Electronic Journal of Qualitative Theory of Differential Equations 2011, No. 93, 1-13; http://www.math.u-szeged.hu/ejqtde/

On the Growth of Solutions of Some Higher Order Linear Differential Equations With Entire Coefficients

Habib HABIB and Benharrat BELAÏDI

Department of Mathematics
Laboratory of Pure and Applied Mathematics
University of Mostaganem (UMAB)
B. P. 227 Mostaganem-(Algeria)
habibhabib2927@yahoo.fr
belaidi@univ-mosta.dz

Abstract. In this paper, we investigate the order and the hyper-order of solutions of the linear differential equation

$$f^{(k)} + (D_{k-1} + B_{k-1}e^{b_{k-1}z}) f^{(k-1)} + \dots + (D_1 + B_1e^{b_1z}) f'$$
$$+ (D_0 + A_1e^{a_1z} + A_2e^{a_2z}) f = 0,$$

where $A_j(z)$ ($\not\equiv 0$) (j=1,2), $B_l(z)$ ($\not\equiv 0$) (l=1,...,k-1), D_m (m=0,...,k-1) are entire functions with $\max\{\sigma(A_j),\sigma(B_l),\sigma(D_m)\}<1$, a_1,a_2,b_l (l=1,...,k-1) are complex numbers. Under some conditions, we prove that every solution $f(z)\not\equiv 0$ of the above equation is of infinite order and with hyper-order 1.

2010 Mathematics Subject Classification: 34M10, 30D35. Key words: Linear differential equations, Entire solutions, Order of growth, Hyper-order.

1 Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna's value distribution theory (see [9], [14]). Let $\sigma(f)$ denote the order of growth of an

entire function f and the hyper-order $\sigma_2(f)$ of f is defined by (see [10], [14])

$$\sigma_{2}\left(f\right) = \lim_{r \to +\infty} \sup \frac{\log \log T\left(r,f\right)}{\log r} = \lim_{r \to +\infty} \sup \frac{\log \log \log M\left(r,f\right)}{\log r},$$

where T(r, f) is the Nevanlinna characteristic function of f and $M(r, f) = \max_{|z|=r} |f(z)|$.

For the second order linear differential equation

$$f'' + e^{-z}f' + B(z)f = 0, (1.1)$$

where B(z) is an entire function, it is well-known that each solution f of the equation (1.1) is an entire function, and that if f_1 , f_2 are two linearly independent solutions of (1.1), then by [4], there is at least one of f_1 , f_2 of infinite order. Hence, "most" solutions of (1.1) will have infinite order. But the equation (1.1) with $B(z) = -(1 + e^{-z})$ possesses a solution $f(z) = e^z$ of finite order.

A natural question arises: What conditions on B(z) will guarantee that every solution $f \not\equiv 0$ of (1.1) has infinite order? Many authors, Frei [5], Ozawa [12], Amemiya-Ozawa [1] and Gundersen [6], Langley [11] have studied this problem. They proved that when B(z) is a nonconstant polynomial or B(z) is a transcendental entire function with order $\rho(B) \not\equiv 1$, then every solution $f \not\equiv 0$ of (1.1) has infinite order. In [3], Chen has considered equation (1.1) and obtained different results concerning the growth of its solutions when $\rho(B) = 1$.

Recently in [13], Peng and Chen have investigated the order and the hyper-order of solutions of some second order linear differential equations and have proved the following result.

Theorem A ([13]) Let $A_j(z)$ ($\not\equiv 0$) (j=1,2) be entire functions with $\sigma(A_j) < 1$, a_1 , a_2 be complex numbers such that $a_1a_2 \neq 0$, $a_1 \neq a_2$ (suppose that $|a_1| \leq |a_2|$). If $\arg a_1 \neq \pi$ or $a_1 < -1$, then every solution $f \not\equiv 0$ of the equation

$$f'' + e^{-z}f' + (A_1e^{a_1z} + A_2e^{a_2z})f = 0$$

has infinite order and $\sigma_2(f) = 1$.

In this paper, we continue the research in this type of problems, the main purpose of this paper is to extend and improve the results of Theorem A to some higher order linear differential equations. In fact we will prove the following results.

Theorem 1.1 Let $A_j(z) \not\equiv 0$ (j = 1, 2), $B_l(z) \not\equiv 0$ (l = 1, ..., k - 1), $D_m(m = 0, ..., k - 1)$ be entire functions with $\max \{\sigma(A_j), \sigma(B_l), \sigma(D_m)\} < 1$, $b_l(l = 1, ..., k - 1)$ be complex constants such that (i) $\arg b_l = \arg a_1$ and $b_l = c_l a_1$ $(0 < c_l < 1)$ $(l \in I_1)$ and (ii) b_l is a real constant such that $b_l \leq 0$ $(l \in I_2)$, where $I_1 \neq \emptyset$, $I_2 \neq \emptyset$, $I_1 \cap I_2 = \emptyset$, $I_1 \cup I_2 = \{1, 2, ..., k - 1\}$, and a_1 , a_2 are complex numbers such that $a_1 a_2 \neq 0$, $a_1 \neq a_2$ (suppose that $|a_1| \leq |a_2|$). If $\arg a_1 \neq \pi$ or a_1 is a real number such that $a_1 < \frac{b}{1-c}$, where $c = \max \{c_l : l \in I_1\}$ and $b = \min \{b_l : l \in I_2\}$, then every solution $f \not\equiv 0$ of the equation

$$f^{(k)} + (D_{k-1} + B_{k-1}e^{b_{k-1}z}) f^{(k-1)} + \dots + (D_1 + B_1e^{b_1z}) f'$$
$$+ (D_0 + A_1e^{a_1z} + A_2e^{a_2z}) f = 0$$
(1.2)

satisfies $\sigma(f) = +\infty$ and $\sigma_2(f) = 1$.

