# On the Growth of Solutions of Some Higher Order Linear Differential Equations With Entire Coefficients 

Habib HABIB and Benharrat BELAÏDI

Department of Mathematics
Laboratory of Pure and Applied Mathematics
University of Mostaganem (UMAB)
B. P. 227 Mostaganem-(Algeria)
habibhabib2927@yahoo.fr
belaidi@univ-mosta.dz

$$
\begin{aligned}
& \text { Abstract. In this paper, we investigate the order and the hyper-order of } \\
& \text { solutions of the linear differential equation } \\
& \qquad \begin{array}{c}
f^{(k)}+\left(D_{k-1}+B_{k-1} e^{b_{k-1} z}\right) f^{(k-1)}+\ldots+\left(D_{1}+B_{1} e^{b_{1} z}\right) f^{\prime} \\
+\left(D_{0}+A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right) f=0
\end{array}
\end{aligned}
$$

where $A_{j}(z)(\not \equiv 0)(j=1,2), B_{l}(z)(\not \equiv 0)(l=1, \ldots, k-1), D_{m}(m=$ $0, \ldots, k-1)$ are entire functions with $\max \left\{\sigma\left(A_{j}\right), \sigma\left(B_{l}\right), \sigma\left(D_{m}\right)\right\}<1, a_{1}$, $a_{2}, b_{l}(l=1, \ldots, k-1)$ are complex numbers. Under some conditions, we prove that every solution $f(z) \not \equiv 0$ of the above equation is of infinite order and with hyper-order 1.

2010 Mathematics Subject Classification: 34M10, 30D35.
Key words: Linear differential equations, Entire solutions, Order of growth, Hyper-order.

## 1 Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna's value distribution theory (see [9], [14]). Let $\sigma(f)$ denote the order of growth of an
entire function $f$ and the hyper-order $\sigma_{2}(f)$ of $f$ is defined by (see [10] , [14])

$$
\sigma_{2}(f)=\lim _{r \rightarrow+\infty} \sup \frac{\log \log T(r, f)}{\log r}=\lim _{r \rightarrow+\infty} \sup \frac{\log \log \log M(r, f)}{\log r}
$$

where $T(r, f)$ is the Nevanlinna characteristic function of $f$ and $M(r, f)=$ $\max _{|z|=r}|f(z)|$.

For the second order linear differential equation

$$
\begin{equation*}
f^{\prime \prime}+e^{-z} f^{\prime}+B(z) f=0 \tag{1.1}
\end{equation*}
$$

where $B(z)$ is an entire function, it is well-known that each solution $f$ of the equation (1.1) is an entire function, and that if $f_{1}, f_{2}$ are two linearly independent solutions of (1.1), then by [4], there is at least one of $f_{1}, f_{2}$ of infinite order. Hence, "most" solutions of (1.1) will have infinite order. But the equation (1.1) with $B(z)=-\left(1+e^{-z}\right)$ possesses a solution $f(z)=e^{z}$ of finite order.

A natural question arises: What conditions on $B(z)$ will guarantee that every solution $f \not \equiv 0$ of (1.1) has infinite order? Many authors, Frei [5], Ozawa [12], Amemiya-Ozawa [1] and Gundersen [6], Langley [11] have studied this problem. They proved that when $B(z)$ is a nonconstant polynomial or $B(z)$ is a transcendental entire function with order $\rho(B) \neq 1$, then every solution $f \not \equiv 0$ of (1.1) has infinite order. In [3] , Chen has considered equation (1.1) and obtained different results concerning the growth of its solutions when $\rho(B)=1$.

Recently in [13], Peng and Chen have investigated the order and the hyper-order of solutions of some second order linear differential equations and have proved the following result.

Theorem A $([13])$ Let $A_{j}(z)(\not \equiv 0)(j=1,2)$ be entire functions with $\sigma\left(A_{j}\right)<$ $1, a_{1}, a_{2}$ be complex numbers such that $a_{1} a_{2} \neq 0, a_{1} \neq a_{2}$ (suppose that $\left|a_{1}\right| \leqslant\left|a_{2}\right|$. If $\arg a_{1} \neq \pi$ or $a_{1}<-1$, then every solution $f \not \equiv 0$ of the equation

$$
f^{\prime \prime}+e^{-z} f^{\prime}+\left(A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right) f=0
$$

has infinite order and $\sigma_{2}(f)=1$.

In this paper, we continue the research in this type of problems, the main purpose of this paper is to extend and improve the results of Theorem A to some higher order linear differential equations. In fact we will prove the following results.

Theorem 1.1 Let $A_{j}(z)(\not \equiv 0)(j=1,2), B_{l}(z)(\not \equiv 0)(l=1, \ldots, k-1), D_{m}$ $(m=0, \ldots, k-1)$ be entire functions with $\max \left\{\sigma\left(A_{j}\right), \sigma\left(B_{l}\right), \sigma\left(D_{m}\right)\right\}<1$, $b_{l}(l=1, \ldots, k-1)$ be complex constants such that $(i) \arg b_{l}=\arg a_{1}$ and $b_{l}=c_{l} a_{1}\left(0<c_{l}<1\right)\left(l \in I_{1}\right)$ and (ii) $b_{l}$ is a real constant such that $b_{l} \leqslant 0$ $\left(l \in I_{2}\right)$, where $I_{1} \neq \varnothing, I_{2} \neq \varnothing, I_{1} \cap I_{2}=\varnothing, I_{1} \cup I_{2}=\{1,2, \ldots, k-1\}$, and $a_{1}, a_{2}$ are complex numbers such that $a_{1} a_{2} \neq 0, a_{1} \neq a_{2}$ (suppose that $\left|a_{1}\right| \leqslant\left|a_{2}\right|$. If $\arg a_{1} \neq \pi$ or $a_{1}$ is a real number such that $a_{1}<\frac{b}{1-c}$, where $c=\max \left\{c_{l}: l \in I_{1}\right\}$ and $b=\min \left\{b_{l}: l \in I_{2}\right\}$, then every solution $f \not \equiv 0$ of the equation

