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1 Introduction

Boundary value problems for ordinary differential equations arise in different
areas of applied mathematics and physics, the existence of positive solutions for
such problems has become an important area of investigation in recent years. To
identify a few, we refer the reader to [1-3,6,10,11,13,17,18] and references therein.

At the same time, a class of boundary value problems with nonlocal boundary
conditions appeared in heat conduction, chemical engineering, underground water
flow, thermoelasticity, and plasma physics. Such problems include two-point, three-
point, multi-point boundary value problems as special cases and have attracted the
attention of Gallardo [1], Karakostas and Tsamatos [2], Lomtatidze and Malaguti
[3] (and see the references therein). For more information about the general theory
of integral equations and their relation to boundary value problems, see for example,
[4,5].

Motivated by the works mentioned above, in this paper, we study the existence
of three symmetric positive solutions for the following fourth-order singular nonlocal
boundary value problem(NBVP):



























u′′′′(t)(t) = g(t)f(t, u), 0 < t < 1,

u(0) = u(1) =

∫ 1

0

a(s)u(s)ds,

u′′(0) = u′′(1) =

∫ 1

0

b(s)u′′(s)ds,

(1.1)

where a, b ∈ L1[0, 1], g : (0, 1) → [0,∞) is continuous, symmetric on (0, 1) and may
be singular at t = 0 and t = 1, f : [0, 1]× [0,∞) −→ [0,∞) is continuous and f(·, x)
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is symmetric on [0, 1] for all x ∈ [0,+∞). We show that there exist triple symmetric
positive solutions by using Leggett-Williams fixed-point theorem.

2 Preliminaries and Lemmas

In this section, we present some definitions and lemmas that are important to
prove our main results.
Definition 2.1. Let E be a real Banach space over R. A nonempty closed set
P ⊂ E is said to be a cone provided that
(i) u ∈ P , a ≥ 0 implies au ∈ P ; and
(ii) u, −u ∈ P implies u = 0.
Definition 2.2. Given a cone P in a real Banach space E, a functional ψ : P → P

is said to be increasing on P provided ψ(x) ≤ ψ(y), for all x, y ∈ P with x ≤ y.
Definition 2.3. Given a nonnegative continuous functional γ on P in a real Banach
space E, we define for each d > 0 the following set

P (γ, d) = {x ∈ P |γ(x) < d}.
Definition 2.4. The function w is said to be symmetric on [0, 1], if

w(t) = w(1 − t), t ∈ [0, 1].

Definition 2.5. A function u∗ is called a symmetric positive solution of the NBVP(1.1)
if u∗ is symmetric and positive on [0, 1], and satisfies the differential equation and
the boundary value conditions in NBVP(1.1) .
Definition 2.6. Given a cone P in a real Banach space E, a functional α : P →
[0,∞) is said to be nonnegative continuous concave on P provided α(tx+(1−t)y) ≥
tα(x) + (1 − t)α(y), for all x, y ∈ P with t ∈ [0, 1].

Let a, b, r > 0 be constants with P and α as defined above, we note

Pr = {y ∈ P | ‖y‖ < r}, P{α, a, b} = {y ∈ P | α(y) ≥ a, ‖y‖ ≤ b}.

The main tool of this paper is the following well-known Leggett-Williams fixed-
point theorem.
Theorem 2.1.[15-16] Assume E be a real Banach space, P ⊂ E be a cone. Let
T : P c → P c be completely continuous and α be a nonnegative continuous concave
functional on P such that α(y) ≤ ‖y‖, for y ∈ P c. Suppose that there exist 0 < a <

b < d ≤ c such that
(i) {y ∈ P (α, b, d)| α(y) > b} 6= ∅ and α(Ty) > b, for all y ∈ P (α, b, d);
(ii) ‖Ty‖ < a, for all ‖y‖ ≤ a;
(iii) α(Ty) > b for all y ∈ P (α, b, c) with ‖Ty‖ > d.
Then T has at least three fixed points y1, y2, y3 satisfying

‖y1‖ < a, b < α(y2),

and
‖y3‖ > a, α(y3) < b.
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Lemma 2.1. [14] Suppose that d :=
∫ 1

0
m(s)ds 6= 1, m ∈ L1[0, 1], y ∈ C[0, 1], then

BVP
u′′(t) + y(t) = 0, 0 < t < 1, (2.1)

u(0) = u(1) =

∫ 1

0

m(s)u(s)ds, (2.2)

has a unique solution

u(t) =

∫ 1

0

H(t, s)y(s)ds, (2.3)

where

H(t, s) = G(t, s)+
1

1 − d

∫ 1

0

G(s, x)m(x)dx, G(t, s) =

{

t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1.

Proof. Integrating both sides of (2.1) on [0, t], we have

u′(t) = −
∫ t

0

y(s)ds+B. (2.4)

Again integrating (2.4) from 0 to t, we get

u(t) = −
∫ t

0

(t− s)y(s)ds+Bt+ A. (2.5)

In particular,

u(1) = −
∫ 1

0

(1 − s)y(s)ds+B + A, u(0) = A.