Corollary 1.1 Let $A_j(z) \ (\not\equiv 0) \ (j=1,2), B_l(z) \ (\not\equiv 0) \ (l=1,...,k-1), D_m$ (m=0,...,k-1) be entire functions with $\max \{\sigma(A_j), \sigma(B_l), \sigma(D_m)\} < 1$, $b_l(l=1,...,k-1)$ be complex constants such that $\arg b_l = \arg a_1$ and $b_l = c_l a_1 \ (0 < c_l < 1) \ (l=1,...,k-1), and <math>a_1, a_2$ be complex numbers such that $a_1 a_2 \neq 0, a_1 \neq a_2$ (suppose that $|a_1| \leq |a_2|$). If $\arg a_1 \neq \pi$ or a_1 is a real number such that $a_1 < 0$, then every solution $f \not\equiv 0$ of equation (1.2) satisfies $\sigma(f) = +\infty$ and $\sigma_2(f) = 1$.

Corollary 1.2 Let $A_j(z) \ (\not\equiv 0) \ (j=1,2), B_l(z) \ (\not\equiv 0) \ (l=1,...,k-1), D_m \ (m=0,...,k-1)$ be entire functions with $\max \{\sigma(A_j), \sigma(B_l), \sigma(D_m)\} < 1$, $b_l(l=1,...,k-1)$ be real constants such that $b_l \le 0$, and a_1, a_2 be complex numbers such that $a_1a_2 \ne 0$, $a_1 \ne a_2$ (suppose that $|a_1| \le |a_2|$). If $\arg a_1 \ne \pi$ or a_1 is a real number such that $a_1 < b$, where $b = \min \{b_l : l = 1, ..., k-1\}$, then every solution $f \not\equiv 0$ of equation (1.2) satisfies $\sigma(f) = +\infty$ and $\sigma_2(f) = 1$.

2 Preliminary lemmas

To prove our theorem, we need the following lemmas.

Lemma 2.1 ([7]) Let f be a transcendental meromorphic function with $\sigma(f) = \sigma < +\infty$, $H = \{(k_1, j_1), (k_2, j_2), ..., (k_q, j_q)\}$ be a finite set of distinct pairs of integers satisfying $k_i > j_i \ge 0$ (i = 1, ..., q) and let $\varepsilon > 0$ be a given constant. Then,

(i) there exists a set $E_1 \subset \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right)$ with linear measure zero, such that, if $\psi \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right) \setminus E_1$, then there is a constant $R_0 = R_0(\psi) > 1$, such that for all z satisfying $\arg z = \psi$ and $|z| \geqslant R_0$ and for all $(k, j) \in H$, we have

$$\left| \frac{f^{(k)}(z)}{f^{(j)}(z)} \right| \leqslant |z|^{(k-j)(\sigma-1+\varepsilon)}, \tag{2.1}$$

(ii) there exists a set $E_2 \subset (1, +\infty)$ with finite logarithmic measure, such that for all z satisfying $|z| \notin E_2 \cup [0, 1]$ and for all $(k, j) \in H$, we have

$$\left| \frac{f^{(k)}(z)}{f^{(j)}(z)} \right| \leqslant |z|^{(k-j)(\sigma-1+\varepsilon)}, \tag{2.2}$$

(iii) there exists a set $E_3 \subset (0, \infty)$ with finite linear measure, such that for all z satisfying $|z| \notin E_3$ and for all $(k, j) \in H$, we have

$$\left| \frac{f^{(k)}(z)}{f^{(j)}(z)} \right| \le |z|^{(k-j)(\sigma+\varepsilon)}. \tag{2.3}$$

Lemma 2.2 ([3]) Suppose that $P(z) = (\alpha + i\beta) z^n + ... (\alpha, \beta \text{ are real numbers, } |\alpha| + |\beta| \neq 0)$ is a polynomial with degree $n \geq 1$, that $A(z) \not\equiv 0$ is an entire function with $\sigma(A) < n$. Set $g(z) = A(z) e^{P(z)}$, $z = re^{i\theta}$, $\delta(P, \theta) = \alpha \cos n\theta - \beta \sin n\theta$. Then for any given $\varepsilon > 0$, there is a set $E_4 \subset [0, 2\pi)$ that has linear measure zero, such that for any $\theta \in [0, 2\pi) \setminus (E_4 \cup E_5)$, there is R > 0, such that for |z| = r > R, we have

(i) if $\delta(P, \theta) > 0$, then

$$\exp\left\{\left(1-\varepsilon\right)\delta\left(P,\theta\right)r^{n}\right\} \leqslant \left|g\left(re^{i\theta}\right)\right| \leqslant \exp\left\{\left(1+\varepsilon\right)\delta\left(P,\theta\right)r^{n}\right\};\tag{2.4}$$

(ii) if $\delta(P, \theta) < 0$, then

$$\exp\left\{\left(1+\varepsilon\right)\delta\left(P,\theta\right)r^{n}\right\} \leqslant \left|g\left(re^{i\theta}\right)\right| \leqslant \exp\left\{\left(1-\varepsilon\right)\delta\left(P,\theta\right)r^{n}\right\},\tag{2.5}$$

where $E_5 = \{\theta \in [0, 2\pi) : \delta(P, \theta) = 0\}$ is a finite set.