$$
\begin{gather*}
f^{(k)}+\left(D_{k-1}+B_{k-1} e^{b_{k-1} z}\right) f^{(k-1)}+\ldots+\left(D_{1}+B_{1} e^{b_{1} z}\right) f^{\prime} \\
+\left(D_{0}+A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right) f=0 \tag{1.2}
\end{gather*}
$$

satisfies $\sigma(f)=+\infty$ and $\sigma_{2}(f)=1$.
Corollary 1.1 Let $A_{j}(z)(\not \equiv 0)(j=1,2), B_{l}(z)(\not \equiv 0)(l=1, \ldots, k-1), D_{m}$ $(m=0, \ldots, k-1)$ be entire functions with $\max \left\{\sigma\left(A_{j}\right), \sigma\left(B_{l}\right), \sigma\left(D_{m}\right)\right\}<1$, $b_{l}(l=1, \ldots, k-1)$ be complex constants such that $\arg b_{l}=\arg a_{1}$ and $b_{l}=$ $c_{l} a_{1}\left(0<c_{l}<1\right)(l=1, \ldots, k-1)$, and $a_{1}, a_{2}$ be complex numbers such that $a_{1} a_{2} \neq 0, a_{1} \neq a_{2}$ (suppose that $\left|a_{1}\right| \leqslant\left|a_{2}\right|$ ). If $\arg a_{1} \neq \pi$ or $a_{1}$ is a real number such that $a_{1}<0$, then every solution $f \not \equiv 0$ of equation (1.2) satisfies $\sigma(f)=+\infty$ and $\sigma_{2}(f)=1$.

Corollary 1.2 Let $A_{j}(z)(\not \equiv 0)(j=1,2), B_{l}(z)(\not \equiv 0)(l=1, \ldots, k-1), D_{m}$ $(m=0, \ldots, k-1)$ be entire functions with $\max \left\{\sigma\left(A_{j}\right), \sigma\left(B_{l}\right), \sigma\left(D_{m}\right)\right\}<1$, $b_{l}(l=1, \ldots, k-1)$ be real constants such that $b_{l} \leqslant 0$, and $a_{1}, a_{2}$ be complex numbers such that $a_{1} a_{2} \neq 0, a_{1} \neq a_{2}$ (suppose that $\left|a_{1}\right| \leqslant\left|a_{2}\right|$ ). If $\arg a_{1} \neq \pi$ or $a_{1}$ is a real number such that $a_{1}<b$, where $b=\min \left\{b_{l}: l=1, \ldots, k-1\right\}$, then every solution $f \not \equiv 0$ of equation (1.2) satisfies $\sigma(f)=+\infty$ and $\sigma_{2}(f)=1$.

## 2 Preliminary lemmas

To prove our theorem, we need the following lemmas.
Lemma 2.1 ([7]) Let $f$ be a transcendental meromorphic function with $\sigma(f)=\sigma<+\infty, H=\left\{\left(k_{1}, j_{1}\right),\left(k_{2}, j_{2}\right), \ldots,\left(k_{q}, j_{q}\right)\right\}$ be a finite set of distinct pairs of integers satisfying $k_{i}>j_{i} \geqslant 0(i=1, \ldots, q)$ and let $\varepsilon>0$ be a given constant. Then,
(i) there exists a set $E_{1} \subset\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ with linear measure zero, such that, if $\psi \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right) \backslash E_{1}$, then there is a constant $R_{0}=R_{0}(\psi)>1$, such that for all $z$ satisfying $\arg z=\psi$ and $|z| \geqslant R_{0}$ and for all $(k, j) \in H$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leqslant|z|^{(k-j)(\sigma-1+\varepsilon)}, \tag{2.1}
\end{equation*}
$$

(ii) there exists a set $E_{2} \subset(1,+\infty)$ with finite logarithmic measure, such that for all $z$ satisfying $|z| \notin E_{2} \cup[0,1]$ and for all $(k, j) \in H$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leqslant|z|^{(k-j)(\sigma-1+\varepsilon)}, \tag{2.2}
\end{equation*}
$$

(iii) there exists a set $E_{3} \subset(0, \infty)$ with finite linear measure, such that for all $z$ satisfying $|z| \notin E_{3}$ and for all $(k, j) \in H$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leqslant|z|^{(k-j)(\sigma+\varepsilon)} \tag{2.3}
\end{equation*}
$$

Lemma $2.2([3])$ Suppose that $P(z)=(\alpha+i \beta) z^{n}+\ldots(\alpha, \beta$ are real numbers, $|\alpha|+|\beta| \neq 0)$ is a polynomial with degree $n \geqslant 1$, that $A(z)(\not \equiv 0)$ is an entire function with $\sigma(A)<n$. Set $g(z)=A(z) e^{P(z)}, z=r e^{i \theta}, \delta(P, \theta)=$ $\alpha \cos n \theta-\beta \sin n \theta$. Then for any given $\varepsilon>0$, there is a set $E_{4} \subset[0,2 \pi)$ that has linear measure zero, such that for any $\theta \in[0,2 \pi) \backslash\left(E_{4} \cup E_{5}\right)$, there is $R>0$, such that for $|z|=r>R$, we have
(i) if $\delta(P, \theta)>0$, then

