ c0

C0
tα−1r − λ c0

C0
tα−1r

≥ (1 − λ) c0

C0
tα−1r

> 0, t ∈ (0, 1),

and
y(t) − w2(t) = y(t) − (λ

∫ 1

0 Gηξ(t, s)e2(s)ds + λ
∫ 1

0 Kηξ(t, s)e1(s)ds)

≥ y(t) − (λ
∫ 1

0 C0t
α−1e2(s)ds + λ

∫ 1

0 C0t
α−1e1(s)ds)

= y(t) − (λC0t
α−1

∫ 1

0
(e1(s) + e2(s))ds)

= c0

C0
tα−1‖y‖ − λ c0

C0
tα−1r

≥ c0

C0
tα−1r − λ c0

C0
tα−1r

≥ (1 − λ) c0

C0
tα−1r

> 0, t ∈ (0, 1).
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Thus, (x, y) is positive solution of the boundary value problem (3.1) with x(t) > w1(t) and y(t) > w2(t) for
t ∈ (0, 1).

Let u(t) = x(t) − w1(t) ≥ 0 and v(t) = y(t) − w2(t) ≥ 0. Then (u, v) is a nonnegative solution (positive on
(0, 1)) of the boundary value problem (1.1).

Remark From the proof of Theorem 3.2, clearly condition (H3) can be replaced by condition (H∗
3)

Theorem 3.3 Suppose that (H∗
1), (H∗

3) and (H4) hold. Then there exists a constant λ∗ > 0 such that, for any
0 < λ ≤ λ∗, the boundary value problem (1.1) has at least one positive solution.

Since condition (H1) implies conditions (H∗
1) and (H4), then from the proof of Theorem 3.1 and 3.2, we imme-

diately have the following theorem:

Theorem 3.4 Suppose that (H1)-(H3) hold. Then the boundary value problem (1.1) has at least two positive
solutions for λ > 0 sufficiently small.

In fact, let 0 < λ < min{λ, λ∗}, then the boundary value problem (1.1) has at least two positive solutions.

Similarly we have

Theorem 3.5 Suppose that (H1)-(H2) and (H∗
3) hold. Then the boundary value problem (1.1) has at least two

positive solutions for λ > 0 sufficiently small.

4 Example

To illustrate the usefulness of the results, we give some examples.

Example 4.1 Consider the boundary value problem



























−Dα
0+u = λ(uc + 1

(t−t2)
1
2

cos(πv)), t ∈ (0, 1), λ > 0,

−Dα
0+v = λ(vd + 1

(t−t2)
1
2

sin(2πu)),

u(i)(0) = v(i)(0) = 0, 0 ≤ i ≤ n − 2,

u(1) = av(ξ), v(1) = bu(η), ξ, η ∈ (0, 1)

(4.1)

where c, d > 1. Then, if λ > 0 is sufficiently small, (4.1) has a positive solution (u, v) with u > 0, v > 0 for t ∈ (0, 1).

To see this we will apply Theorem 3.2 with

f(t, u, v) = uc + 1

(t−t2)
1
2

cos(πv), g(t, u, v) = vd + 1

(t−t2)
1
2

sin(2πu),

ei(t) = e(t) = 2

(t−t2)
1
2

(i = 1, 2).

Clearly, for t ∈ (0, 1),

f(t, u, v) + e(t) ≥ uc + 1

(t−t2)
1
2

> 0, g(t, u, v) + e(t) ≥ vd + 1

(t−t2)
1
2

> 0, for t ∈ (0, 1);

lim
u↑+∞

inf f(t,u,v)
u

= +∞, lim
v↑+∞

inf g(t,u,v)
v

= +∞, for ∀ t ∈ [θ1, θ2] ⊂ (0, 1),

for u, v ≥ 0. Thus (H∗
1) and (H3)-(H4) hold. Let r =

2C2
0

c0

∫ 1

0
2

(s−s2)
1
2
ds =

2πC2
0

c0
and let R1 = 1 + r.

We have

R =

∫ 1

0

C0(1 − s)α−1s[ max
0≤z1,z2≤R1

f(s, z1, z2) + max
0≤z1,z2≤R1

g(s, z1, z2) +
4

(s − s2)
1
2

]ds ≤ C0(R
c
1 + Rd

1 + π).

Let

λ∗ = min{1, R1(R + 1)−1,
R1

2r
}.
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Now, if λ < λ∗, Theorem 3.2 guarantees that (4.1) has a positive solution (u, v) with ‖u‖ ≥ 2π and ‖v‖ ≥ 2π.

Example 4.2 Consider the boundary value problem



















−Dα
0+u = λ((u − a)(u − b) + cos( π

2a
v)), t ∈ (0, 1), λ > 0,

−Dα
0+v = λ((v − c)(v − d) + sin(π

c
u)),

u(i)(0) = v(i)(0) = 0, 0 ≤ i ≤ n − 2,

u(1) = av(ξ), v(1) = bu(η), ξ, η ∈ (0, 1)

(4.2)

where b > a > 0, d > c > 0. Then, if λ > 0 is sufficiently small, (4.2) has two solutions (u1, v1), (u2, v2) with
ui(t) > 0, vi(t) > 0 for t ∈ (0, 1), i = 1, 2.

To see this we will apply Theorem 3.4 with

f(t, u, v) = (u − a)(u − b) + cos(
π

2a
v) and g(t, u, v) = (v − c)(v − d) + sin(

π

c
u).