Lemma 2.3 ([13]) Suppose that $n \ge 1$ is a positive entire number. Let $P_j(z) = a_{jn}z^n + ...$ (j = 1, 2) be nonconstant polynomials, where a_{jq} (q = 1, ..., n) are complex numbers and $a_{1n}a_{2n} \ne 0$. Set $z = re^{i\theta}$, $a_{jn} = |a_{jn}|e^{i\theta_j}$, $\theta_j \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right)$, $\delta(P_j, \theta) = |a_{jn}|\cos(\theta_j + n\theta)$, then there is a set $E_6 \subset \left[-\frac{\pi}{2n}, \frac{3\pi}{2n}\right)$ that has linear measure zero. If $\theta_1 \ne \theta_2$, then there exists a ray $\arg z = \theta$, $\theta \in \left(-\frac{\pi}{2n}, \frac{\pi}{2n}\right) \setminus (E_6 \cup E_7)$, such that

$$\delta\left(P_{1},\theta\right) > 0 , \delta\left(P_{2},\theta\right) < 0$$
 (2.6)

or

$$\delta(P_1, \theta) < 0, \ \delta(P_2, \theta) > 0, \tag{2.7}$$

where $E_7 = \left\{\theta \in \left[-\frac{\pi}{2n}, \frac{3\pi}{2n}\right) : \delta\left(P_j, \theta\right) = 0\right\}$ is a finite set, which has linear measure zero.

Remark 2.1 ([13]) In Lemma 2.3, if $\theta \in \left(-\frac{\pi}{2n}, \frac{\pi}{2n}\right) \setminus (E_6 \cup E_7)$ is replaced by $\theta \in \left(\frac{\pi}{2n}, \frac{3\pi}{2n}\right) \setminus (E_6 \cup E_7)$, then we obtain the same result.

Lemma 2.4 ([2]) Suppose that $k \ge 2$ and $B_0, B_1, ..., B_{k-1}$ are entire functions of finite order and let $\sigma = \max \{ \sigma(B_j) : j = 0, ..., k-1 \}$. Then every solution f of the equation

$$f^{(k)} + B_{k-1}f^{(k-1)} + \dots + B_1f' + B_0f = 0$$
(2.8)

satisfies $\sigma_2(f) \leqslant \sigma$.

Lemma 2.5 ([7]) Let f(z) be a transcendental meromorphic function, and let $\alpha > 1$ be a given constant. Then there exist a set $E_8 \subset (1, \infty)$ with finite logarithmic measure and a constant B > 0 that depends only on α and i, j $(0 \le i < j \le k)$, such that for all z satisfying $|z| = r \notin [0, 1] \cup E_8$, we have

$$\left| \frac{f^{(j)}(z)}{f^{(i)}(z)} \right| \leqslant B \left\{ \frac{T(\alpha r, f)}{r} \left(\log^{\alpha} r \right) \log T(\alpha r, f) \right\}^{j-i}. \tag{2.9}$$

Lemma 2.6 ([8]) Let $\varphi : [0, +\infty) \to \mathbb{R}$ and $\psi : [0, +\infty) \to \mathbb{R}$ be monotone non-decreasing functions such that $\varphi(r) \leqslant \psi(r)$ for all $r \notin E_9 \cup [0, 1]$, where $E_9 \subset (1, +\infty)$ is a set of finite logarithmic measure. Let $\gamma > 1$ be a given constant. Then there exists an $r_1 = r_1(\gamma) > 0$ such that $\varphi(r) \leqslant \psi(\gamma r)$ for all $r > r_1$.

3 Proof of Theorem 1.1

Assume that $f \not\equiv 0$ is a solution of equation (1.2).

First step: We prove that $\sigma(f) = +\infty$. Suppose that $\sigma(f) = \sigma < +\infty$. Set $\max \{ \sigma(A_j), \sigma(B_l), \sigma(D_m) \} = \beta < 1$ where (j = 1, 2), (l = 1, ..., k - 1), (m = 0, ..., k - 1). Then, for any given ε $(0 < \varepsilon < 1 - \beta)$ and for sufficiently large r, we have

$$|A_{j}(z)| \leq \exp\left\{r^{\beta+\varepsilon}\right\}, \ |B_{l}(z)| \leq \exp\left\{r^{\beta+\varepsilon}\right\}, \ |D_{m}(z)| \leq \exp\left\{r^{\beta+\varepsilon}\right\}.$$
(3.1)