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\} \leqslant\left|g\left(r e^{i \theta}\right)\right| \leqslant \exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\} \tag{2.4}
\end{equation*}
$$

(ii) if $\delta(P, \theta)<0$, then

$$
\begin{equation*}
\exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\} \leqslant\left|g\left(r e^{i \theta}\right)\right| \leqslant \exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\} \tag{2.5}
\end{equation*}
$$

EJQTDE, 2011 No. 93, p. 4
where $E_{5}=\{\theta \in[0,2 \pi): \delta(P, \theta)=0\}$ is a finite set.
Lemma 2.3 ([13]) Suppose that $n \geqslant 1$ is a positive entire number. Let $P_{j}(z)=a_{j n} z^{n}+\ldots(j=1,2)$ be nonconstant polynomials, where $a_{j q}(q=$ $1, \ldots, n$ ) are complex numbers and $a_{1 n} a_{2 n} \neq 0$. Set $z=r e^{i \theta}, a_{j n}=\left|a_{j n}\right| e^{i \theta_{j}}$, $\theta_{j} \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right), \delta\left(P_{j}, \theta\right)=\left|a_{j n}\right| \cos \left(\theta_{j}+n \theta\right)$, then there is a set $E_{6} \subset$ $\left[-\frac{\pi}{2 n}, \frac{3 \pi}{2 n}\right)$ that has linear measure zero. If $\theta_{1} \neq \theta_{2}$, then there exists a ray $\arg z=\theta, \theta \in\left(-\frac{\pi}{2 n}, \frac{\pi}{2 n}\right) \backslash\left(E_{6} \cup E_{7}\right)$, such that

$$
\begin{equation*}
\delta\left(P_{1}, \theta\right)>0, \delta\left(P_{2}, \theta\right)<0 \tag{2.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta\left(P_{1}, \theta\right)<0, \delta\left(P_{2}, \theta\right)>0 \tag{2.7}
\end{equation*}
$$

where $E_{7}=\left\{\theta \in\left[-\frac{\pi}{2 n}, \frac{3 \pi}{2 n}\right): \delta\left(P_{j}, \theta\right)=0\right\}$ is a finite set, which has linear measure zero.

Remark 2.1 ([13]) In Lemma 2.3, if $\theta \in\left(-\frac{\pi}{2 n}, \frac{\pi}{2 n}\right) \backslash\left(E_{6} \cup E_{7}\right)$ is replaced by $\theta \in\left(\frac{\pi}{2 n}, \frac{3 \pi}{2 n}\right) \backslash\left(E_{6} \cup E_{7}\right)$, then we obtain the same result.

Lemma 2.4 ([2]) Suppose that $k \geqslant 2$ and $B_{0}, B_{1}, \ldots, B_{k-1}$ are entire functions of finite order and let $\sigma=\max \left\{\sigma\left(B_{j}\right): j=0, \ldots, k-1\right\}$. Then every solution $f$ of the equation

$$
\begin{equation*}
f^{(k)}+B_{k-1} f^{(k-1)}+\ldots+B_{1} f^{\prime}+B_{0} f=0 \tag{2.8}
\end{equation*}
$$

satisfies $\sigma_{2}(f) \leqslant \sigma$.
Lemma 2.5 ([7]) Let $f(z)$ be a transcendental meromorphic function, and let $\alpha>1$ be a given constant. Then there exist a set $E_{8} \subset(1, \infty)$ with finite logarithmic measure and a constant $B>0$ that depends only on $\alpha$ and $i, j$ $(0 \leqslant i<j \leqslant k)$, such that for all $z$ satisfying $|z|=r \notin[0,1] \cup E_{8}$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f^{(i)}(z)}\right| \leqslant B\left\{\frac{T(\alpha r, f)}{r}\left(\log ^{\alpha} r\right) \log T(\alpha r, f)\right\}^{j-i} \tag{2.9}
\end{equation*}
$$

Lemma 2.6 ([8]) Let $\varphi:[0,+\infty) \rightarrow \mathbb{R}$ and $\psi:[0,+\infty) \rightarrow \mathbb{R}$ be monotone non-decreasing functions such that $\varphi(r) \leqslant \psi(r)$ for all $r \notin E_{9} \cup[0,1]$, where $E_{9} \subset(1,+\infty)$ is a set of finite logarithmic measure. Let $\gamma>1$ be a given constant. Then there exists an $r_{1}=r_{1}(\gamma)>0$ such that $\varphi(r) \leqslant \psi(\gamma r)$ for all $r>r_{1}$.