Clearly, there exists a constant e1(t) = e2(t) = M0 > 0 such that

f(t, u, v) + M0 > 0, g(t, u, v) + M0 > 0, for ∀ t ∈ (0, 1).

Let δ = 1
16(ab+cd+1) min{ab, cd}, ε = 1

4 min{1, a, b} and c =
∫ 1

0
C0(1 − s)α−1sds. We have

f(t, z1, z2) ≥ δf(t, 0, 0) = δ(ab + 1), g(t, z1, z2) ≥ δg(t, 0, 0) = δcd, for 0 ≤ t ≤ 1, 0 ≤ z1, z2 ≤ ε.

Thus (H1)-(H2) hold. Since

f(ε) = max
0≤t≤1,0≤u,v≤ε

{f(t, u, v) + e1(t)} ≤ ab + cd + 1,

g(ε) = max
0≤t≤1,0≤u,v≤ε

{g(t, u, v) + e2(t)} ≤ ab + cd + 1,

h(ε) = max{f(ε), g(ε)} ≤ ab + cd + 1,

we can choose
λ =

ε

8c(ab + cd + 1)
. (4.3)

Now, if λ < λ, Theorem 3.1 guarantees that (4.2) has a positive solution (u1, v1) with ‖u1‖ ≤ 1
4 .

On the other hand,

lim
u↑+∞

inf
f(t, u, v)

u
= +∞, lim

v↑+∞
inf

g(t, u, v)

v
= +∞ for ∀ t ∈ [θ1, θ2] ⊂ (0, 1), u, v ∈ (0,∞).

Thus (H1)-(H4) also hold. Let r =
2C2

0

c0
and R1 > 1 + r. We have

R =

∫ 1

0

C0(1 − s)α−1s[ max
0≤z1,z2≤R1

f(s, z1, z2) + max
0≤z1,z2≤R1

g(s, z1, z2) + 2M0]ds

and

λ∗ = min{1,
R1

2
(R + 1)−1,

R1

2r
}.

Now, if 0 < λ < λ∗, Theorem 3.2 guarantees that (4.2) has a positive solution (u2, v2) with ‖u2‖ ≥ 1.

Since all the conditions of Theorem 3.4 are satisfied , if λ < min{λ, λ∗}, Theorem 3.4 guarantees that (4.2) has
two solutions ui with ui(t) > 0 for t ∈ (0, 1), i = 1, 2.

Example 4.3 Consider the boundary value problem



















−Dα
0+u = λ(vc + cos(2πu)), t ∈ (0, 1), λ > 0,

−Dα
0+v = λ(ud + cos(2πv)),

u(i)(0) = v(i)(0) = 0, 0 ≤ i ≤ n − 2,

u(1) = av(ξ), v(1) = bu(η), ξ, η ∈ (0, 1)

(4.4)
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where c, d > 1. Then, if λ > 0 is sufficiently small, (4.4) has two solutions (u1, v1), (u2, v2) with ui(t) > 0, vi(t) > 0
for t ∈ (0, 1), i = 1, 2.

To see this we will apply Theorem 3.5 with

f(t, u, v) = vc + cos(2πu), g(t, u, v) = ud + cos(2πv), e(t) = 2.

Clearly,

f(t, u, v) + e(t) ≥ vα + 1 > 0, g(t, u, v) + e(t) ≥ uα + 1 > 0 for t ∈ (0, 1),

f(t, 0, 0) = 1 > 0, g(t, 0, 0) = 1 > 0,

lim
v↑+∞

inf f(t,u,v)
v

= +∞, lim
u↑+∞

inf g(t,u,v)
u

= +∞ for ∀ t ∈ [θ1, θ2] ⊂ (0, 1).

Thus (H1)-(H2) and (H∗
3) hold.

First, let δ = 1
2 , ε = 1

8 and c =
∫ 1

0
C0(1 − s)α−1sds. We have

f(ε) = max
0≤t≤1,0≤u,v≤ε

{f(t, u, v) + e1(t)} ≤ 8−c + 3,

g(ε) = max
0≤t≤1,0≤u,v≤ε

{g(t, u, v) + e2(t)} ≤ 8−d + 3,

h(ε) = max{f(ε), g(ε)},

then ε

8ch(ε)
≥ 1

8c(1+3) = 1
32c

.

Let λ = 1
32c

. Now, if 0 < λ < λ then 0 < λ < ε

8ch(ε)
, Theorem 3.1 guarantees that (4.4) has a positive solution

(u1, v1) with ‖u1‖ ≤ 1
8 .

Next, from r =
4C2

0

c0
and let R1 = 1 + r. Then, we have

R =

∫ 1

0

C0(1 − s)α−1s[ max
0≤z1,z2≤R1

f(s, z1, z2) + max
0≤z1,z2≤R1

g(s, z1, z2) + 4]ds.

Let λ∗ = min{1, R1

2 (R + 1)−1, R1

2r
}. Now, if 0 < λ < λ∗ then Theorem 3.3 guarantees that (4.4) has a positive

solution (u2, v2) with ‖u2‖ ≥ 1.

So, if λ < min{λ, λ∗}, Theorem 3.5 guarantees that (4.4) has two solutions (u1, v1) and (u2, v2) with ui, vi > 0
for t ∈ (0, 1), i = 1, 2.
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