By Lemma 2.1 (i), for the above ε , there exists a set $E_1 \subset \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right)$ of linear measure zero, such that if $\theta \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right) \setminus E_1$, then there is a constant $R_0 = R_0(\theta) > 1$, such that for all z satisfying $\arg z = \theta$ and $|z| = r \geqslant R_0$, we have

$$\left| \frac{f^{(j)}(z)}{f(z)} \right| \leqslant r^{j(\sigma - 1 + \varepsilon)} \quad (j = 1, ..., k). \tag{3.2}$$

Let $z = re^{i\theta}$, $a_1 = |a_1|e^{i\theta_1}$, $a_2 = |a_2|e^{i\theta_2}$, $\theta_1, \theta_2 \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$. We know that $\delta(b_l z, \theta) = \delta(c_l a_1 z, \theta) = c_l \delta(a_1 z, \theta)$ $(l \in I_1)$.

Case 1: $\arg a_1 \neq \pi$, which is $\theta_1 \neq \pi$.

(i) Assume that $\theta_1 \neq \theta_2$. By Lemma 2.3, for any given ε ($0 < \varepsilon < \min\{\frac{|a_2|-|a_1|}{|a_2|+|a_1|}, 1-\beta, \frac{1-c}{2(1+c)}\}$), there is a ray $z = \theta$ such that $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$ (where E_6 and E_7 are defined as in Lemma 2.3, $E_1 \cup E_6 \cup E_7$ is of the linear measure zero), and satisfying

$$\delta\left(a_{1}z,\theta\right) > 0, \ \delta\left(a_{2}z,\theta\right) < 0 \text{ or } \delta\left(a_{1}z,\theta\right) < 0, \ \delta\left(a_{2}z,\theta\right) > 0.$$

a) When $\delta(a_1z,\theta) > 0$, $\delta(a_2z,\theta) < 0$, for sufficiently large r, we get by Lemma 2.2

$$|A_1 e^{a_1 z}| \geqslant \exp\left\{ (1 - \varepsilon) \delta\left(a_1 z, \theta\right) r \right\},$$
 (3.3)

$$|A_2 e^{a_2 z}| \leqslant \exp\left\{ (1 - \varepsilon) \,\delta\left(a_2 z, \theta\right) r \right\} < 1. \tag{3.4}$$

By (3.3) and (3.4), we have

$$|A_1 e^{a_1 z} + A_2 e^{a_2 z}| \ge |A_1 e^{a_1 z}| - |A_2 e^{a_2 z}|$$

 $\ge \exp\{(1 - \varepsilon) \delta(a_1 z, \theta) r\} - 1$

$$\geqslant (1 - o(1)) \exp\left\{ (1 - \varepsilon) \delta\left(a_1 z, \theta\right) r \right\}. \tag{3.5}$$

By (1.2), we get

$$|A_{1}e^{a_{1}z} + A_{2}e^{a_{2}z}| \leq \left| \frac{f^{(k)}(z)}{f(z)} \right| + \left(|D_{k-1}| + \left| B_{k-1}(z) e^{b_{k-1}z} \right| \right) \left| \frac{f^{(k-1)}(z)}{f(z)} \right| + \dots + \left(|D_{1}| + \left| B_{1}(z) e^{b_{1}z} \right| \right) \left| \frac{f'(z)}{f(z)} \right| + |D_{0}(z)|.$$

$$(3.6)$$

For $l \in I_1$, we have

$$|B_l(z) e^{b_l z}| \le \exp\{(1+\varepsilon) c_l \delta(a_1 z, \theta) r\} \le \exp\{(1+\varepsilon) c \delta(a_1 z, \theta) r\}.$$
 (3.7)

For $l \in I_2$, we have

$$\left| B_l(z) e^{b_l z} \right| = \left| B_l(z) \right| \left| e^{b_l z} \right| \leqslant \exp\left\{ r^{\beta + \varepsilon} \right\} e^{b_l r \cos \theta} \leqslant \exp\left\{ r^{\beta + \varepsilon} \right\}$$
 (3.8)

because $b_l \leq 0$ and $\cos \theta > 0$. Substituting (3.1), (3.2), (3.5), (3.7) and (3.8) into (3.6), we obtain

$$(1 - o(1)) \exp \left\{ (1 - \varepsilon) \delta \left(a_1 z, \theta \right) r \right\}$$

$$\leq r^{k(\sigma - 1 + \varepsilon)} + \left(\exp \left\{ r^{\beta + \varepsilon} \right\} + \left| B_{k-1} \left(z \right) e^{b_{k-1} z} \right| \right) r^{(k-1)(\sigma - 1 + \varepsilon)}$$

$$+ \dots + \left(\exp \left\{ r^{\beta + \varepsilon} \right\} + \left| B_1 \left(z \right) e^{b_1 z} \right| \right) r^{\sigma - 1 + \varepsilon} + \exp \left\{ r^{\beta + \varepsilon} \right\}$$

$$\leq M_0 r^{k(\sigma - 1 + \varepsilon)} \exp \left\{ r^{\beta + \varepsilon} \right\} \exp \left\{ (1 + \varepsilon) c \delta \left(a_1 z, \theta \right) r \right\}, \tag{3.9}$$

where $M_0 > 0$ is a some constant. From (3.9) and $0 < \varepsilon < \frac{1-c}{2(1+c)}$, we get

$$(1 - o(1)) \exp\left\{\frac{1 - c}{2}\delta(a_1 z, \theta) r\right\} \leqslant M_0 r^{k(\sigma - 1 + \varepsilon)} \exp\left\{r^{\beta + \varepsilon}\right\}. \tag{3.10}$$