EJQTDE, 2011 No. 93, p. 5

## 3 Proof of Theorem 1.1

Assume that $f(\not \equiv 0)$ is a solution of equation (1.2).
First step: We prove that $\sigma(f)=+\infty$. Suppose that $\sigma(f)=\sigma<+\infty$. Set $\max \left\{\sigma\left(A_{j}\right), \sigma\left(B_{l}\right), \sigma\left(D_{m}\right)\right\}=\beta<1$ where $(j=1,2),(l=1, \ldots, k-1)$, ( $m=0, \ldots, k-1$ ). Then, for any given $\varepsilon(0<\varepsilon<1-\beta)$ and for sufficiently large $r$, we have

$$
\begin{equation*}
\left|A_{j}(z)\right| \leqslant \exp \left\{r^{\beta+\varepsilon}\right\},\left|B_{l}(z)\right| \leqslant \exp \left\{r^{\beta+\varepsilon}\right\},\left|D_{m}(z)\right| \leqslant \exp \left\{r^{\beta+\varepsilon}\right\} \tag{3.1}
\end{equation*}
$$

By Lemma 2.1 (i), for the above $\varepsilon$, there exists a set $E_{1} \subset\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ of linear measure zero, such that if $\theta \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right) \backslash E_{1}$, then there is a constant $R_{0}=R_{0}(\theta)>1$, such that for all $z$ satisfying $\arg z=\theta$ and $|z|=r \geqslant R_{0}$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leqslant r^{j(\sigma-1+\varepsilon)} \quad(j=1, \ldots, k) \tag{3.2}
\end{equation*}
$$

Let $z=r e^{i \theta}, a_{1}=\left|a_{1}\right| e^{i \theta_{1}}, a_{2}=\left|a_{2}\right| e^{i \theta_{2}}, \theta_{1}, \theta_{2} \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$. We know that $\delta\left(b_{l} z, \theta\right)=\delta\left(c_{l} a_{1} z, \theta\right)=c_{l} \delta\left(a_{1} z, \theta\right)\left(l \in I_{1}\right)$.

Case 1: $\arg a_{1} \neq \pi$, which is $\theta_{1} \neq \pi$.
(i) Assume that $\theta_{1} \neq \theta_{2}$. By Lemma 2.3, for any given $\varepsilon(0<\varepsilon<$ $\left.\min \left\{\frac{\left|a_{2}\right|-\left|a_{1}\right|}{\left|a_{2}\right|+\left|a_{1}\right|}, 1-\beta, \frac{1-c}{2(1+c)}\right\}\right)$, there is a ray $\arg z=\theta$ such that $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash$ $\left(E_{1} \cup E_{6} \cup E_{7}\right)$ (where $E_{6}$ and $E_{7}$ are defined as in Lemma 2.3, $E_{1} \cup E_{6} \cup E_{7}$ is of the linear measure zero), and satisfying

$$
\delta\left(a_{1} z, \theta\right)>0, \delta\left(a_{2} z, \theta\right)<0 \text { or } \delta\left(a_{1} z, \theta\right)<0, \delta\left(a_{2} z, \theta\right)>0 .
$$

a) When $\delta\left(a_{1} z, \theta\right)>0, \delta\left(a_{2} z, \theta\right)<0$, for sufficiently large $r$, we get by Lemma 2.2

$$
\begin{gather*}
\left|A_{1} e^{a_{1} z}\right| \geqslant \exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\}  \tag{3.3}\\
\left|A_{2} e^{a_{2} z}\right| \leqslant \exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\}<1 \tag{3.4}
\end{gather*}
$$

By (3.3) and (3.4), we have

$$
\begin{gathered}
\left|A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right| \geqslant\left|A_{1} e^{a_{1} z}\right|-\left|A_{2} e^{a_{2} z}\right| \\
\geqslant \exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\}-1
\end{gathered}
$$

EJQTDE, 2011 No. 93, p. 6

$$
\begin{equation*}
\geqslant(1-o(1)) \exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \tag{3.5}
\end{equation*}
$$

By (1.2), we get

$$
\begin{gather*}
\left|A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right| \leqslant\left|\frac{f^{(k)}(z)}{f(z)}\right|+\left(\left|D_{k-1}\right|+\left|B_{k-1}(z) e^{b_{k-1} z}\right|\right)\left|\frac{f^{(k-1)}(z)}{f(z)}\right| \\
+\ldots+\left(\left|D_{1}\right|+\left|B_{1}(z) e^{b_{1} z}\right|\right)\left|\frac{f^{\prime}(z)}{f(z)}\right|+\left|D_{0}(z)\right| \tag{3.6}
\end{gather*}
$$

For $l \in I_{1}$, we have

$$
\begin{equation*}
\left|B_{l}(z) e^{b_{l} z}\right| \leqslant \exp \left\{(1+\varepsilon) c_{l} \delta\left(a_{1} z, \theta\right) r\right\} \leqslant \exp \left\{(1+\varepsilon) c \delta\left(a_{1} z, \theta\right) r\right\} \tag{3.7}
\end{equation*}
$$

For $l \in I_{2}$, we have

$$
\begin{equation*}
\left|B_{l}(z) e^{b_{l} z}\right|=\left|B_{l}(z)\right|\left|e^{b_{l} z}\right| \leqslant \exp \left\{r^{\beta+\varepsilon}\right\} e^{b_{l} r \cos \theta} \leqslant \exp \left\{r^{\beta+\varepsilon}\right\} \tag{3.8}
\end{equation*}
$$

because $b_{l} \leqslant 0$ and $\cos \theta>0$. Substituting (3.1), (3.2), (3.5), (3.7) and (3.8) into (3.6), we obtain

$$
\begin{gather*}
(1-o(1)) \exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \\
\leqslant r^{k(\sigma-1+\varepsilon)}+\left(\exp \left\{r^{\beta+\varepsilon}\right\}+\left|B_{k-1}(z) e^{b_{k-1} z}\right|\right) r^{(k-1)(\sigma-1+\varepsilon)} \\
+\ldots+\left(\exp \left\{r^{\beta+\varepsilon}\right\}+\left|B_{1}(z) e^{b_{1} z}\right|\right) r^{\sigma-1+\varepsilon}+\exp \left\{r^{\beta+\varepsilon}\right\} \\
\leqslant M_{0} r^{k(\sigma-1+\varepsilon)} \exp \left\{r^{\beta+\varepsilon}\right\} \exp \left\{(1+\varepsilon) c \delta\left(a_{1} z, \theta\right) r\right\}, \tag{3.9}
\end{gather*}
$$

where $M_{0}>0$ is a some constant. From (3.9) and $0<\varepsilon<\frac{1-c}{2(1+c)}$, we get

$$
\begin{equation*}
(1-o(1)) \exp \left\{\frac{1-c}{2} \delta\left(a_{1} z, \theta\right) r\right\} \leqslant M_{0} r^{k(\sigma-1+\varepsilon)} \exp \left\{r^{\beta+\varepsilon}\right\} . \tag{3.10}
\end{equation*}
$$

By $\delta\left(a_{1} z, \theta\right)>0$ and $\beta+\varepsilon<1$ we know that (3.10) is a contradiction.
b) When $\delta\left(a_{1} z, \theta\right)<0, \delta\left(a_{2} z, \theta\right)>0$, for sufficiently large $r$, we get by Lemma 2.2

$$
\begin{gather*}
\left|A_{1} e^{a_{1} z}\right| \leqslant \exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\}<1,  \tag{3.11}\\
\left|A_{2} e^{a_{2} z}\right| \geqslant \exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \tag{3.12}
\end{gather*}
$$

By (3.11) and (3.12), we have

$$
\begin{equation*}
\left|A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right| \geqslant(1-o(1)) \exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \tag{3.13}
\end{equation*}
$$

EJQTDE, 2011 No. 93, p. 7

For $l \in I_{1}$, we have

$$
\begin{equation*}
\left|B_{l}(z) e^{b_{l} z}\right| \leqslant \exp \left\{(1+\varepsilon) c_{l} \delta\left(a_{1} z, \theta\right) r\right\}<1 . \tag{3.14}
\end{equation*}
$$

Substituting (3.1), (3.2), (3.8), (3.13) and (3.14) into (3.6), we obtain

$$
\begin{equation*}
(1-o(1)) \exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \leqslant M_{0} r^{k(\sigma-1+\varepsilon)} \exp \left\{r^{\beta+\varepsilon}\right\} . \tag{3.15}
\end{equation*}
$$

By $\delta\left(a_{2} z, \theta\right)>0$ and $\beta+\varepsilon<1$ we know that (3.15) is a contradiction.
(ii) Assume that $\theta_{1}=\theta_{2}$. By Lemma 2.3, for the above $\varepsilon$, there is a ray $\arg z=\theta$ such that $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{6} \cup E_{7}\right)$ and $\delta\left(a_{1} z, \theta\right)>0$. Since $\left|a_{1}\right| \leqslant\left|a_{2}\right|, a_{1} \neq a_{2}$ and $\theta_{1}=\theta_{2}$, then $\left|a_{1}\right|<\left|a_{2}\right|$, thus $\delta\left(a_{2} z, \theta\right)>\delta\left(a_{1} z, \theta\right)>$ 0 . For sufficiently large $r$, we have by Lemma 2.2

$$
\begin{gather*}
\left|A_{1} e^{a_{1} z}\right| \leqslant \exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\},  \tag{3.16}\\
\left|A_{2} e^{a_{2} z}\right| \geqslant \exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \tag{3.17}
\end{gather*}
$$

and (3.7), (3.8) hold. By (3.16) and (3.17), we get

$$
\begin{gather*}
\left|A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right| \geqslant\left|A_{2} e^{a_{2} z}\right|-\left|A_{1} e^{a_{1} z}\right| \\
\geqslant \exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\}-\exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \\
=\exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\}[\exp \{\alpha r\}-1], \tag{3.18}
\end{gather*}
$$

where

$$
\alpha=(1-\varepsilon) \delta\left(a_{2} z, \theta\right)-(1+\varepsilon) \delta\left(a_{1} z, \theta\right)
$$

Since $0<\varepsilon<\frac{\left|a_{2}\right|-\left|a_{1}\right|}{\left|a_{2}\right|+\left|a_{1}\right|}$, then

$$
\begin{aligned}
\alpha= & (1-\varepsilon)\left|a_{2}\right| \cos \left(\theta_{2}+\theta\right)-(1+\varepsilon)\left|a_{1}\right| \cos \left(\theta_{1}+\theta\right) \\
& =\cos \left(\theta_{1}+\theta\right)\left[(1-\varepsilon)\left|a_{2}\right|-(1+\varepsilon)\left|a_{1}\right|\right] \\
= & \cos \left(\theta_{1}+\theta\right)\left[\left|a_{2}\right|-\left|a_{1}\right|-\varepsilon\left(\left|a_{2}\right|+\left|a_{1}\right|\right)\right]>0 .
\end{aligned}
$$

Then, by $\alpha>0$ and from (3.18), we get

$$
\begin{equation*}
\left|A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right| \geqslant(1-o(1)) \exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \exp \{\alpha r\} . \tag{3.19}
\end{equation*}
$$

Substituting (3.1), (3.2), (3.7), (3.8) and (3.19) into (3.6), we obtain

$$
(1-o(1)) \exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \exp \{\alpha r\}
$$