By $\delta(a_1z,\theta) > 0$ and $\beta + \varepsilon < 1$ we know that (3.10) is a contradiction.

b) When $\delta(a_1z,\theta) < 0$, $\delta(a_2z,\theta) > 0$, for sufficiently large r, we get by Lemma 2.2

$$|A_1 e^{a_1 z}| \leqslant \exp\left\{ (1 - \varepsilon) \,\delta\left(a_1 z, \theta\right) r \right\} < 1,\tag{3.11}$$

$$|A_2 e^{a_2 z}| \geqslant \exp\left\{ (1 - \varepsilon) \,\delta\left(a_2 z, \theta\right) r \right\}. \tag{3.12}$$

By (3.11) and (3.12), we have

$$|A_1 e^{a_1 z} + A_2 e^{a_2 z}| \ge (1 - o(1)) \exp\{(1 - \varepsilon) \delta(a_2 z, \theta) r\}.$$
 (3.13)

For $l \in I_1$, we have

$$\left| B_l(z) e^{b_l z} \right| \leqslant \exp\left\{ (1 + \varepsilon) c_l \delta\left(a_1 z, \theta \right) r \right\} < 1. \tag{3.14}$$

Substituting (3.1), (3.2), (3.8), (3.13) and (3.14) into (3.6), we obtain

$$(1 - o(1)) \exp \{(1 - \varepsilon) \delta(a_2 z, \theta) r\} \leqslant M_0 r^{k(\sigma - 1 + \varepsilon)} \exp \{r^{\beta + \varepsilon}\}.$$
 (3.15)

By $\delta(a_2z,\theta) > 0$ and $\beta + \varepsilon < 1$ we know that (3.15) is a contradiction.

(ii) Assume that $\theta_1 = \theta_2$. By Lemma 2.3, for the above ε , there is a ray $\arg z = \theta$ such that $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$ and $\delta\left(a_1 z, \theta\right) > 0$. Since $|a_1| \leq |a_2|$, $a_1 \neq a_2$ and $\theta_1 = \theta_2$, then $|a_1| < |a_2|$, thus $\delta\left(a_2 z, \theta\right) > \delta\left(a_1 z, \theta\right) > 0$. For sufficiently large r, we have by Lemma 2.2

$$|A_1 e^{a_1 z}| \leqslant \exp\left\{ (1+\varepsilon) \,\delta\left(a_1 z, \theta\right) r \right\},\tag{3.16}$$

$$|A_2 e^{a_2 z}| \geqslant \exp\left\{ (1 - \varepsilon) \,\delta\left(a_2 z, \theta\right) r \right\} \tag{3.17}$$

and (3.7), (3.8) hold. By (3.16) and (3.17), we get

$$|A_1 e^{a_1 z} + A_2 e^{a_2 z}| \geqslant |A_2 e^{a_2 z}| - |A_1 e^{a_1 z}|$$

$$\geqslant \exp\left\{ (1 - \varepsilon) \delta\left(a_2 z, \theta\right) r \right\} - \exp\left\{ (1 + \varepsilon) \delta\left(a_1 z, \theta\right) r \right\}$$

$$= \exp\left\{ (1+\varepsilon) \delta\left(a_1 z, \theta\right) r \right\} \left[\exp\left\{\alpha r\right\} - 1 \right], \tag{3.18}$$

where

$$\alpha = (1 - \varepsilon) \delta(a_2 z, \theta) - (1 + \varepsilon) \delta(a_1 z, \theta).$$

Since $0 < \varepsilon < \frac{|a_2| - |a_1|}{|a_2| + |a_1|}$, then

$$\alpha = (1 - \varepsilon) |a_2| \cos(\theta_2 + \theta) - (1 + \varepsilon) |a_1| \cos(\theta_1 + \theta)$$

$$= \cos(\theta_1 + \theta) [(1 - \varepsilon) |a_2| - (1 + \varepsilon) |a_1|]$$

$$= \cos(\theta_1 + \theta) [|a_2| - |a_1| - \varepsilon (|a_2| + |a_1|)] > 0.$$

Then, by $\alpha > 0$ and from (3.18), we get

$$|A_1 e^{a_1 z} + A_2 e^{a_2 z}| \ge (1 - o(1)) \exp\{(1 + \varepsilon) \delta(a_1 z, \theta) r\} \exp\{\alpha r\}.$$
 (3.19)

Substituting (3.1), (3.2), (3.7), (3.8) and (3.19) into (3.6), we obtain

$$(1 - o(1)) \exp \{(1 + \varepsilon) \delta (a_1 z, \theta) r\} \exp \{\alpha r\}$$

$$\leq M_1 r^{k(\sigma - 1 + \varepsilon)} \exp\left\{r^{\beta + \varepsilon}\right\} \exp\left\{(1 + \varepsilon) c\delta\left(a_1 z, \theta\right) r\right\},$$
 (3.20)

where $M_1 > 0$ is a some constant. By (3.20), we have

$$(1 - o(1)) \exp\left\{ \left[(1 + \varepsilon) (1 - c) \delta(a_1 z, \theta) + \alpha \right] r \right\} \leqslant M_1 r^{k(\sigma - 1 + \varepsilon)} \exp\left\{ r^{\beta + \varepsilon} \right\}.$$
(3.21)

By $\delta(a_1z,\theta) > 0$, $\alpha > 0$ and $\beta + \varepsilon < 1$ we know that (3.21) is a contradiction.