EJQTDE, 2011 No. 93, p. 8

$$
\begin{equation*}
\leqslant M_{1} r^{k(\sigma-1+\varepsilon)} \exp \left\{r^{\beta+\varepsilon}\right\} \exp \left\{(1+\varepsilon) c \delta\left(a_{1} z, \theta\right) r\right\} \tag{3.20}
\end{equation*}
$$

where $M_{1}>0$ is a some constant. By (3.20), we have

$$
\begin{equation*}
(1-o(1)) \exp \left\{\left[(1+\varepsilon)(1-c) \delta\left(a_{1} z, \theta\right)+\alpha\right] r\right\} \leqslant M_{1} r^{k(\sigma-1+\varepsilon)} \exp \left\{r^{\beta+\varepsilon}\right\} . \tag{3.21}
\end{equation*}
$$

By $\delta\left(a_{1} z, \theta\right)>0, \alpha>0$ and $\beta+\varepsilon<1$ we know that (3.21) is a contradiction.
Case 2: $a_{1}<\frac{b}{1-c}$, which is $\theta_{1}=\pi$.
(i) Assume that $\theta_{1} \neq \theta_{2}$, then $\theta_{2} \neq \pi$. By Lemma 2.3, for the above $\varepsilon$, there is a ray $\arg z=\theta$ such that $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{6} \cup E_{7}\right)$ and $\delta\left(a_{2} z, \theta\right)>0$. Because $\cos \theta>0$, we have $\delta\left(a_{1} z, \theta\right)=\left|a_{1}\right| \cos \left(\theta_{1}+\theta\right)=-\left|a_{1}\right| \cos \theta<0$. For sufficiently large $r$, we obtain by Lemma 2.2

$$
\begin{gather*}
\left|A_{1} e^{a_{1} z}\right| \leqslant \exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\}<1,  \tag{3.22}\\
\left|A_{2} e^{a_{2} z}\right| \geqslant \exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \tag{3.23}
\end{gather*}
$$

and (3.8), (3.14) hold. By (3.22) and (3.23), we obtain

$$
\begin{gather*}
\left|A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right| \geqslant\left|A_{2} e^{a_{2} z}\right|-\left|A_{1} e^{a_{1} z}\right| \\
\geqslant \exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\}-1 \\
\geqslant(1-o(1)) \exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} . \tag{3.24}
\end{gather*}
$$

Using the same reasoning as in Case 1(i), we can get a contradiction.
(ii) Assume that $\theta_{1}=\theta_{2}$, then $\theta_{1}=\theta_{2}=\pi$. By Lemma 2.3, for the above $\varepsilon$, there is a ray $\arg z=\theta$ such that $\theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \backslash\left(E_{1} \cup E_{6} \cup E_{7}\right)$, then $\cos \theta<0$, $\delta\left(a_{1} z, \theta\right)=\left|a_{1}\right| \cos \left(\theta_{1}+\theta\right)=-\left|a_{1}\right| \cos \theta>0, \delta\left(a_{2} z, \theta\right)=\left|a_{2}\right| \cos \left(\theta_{2}+\theta\right)=$ $-\left|a_{2}\right| \cos \theta>0$. Since $\left|a_{1}\right| \leqslant\left|a_{2}\right|, a_{1} \neq a_{2}$ and $\theta_{1}=\theta_{2}$, then $\left|a_{1}\right|<\left|a_{2}\right|$, thus $\delta\left(a_{2} z, \theta\right)>\delta\left(a_{1} z, \theta\right)>0$. For sufficiently large $r$, we get (3.7), (3.16), (3.17) and (3.19) holds. For $l \in I_{2}$, we have

$$
\begin{align*}
\left|B_{l}(z) e^{b_{l} z}\right|= & \left|B_{l}(z)\right|\left|e^{b_{l} z}\right| \leqslant \exp \left\{r^{\beta+\varepsilon}\right\} \exp \left\{b_{l} r \cos \theta\right\} \\
& \leqslant \exp \left\{r^{\beta+\varepsilon}\right\} \exp \{b r \cos \theta\} \tag{3.25}
\end{align*}
$$

because $b_{l} \leqslant 0, b=\min \left\{b_{l}: l \in I_{2}\right\}$ and $\cos \theta<0$. Substituting (3.1), (3.2), (3.7), (3.19) and (3.25) into (3.6), we obtain

$$
(1-o(1)) \exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \exp \{\alpha r\}
$$

EJQTDE, 2011 No. 93, p. 9

$$
\leqslant M_{2} r^{k(\sigma-1+\varepsilon)} \exp \left\{r^{\beta+\varepsilon}\right\} \exp \left\{(1+\varepsilon) c \delta\left(a_{1} z, \theta\right) r\right\} \exp \{b r \cos \theta\}
$$

where $M_{2}>0$ is a some constant. Thus

$$
\begin{equation*}
(1-o(1)) \exp \{\gamma r\} \leqslant M_{2} r^{k(\sigma-1+\varepsilon)} \exp \left\{r^{\beta+\varepsilon}\right\}, \tag{3.26}
\end{equation*}
$$

where $\gamma=(1+\varepsilon)(1-c) \delta\left(a_{1} z, \theta\right)+\alpha-b \cos \theta$. Since $\alpha>0, \cos \theta<0$, $\delta\left(a_{1} z, \theta\right)=-\left|a_{1}\right| \cos \theta, a_{1}<\frac{b}{1-c}$ and $b \leqslant 0$, then

$$
\begin{aligned}
\gamma & =-(1+\varepsilon)(1-c)\left|a_{1}\right| \cos \theta-b \cos \theta+\alpha \\
& =-\left[(1+\varepsilon)(1-c)\left|a_{1}\right|+b\right] \cos \theta+\alpha \\
> & -\left[(1+\varepsilon)(1-c) \frac{|b|}{1-c}+b\right] \cos \theta+\alpha \\
=- & {[-(1+\varepsilon) b+b] \cos \theta+\alpha=\alpha+b \varepsilon \cos \theta>0 . }
\end{aligned}
$$

By $\beta+\varepsilon<1$ and $\gamma>0$, we know that (3.26) is a contradiction. Concluding the above proof, we obtain $\sigma(f)=+\infty$.