Case 2: $a_1 < \frac{b}{1-c}$, which is $\theta_1 = \pi$. (i) Assume that $\theta_1 \neq \theta_2$, then $\theta_2 \neq \pi$. By Lemma 2.3, for the above ε , there is a ray $\arg z = \theta$ such that $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$ and $\delta(a_2 z, \theta) > 0$. Because $\cos \theta > 0$, we have $\delta(a_1 z, \theta) = |a_1| \cos(\theta_1 + \theta) = -|a_1| \cos \theta < 0$. For sufficiently large r, we obtain by Lemma 2.2

$$|A_1 e^{a_1 z}| \leqslant \exp\left\{ (1 - \varepsilon) \,\delta\left(a_1 z, \theta\right) r \right\} < 1,\tag{3.22}$$

$$|A_2 e^{a_2 z}| \geqslant \exp\left\{ (1 - \varepsilon) \,\delta\left(a_2 z, \theta\right) r \right\} \tag{3.23}$$

and (3.8), (3.14) hold. By (3.22) and (3.23), we obtain

$$|A_1 e^{a_1 z} + A_2 e^{a_2 z}| \ge |A_2 e^{a_2 z}| - |A_1 e^{a_1 z}|$$

 $\ge \exp\{(1 - \varepsilon) \delta(a_2 z, \theta) r\} - 1$
 $\ge (1 - o(1)) \exp\{(1 - \varepsilon) \delta(a_2 z, \theta) r\}.$ (3.24)

Using the same reasoning as in Case 1(i), we can get a contradiction.

(ii) Assume that $\theta_1 = \theta_2$, then $\theta_1 = \theta_2 = \pi$. By Lemma 2.3, for the above ε , there is a ray $\arg z = \theta$ such that $\theta \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$, then $\cos \theta < 0$, $\delta(a_1 z, \theta) = |a_1| \cos(\theta_1 + \theta) = -|a_1| \cos \theta > 0, \ \delta(a_2 z, \theta) = |a_2| \cos(\theta_2 + \theta) = 0$ $-|a_2|\cos\theta > 0$. Since $|a_1| \le |a_2|$, $a_1 \ne a_2$ and $\theta_1 = \theta_2$, then $|a_1| < |a_2|$, thus $\delta\left(a_{2}z,\theta\right) > \delta\left(a_{1}z,\theta\right) > 0$. For sufficiently large r, we get (3.7), (3.16), (3.17) and (3.19) holds. For $l \in I_2$, we have

$$|B_{l}(z) e^{b_{l}z}| = |B_{l}(z)| |e^{b_{l}z}| \leq \exp\{r^{\beta+\varepsilon}\} \exp\{b_{l}r\cos\theta\}$$

$$\leq \exp\{r^{\beta+\varepsilon}\} \exp\{br\cos\theta\}$$
(3.25)

because $b_l \leq 0$, $b = \min\{b_l : l \in I_2\}$ and $\cos \theta < 0$. Substituting (3.1), (3.2), (3.7), (3.19) and (3.25) into (3.6), we obtain

$$(1 - o(1)) \exp \{(1 + \varepsilon) \delta(a_1 z, \theta) r\} \exp \{\alpha r\}$$

$$\leq M_2 r^{k(\sigma-1+\varepsilon)} \exp\left\{r^{\beta+\varepsilon}\right\} \exp\left\{(1+\varepsilon)c\delta\left(a_1z,\theta\right)r\right\} \exp\left\{br\cos\theta\right\},$$

where $M_2 > 0$ is a some constant. Thus

$$(1 - o(1)) \exp\left\{\gamma r\right\} \leqslant M_2 r^{k(\sigma - 1 + \varepsilon)} \exp\left\{r^{\beta + \varepsilon}\right\}, \tag{3.26}$$

where $\gamma = (1+\varepsilon)(1-c)\delta(a_1z,\theta) + \alpha - b\cos\theta$. Since $\alpha > 0$, $\cos\theta < 0$, $\delta(a_1z,\theta) = -|a_1|\cos\theta$, $a_1 < \frac{b}{1-c}$ and $b \le 0$, then

$$\gamma = -(1+\varepsilon)(1-c)|a_1|\cos\theta - b\cos\theta + \alpha$$

$$= -[(1+\varepsilon)(1-c)|a_1| + b]\cos\theta + \alpha$$

$$> -[(1+\varepsilon)(1-c)\frac{|b|}{1-c} + b]\cos\theta + \alpha$$

$$= -[-(1+\varepsilon)b + b]\cos\theta + \alpha = \alpha + b\varepsilon\cos\theta > 0.$$

By $\beta + \varepsilon < 1$ and $\gamma > 0$, we know that (3.26) is a contradiction. Concluding the above proof, we obtain $\sigma(f) = +\infty$.

Second step: We prove that $\sigma_2(f) = 1$. By

$$\max \left\{ \sigma \left(D_l + B_l e^{b_l z} \right) \ \left(l = 1, ..., k - 1 \right), \ \sigma \left(D_0 + A_1 e^{a_1 z} + A_2 e^{a_2 z} \right) \right\} = 1$$

and Lemma 2.4, we obtain $\sigma_2(f) \leq 1$. By Lemma 2.5, we know that there exists a set $E_8 \subset (1, +\infty)$ with finite logarithmic measure and a constant B > 0, such that for all z satisfying $|z| = r \notin [0, 1] \cup E_8$, we get

$$\left| \frac{f^{(j)}(z)}{f(z)} \right| \leqslant B \left[T(2r, f) \right]^{j+1} \quad (j = 1, ..., k).$$
 (3.27)

Case 1: $\arg a_1 \neq \pi$.

(i) $(\theta_1 \neq \theta_2)$. In first step, we have proved that there is a ray $z = \theta$ where $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2}) \setminus (E_1 \cup E_6 \cup E_7)$, satisfying

$$\delta(a_1z,\theta) > 0$$
, $\delta(a_2z,\theta) < 0$ or $\delta(a_1z,\theta) < 0$, $\delta(a_2z,\theta) > 0$.

a) When $\delta\left(a_1z,\theta\right) > 0$, $\delta\left(a_2z,\theta\right) < 0$, for sufficiently large r, we get (3.5) holds. Substituting (3.1), (3.5), (3.7), (3.8) and (3.27) into (3.6), we obtain for all $z = re^{i\theta}$ satisfying $|z| = r \notin [0,1] \cup E_8$, $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$

$$(1 - o(1)) \exp \{(1 - \varepsilon) \delta(a_1 z, \theta) r\}$$

$$\leq B \left[T(2r,f) \right]^{k+1} + B \left[\exp \left\{ r^{\beta+\varepsilon} \right\} + \left| B_{k-1}(z) e^{b_{k-1}z} \right| \right] \left[T(2r,f) \right]^k \\
+ \dots + B \left[\exp \left\{ r^{\beta+\varepsilon} \right\} + \left| B_1(z) e^{b_1z} \right| \right] \left[T(2r,f) \right]^2 + \exp \left\{ r^{\beta+\varepsilon} \right\} \\
\leq M_0 \exp \left\{ r^{\beta+\varepsilon} \right\} \exp \left\{ (1+\varepsilon) c\delta \left(a_1 z, \theta \right) r \right\} \left[T(2r,f) \right]^{k+1}, \tag{3.28}$$

where $M_0 > 0$ is a some constant. From (3.28) and $0 < \varepsilon < \frac{1-c}{2(1+c)}$, we get

$$(1 - o(1)) \exp\left\{\frac{1 - c}{2}\delta\left(a_1 z, \theta\right) r\right\} \leqslant M_0 \exp\left\{r^{\beta + \varepsilon}\right\} \left[T(2r, f)\right]^{k+1}. \quad (3.29)$$

Since $\delta(a_1z,\theta) > 0$, $\beta + \varepsilon < 1$, then by using Lemma 2.6 and (3.29), we obtain $\sigma_2(f) \ge 1$, hence $\sigma_2(f) = 1$.

b) When $\delta(a_1z,\theta) < 0$, $\delta(a_2z,\theta) > 0$, for sufficiently large r, we get (3.13) holds. Substituting (3.1), (3.8), (3.13), (3.14) and (3.27) into (3.6), we obtain for all $z = re^{i\theta}$ satisfying $|z| = r \notin [0,1] \cup E_8$, $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$

$$(1 - o(1)) \exp\{(1 - \varepsilon) \delta(a_2 z, \theta) r\} \leq M_0 \exp\{r^{\beta + \varepsilon}\} [T(2r, f)]^{k+1}, \quad (3.30)$$

where $M_0 > 0$ is a some constant. By $\delta(a_2 z, \theta) > 0$, $\beta + \varepsilon < 1$ and (3.30), we have $\sigma_2(f) \ge 1$, then $\sigma_2(f) = 1$.

(ii) $(\theta_1 = \theta_2)$. In first step, we have proved that there is a ray $\text{arg } z = \theta$ where $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$, satisfying $\delta\left(a_2z, \theta\right) > \delta\left(a_1z, \theta\right) > 0$ and for sufficiently large r, we get (3.19) holds. Substituting (3.1), (3.7), (3.8), (3.19) and (3.27) into (3.6), we obtain for all $z = re^{i\theta}$ satisfying $|z| = r \notin [0, 1] \cup E_8$, $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$

$$(1 - o(1)) \exp\{(1 + \varepsilon) \delta(a_1 z, \theta) r\} \exp\{\alpha r\}$$

$$\leq M_1 \exp\{r^{\beta + \varepsilon}\} \exp\{(1 + \varepsilon) c\delta(a_1 z, \theta) r\} [T(2r, f)]^{k+1}, \qquad (3.31)$$

where $M_1 > 0$ is a some constant. By (3.31), we have

$$(1 - o(1)) \exp\left\{\left[\left(1 + \varepsilon\right)\left(1 - c\right)\delta\left(a_1 z, \theta\right) + \alpha\right]r\right\} \leqslant M_1 \exp\left\{r^{\beta + \varepsilon}\right\} \left[T(2r, f)\right]^{k+1}.$$
(3.32)

Since $\delta(a_1z, \theta) > 0$, $\alpha > 0$, $\beta + \varepsilon < 1$, then by using Lemma 2.6 and (3.32), we obtain $\sigma_2(f) \ge 1$, hence $\sigma_2(f) = 1$.