Second step: We prove that $\sigma_{2}(f)=1$. By

$$
\max \left\{\sigma\left(D_{l}+B_{l} e^{b_{l} z}\right) \quad(l=1, \ldots, k-1), \sigma\left(D_{0}+A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right)\right\}=1
$$

and Lemma 2.4, we obtain $\sigma_{2}(f) \leqslant 1$. By Lemma 2.5, we know that there exists a set $E_{8} \subset(1,+\infty)$ with finite logarithmic measure and a constant $B>0$, such that for all $z$ satisfying $|z|=r \notin[0,1] \cup E_{8}$, we get

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leqslant B[T(2 r, f)]^{j+1} \quad(j=1, \ldots, k) . \tag{3.27}
\end{equation*}
$$

Case 1: $\arg a_{1} \neq \pi$.
(i) $\left(\theta_{1} \neq \theta_{2}\right)$. In first step, we have proved that there is a ray $\arg z=\theta$ where $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{6} \cup E_{7}\right)$, satisfying

$$
\delta\left(a_{1} z, \theta\right)>0, \delta\left(a_{2} z, \theta\right)<0 \text { or } \delta\left(a_{1} z, \theta\right)<0, \delta\left(a_{2} z, \theta\right)>0 .
$$

a) When $\delta\left(a_{1} z, \theta\right)>0, \delta\left(a_{2} z, \theta\right)<0$, for sufficiently large $r$, we get (3.5) holds. Substituting (3.1), (3.5), (3.7), (3.8) and (3.27) into (3.6), we obtain for all $z=r e^{i \theta}$ satisfying $|z|=r \notin[0,1] \cup E_{8}, \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{6} \cup E_{7}\right)$

$$
(1-o(1)) \exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\}
$$

$$
\begin{align*}
\leqslant & B[T(2 r, f)]^{k+1}+B\left[\exp \left\{r^{\beta+\varepsilon}\right\}+\left|B_{k-1}(z) e^{b_{k-1} z}\right|\right][T(2 r, f)]^{k} \\
& +\ldots+B\left[\exp \left\{r^{\beta+\varepsilon}\right\}+\left|B_{1}(z) e^{b_{1} z}\right|\right][T(2 r, f)]^{2}+\exp \left\{r^{\beta+\varepsilon}\right\} \\
\leqslant & M_{0} \exp \left\{r^{\beta+\varepsilon}\right\} \exp \left\{(1+\varepsilon) c \delta\left(a_{1} z, \theta\right) r\right\}[T(2 r, f)]^{k+1} \tag{3.28}
\end{align*}
$$

where $M_{0}>0$ is a some constant. From (3.28) and $0<\varepsilon<\frac{1-c}{2(1+c)}$, we get

$$
\begin{equation*}
(1-o(1)) \exp \left\{\frac{1-c}{2} \delta\left(a_{1} z, \theta\right) r\right\} \leqslant M_{0} \exp \left\{r^{\beta+\varepsilon}\right\}[T(2 r, f)]^{k+1} \tag{3.29}
\end{equation*}
$$

Since $\delta\left(a_{1} z, \theta\right)>0, \beta+\varepsilon<1$, then by using Lemma 2.6 and (3.29), we obtain $\sigma_{2}(f) \geqslant 1$, hence $\sigma_{2}(f)=1$.
b) When $\delta\left(a_{1} z, \theta\right)<0, \delta\left(a_{2} z, \theta\right)>0$, for sufficiently large $r$, we get (3.13) holds. Substituting (3.1), (3.8), (3.13), (3.14) and (3.27) into (3.6), we obtain for all $z=r e^{i \theta}$ satisfying $|z|=r \notin[0,1] \cup E_{8}, \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{6} \cup E_{7}\right)$

$$
\begin{equation*}
(1-o(1)) \exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \leqslant M_{0} \exp \left\{r^{\beta+\varepsilon}\right\}[T(2 r, f)]^{k+1}, \tag{3.30}
\end{equation*}
$$

where $M_{0}>0$ is a some constant. By $\delta\left(a_{2} z, \theta\right)>0, \beta+\varepsilon<1$ and (3.30), we have $\sigma_{2}(f) \geqslant 1$, then $\sigma_{2}(f)=1$.
(ii) $\left(\theta_{1}=\theta_{2}\right)$. In first step, we have proved that there is a ray $\arg z=\theta$ where $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{6} \cup E_{7}\right)$, satisfying $\delta\left(a_{2} z, \theta\right)>\delta\left(a_{1} z, \theta\right)>0$ and for sufficiently large $r$, we get (3.19) holds. Substituting (3.1), (3.7), (3.8), (3.19) and (3.27) into (3.6), we obtain for all $z=r e^{i \theta}$ satisfying $|z|=r \notin[0,1] \cup E_{8}$, $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{6} \cup E_{7}\right)$

$$
\begin{gather*}
(1-o(1)) \exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \exp \{\alpha r\} \\
\leqslant M_{1} \exp \left\{r^{\beta+\varepsilon}\right\} \exp \left\{(1+\varepsilon) c \delta\left(a_{1} z, \theta\right) r\right\}[T(2 r, f)]^{k+1}, \tag{3.31}
\end{gather*}
$$

where $M_{1}>0$ is a some constant. By (3.31), we have
$(1-o(1)) \exp \left\{\left[(1+\varepsilon)(1-c) \delta\left(a_{1} z, \theta\right)+\alpha\right] r\right\} \leqslant M_{1} \exp \left\{r^{\beta+\varepsilon}\right\}[T(2 r, f)]^{k+1}$.
Since $\delta\left(a_{1} z, \theta\right)>0, \alpha>0, \beta+\varepsilon<1$, then by using Lemma 2.6 and (3.32), we obtain $\sigma_{2}(f) \geqslant 1$, hence $\sigma_{2}(f)=1$.
Case 2: $a_{1}<\frac{b}{1-c}$.
(i) $\left(\theta_{1} \neq \theta_{2}\right)$. In first step, we have proved that there is a ray $\arg z=\theta$ where $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{6} \cup E_{7}\right)$, satisfying $\delta\left(a_{2} z, \theta\right)>0$ and $\delta\left(a_{1} z, \theta\right)<0$ and for sufficiently large $r$, we get (3.24) holds. Using the same reasoning as in second step ( Case 1 (i)), we can get $\sigma_{2}(f)=1$.
(ii) $\left(\theta_{1}=\theta_{2}\right)$ In first step, we have proved that there is a ray $\arg z=\theta$ where $\theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \backslash\left(E_{1} \cup E_{6} \cup E_{7}\right)$, satisfying $\delta\left(a_{2} z, \theta\right)>\delta\left(a_{1} z, \theta\right)>0$ and for sufficiently large $r$, we get (3.19) holds. Substituting (3.1), (3.7), (3.19), (3.25) and (3.27) into (3.6), we obtain for all $z=r e^{i \theta}$ satisfying $|z|=r \notin[0,1] \cup E_{8}, \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{6} \cup E_{7}\right)$

$$
\begin{gathered}
(1-o(1)) \exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \exp \{\alpha r\} \\
\leqslant M_{2} \exp \left\{r^{\beta+\varepsilon}\right\} \exp \left\{(1+\varepsilon) c \delta\left(a_{1} z, \theta\right) r\right\} \exp \{b r \cos \theta\}[T(2 r, f)]^{k+1},
\end{gathered}
$$

where $M_{2}>0$ is a some constant. Thus

$$
\begin{equation*}
(1-o(1)) \exp \{\gamma r\} \leqslant M_{2} \exp \left\{r^{\beta+\varepsilon}\right\}[T(2 r, f)]^{k+1} \tag{3.33}
\end{equation*}
$$

where $\gamma=(1+\varepsilon)(1-c) \delta\left(a_{1} z, \theta\right)+\alpha-b \cos \theta$. Since $\gamma>0, \beta+\varepsilon<1$, then by using Lemma 2.6 and (3.33), we have $\sigma_{2}(f) \geqslant 1$, hence $\sigma_{2}(f)=1$. Concluding the above proof, we obtain that every solution $f \not \equiv 0$ of (1.2) satisfies $\sigma_{2}(f)=1$. The proof of Theorem 1.1 is complete.

## 4 Proofs of Corollary 1.1 and Corollary 1.2

Using the same reasoning as in the proof of Theorem 1.1, we can obtain Corollary 1.1 and Corollary 1.2.

## References

[1] I. Amemiya and M. Ozawa, Non-existence of finite order solutions of $w^{\prime \prime}+e^{-z} w^{\prime}+Q(z) w=0$, Hokkaido Math. J. 10 (1981), Special Issue, 1-17.
[2] Z. X. Chen and K. H. Shon, On the growth of solutions of a class of higher order differential equations, Acta Math. Sci. Ser. B Engl. Ed. 24 (2004), no. 1, 52-60.
[3] Z. X. Chen, The growth of solutions of $f^{\prime \prime}+e^{-z} f^{\prime}+Q(z) f=0$ where the $\operatorname{order}(Q)=1$, Sci. China Ser. A 45 (2002), no. 3, 290-300.
[4] M. Frei, Über die Lösungen linearer Differentialgleichungen mit ganzen Funktionen als Koeffizienten, Comment. Math. Helv. 35 (1961), 201-222.
[5] M. Frei, Über die Subnormalen Lösungen der Differentialgleichung w" ${ }^{\prime \prime}+$ $e^{-z} w^{\prime}+($ Konst. $) w=0$, Comment. Math. Helv. 36, 1961, 1-8.
[6] G. G. Gundersen, On the question of whether $f^{\prime \prime}+e^{-z} f^{\prime}+B(z) f=0$ can admit a solution $f \not \equiv 0$ of finite order, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), no. 1-2, 9-17.
[7] G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), no. 1, 88-104.
[8] G. G. Gundersen, Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc. 305 (1988), no. 1, 415-429.
[9] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs Clarendon Press, Oxford 1964.
[10] K. H. Kwon, Nonexistence of finite order solutions of certain second order linear differential equations, Kodai Math. J. 19 (1996), no. 3, 378-387.
[11] J. K. Langley, On complex oscillation and a problem of Ozawa, Kodai Math. J. 9 (1986), no. 3, 430-439.
[12] M. Ozawa, On a solution of $w^{\prime \prime}+e^{-z} w^{\prime}+(a z+b) w=0$, Kodai Math. J. 3 (1980), no. 2, 295-309.
[13] F. Peng and Z. X. Chen, On the growth of solutions of some second-order linear differential equations, J. Inequal. Appl. 2011, Art. ID 635604, 1-9.
[14] C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003.