Case 2: $a_1 < \frac{b}{1-c}$.

(i) $(\theta_1 \neq \theta_2)$. In first step, we have proved that there is a ray $\arg z = \theta$ where $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$, satisfying $\delta\left(a_2z, \theta\right) > 0$ and $\delta\left(a_1z, \theta\right) < 0$ and for sufficiently large r, we get (3.24) holds. Using the same reasoning as in second step (Case 1 (i)), we can get $\sigma_2(f) = 1$.

(ii) $(\theta_1 = \theta_2)$ In first step, we have proved that there is a ray $\arg z = \theta$ where $\theta \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$, satisfying $\delta\left(a_2z, \theta\right) > \delta\left(a_1z, \theta\right) > 0$ and for sufficiently large r, we get (3.19) holds. Substituting (3.1), (3.7), (3.19), (3.25) and (3.27) into (3.6), we obtain for all $z = re^{i\theta}$ satisfying $|z| = r \notin [0, 1] \cup E_8$, $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$

$$(1 - o(1)) \exp \{(1 + \varepsilon) \delta(a_1 z, \theta) r\} \exp \{\alpha r\}$$

 $\leq M_2 \exp\{r^{\beta+\varepsilon}\} \exp\{(1+\varepsilon) c\delta(a_1z,\theta) r\} \exp\{br\cos\theta\} [T(2r,f)]^{k+1}$, where $M_2 > 0$ is a some constant. Thus

$$(1 - o(1)) \exp \{\gamma r\} \leq M_2 \exp \{r^{\beta + \varepsilon}\} [T(2r, f)]^{k+1},$$
 (3.33)

where $\gamma = (1 + \varepsilon) (1 - c) \delta(a_1 z, \theta) + \alpha - b \cos \theta$. Since $\gamma > 0$, $\beta + \varepsilon < 1$, then by using Lemma 2.6 and (3.33), we have $\sigma_2(f) \ge 1$, hence $\sigma_2(f) = 1$. Concluding the above proof, we obtain that every solution $f \not\equiv 0$ of (1.2) satisfies $\sigma_2(f) = 1$. The proof of Theorem 1.1 is complete.

4 Proofs of Corollary 1.1 and Corollary 1.2

Using the same reasoning as in the proof of Theorem 1.1, we can obtain Corollary 1.1 and Corollary 1.2.

References

- [1] I. Amemiya and M. Ozawa, Non-existence of finite order solutions of $w'' + e^{-z}w' + Q(z)w = 0$, Hokkaido Math. J. 10 (1981), Special Issue, 1–17.
- [2] Z. X. Chen and K. H. Shon, On the growth of solutions of a class of higher order differential equations, Acta Math. Sci. Ser. B Engl. Ed. 24 (2004), no. 1, 52–60.
- [3] Z. X. Chen, The growth of solutions of $f'' + e^{-z}f' + Q(z)f = 0$ where the order(Q) = 1, Sci. China Ser. A 45 (2002), no. 3, 290–300.
- [4] M. Frei, Über die Lösungen linearer Differentialgleichungen mit ganzen Funktionen als Koeffizienten, Comment. Math. Helv. 35 (1961), 201-222.
- [5] M. Frei, Über die Subnormalen Lösungen der Differentialgleichung $w'' + e^{-z}w' + (Konst.)w = 0$, Comment. Math. Helv. 36, 1961, 1–8.

- [6] G. G. Gundersen, On the question of whether $f'' + e^{-z}f' + B(z)f = 0$ can admit a solution $f \not\equiv 0$ of finite order, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), no. 1-2, 9-17.
- [7] G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), no. 1, 88–104.
- [8] G. G. Gundersen, Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc. 305 (1988), no. 1, 415–429.
- [9] W. K. Hayman, *Meromorphic functions*, Oxford Mathematical Monographs Clarendon Press, Oxford 1964.
- [10] K. H. Kwon, Nonexistence of finite order solutions of certain second order linear differential equations, Kodai Math. J. 19 (1996), no. 3, 378–387.
- [11] J. K. Langley, On complex oscillation and a problem of Ozawa, Kodai Math. J. 9 (1986), no. 3, 430–439.
- [12] M. Ozawa, On a solution of $w'' + e^{-z}w' + (az + b)w = 0$, Kodai Math. J. 3 (1980), no. 2, 295–309.
- [13] F. Peng and Z. X. Chen, On the growth of solutions of some second-order linear differential equations, J. Inequal. Appl. 2011, Art. ID 635604, 1-9.
- [14] C. C. Yang and H. X. Yi, *Uniqueness theory of meromorphic functions*, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003.

(Received August 15, 2011)