By the boundary value conditions (2.2) we get

B =

∫ 1

0

(1 − s)y(s)ds. (2.6)

By G(s, x) = G(x, s) and (2.5), we can obtain

A = u(0) =

∫ 1

0

m(x)u(x)dx =

∫ 1

0

m(x)

(

−
∫ x

0

(x− s)y(s)ds+Bx+ A

)

dx

=

∫ 1

0

m(x)

(

−
∫ x

0

(x− s)y(s)ds+ x

∫ 1

0

(1 − s)y(s)ds

)

dx+ A

∫ 1

0

m(x)dx

=

∫ 1

0

m(x)

(
∫ x

0

s(1 − x)y(s)ds+

∫ 1

x

x(1 − s)y(s)ds

)

dx+ Ad

=

∫ 1

0

m(x)

(
∫ 1

0

G(s, x)y(s)ds

)

dx+ Ad

=

∫ 1

0

(
∫ 1

0

G(s, x)m(x)dx

)

y(s)ds+ Ad.
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So, we have

A =
1

1 − d

∫ 1

0

(
∫ 1

0

G(s, x)m(x)dx

)

y(s)ds. (2.7)

By (2.5), (2.6) and (2.7), we obtain

u(t) = −
∫ t

0

(t− s)y(s)ds+Bt+ A

= −
∫ t

0

(t− s)y(s)ds+ t

∫ 1

0

(1 − s)y(s)ds+
1

1 − d

∫ 1

0

(
∫ 1

0

G(s, x)m(x)dx

)

y(s)ds

=

∫ t

0

s(1 − t)y(s)ds+

∫ 1

t

t(1 − s)y(s)ds+
1

1 − d

∫ 1

0

(
∫ 1

0

G(s, x)m(x)dx

)

y(s)ds

=

∫ 1

0

G(t, s)y(s)ds+
1

1 − d

∫ 1

0

(
∫ 1

0

G(s, x)m(x)dx

)

y(s)ds

=

∫ 1

0

H(t, s)y(s)ds.

This completes the proof of Lemma 2.1.
It is easy to verify the following properties of H(t, s) and G(t, s).

Lemma 2.2. If m(t) > 0, and d :=

∫ 1

0

m(s)ds ∈ (0, 1), then

(1) H(t, s) ≥ 0, t, s ∈ [0, 1], H(t, s) > 0, t, s ∈ (0, 1);

(2) G(1 − t, 1 − s) = G(t, s), G(t, t) ≤ G(t, s) ≤ G(s, s), t, s ∈ [0, 1];

(3) γH(s, s) ≤ H(t, s) ≤ H(s, s), where γ =
η

1 − d+ η
∈ (0, 1), η =

∫ 1

0

G(x, x)m(x)dx.

So we may denote Green’s functions of the following boundary value problems










−u′′(t) = 0, 0 < t < 1,

u(0) = u(1) =

∫ 1

0

a(s)u(s)ds

and










−u′′(t) = 0, 0 < t < 1,

u(0) = u(1) =

∫ 1

0

b(s)u(s)ds,

by H1(t, s) and H2(t, s), respectively. By Lemma 2.1, we know that H1(t, s) and
H2(t, s) can be written by

H1(t, s) = G(t, s) +
1

1 −
∫ 1

0

a(s)ds

∫ 1

0

G(s, x)a(x)dx,

and

H2(t, s) = G(t, s) +
1

1 −
∫ 1

0

b(s)ds

∫ 1

0

G(s, x)b(x)dx.
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Obviously, H1(t, s) and H2(t, s) have the same properties with H(t, s) in Lemma
2.2.

Remark 2.1. For notational convenience, we introduce the following constants

α =

∫ 1

0

a(s)ds, β =

∫ 1

0

b(s)ds,

γ1 =
η1

1 − α + η1
, γ2 =

η2

1 − β + η2
∈ (0, 1),

η1 =

∫ 1

0

G(x, x)a(x)dx, η2 =

∫ 1

0

G(x, x)b(x)dx.

Lemma 2.3. Assume that α, β 6= 1, h ∈ C[0, 1], then NBVP















u′′′′(t) = h(t), 0 < t < 1,

u(0) = u(1) =
∫ 1

0
a(s)u(s)ds,

u′′(0) = u′′(1) =
∫ 1

0
b(s)u′′(s)ds

(2.8)

has a unique solution

u(t) =

∫ 1

0

∫ 1

0

H1(t, τ)H2(τ, s)h(s)dsdτ. (2.9)

Lemma 2.4. Assume that α, β 6= 1, h ∈ C[0, 1] is symmetric, then the solution u(t)
of NBVP (2.8) is symmetric on [0, 1].

Proof. For notational convenience, we set

E1(τ) =
1

1 −
∫ 1

0

a(s)ds

∫ 1

0

G(τ, x)a(x)dx, E2(s) =
1

1 −
∫ 1

0

b(s)ds

∫ 1

0

G(s, x)b(x)dx.
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For ∀t, s ∈ [0, 1], by (2.9) and Lemma 2.2 we have

u(1 − t) =

∫ 1

0

∫ 1

0

H1(1 − t, τ)H2(τ, s)h(s)dsdτ

=

∫ 1

0

∫ 1

0

[G(1 − t, τ) + E1(τ)][G(τ, s) + E2(s)]h(s)dsdτ

=

∫ 1

0

∫ 1

0

G(1 − t, τ)G(τ, s)h(s)dsdτ +

∫ 1

0

∫ 1

0

G(1 − t, τ)E2(s)h(s)dsdτ

+

∫ 1

0

∫ 1

0

E1(τ)[G(τ, s) + E2(s)]h(s)dsdτ

=

∫ 0

1

∫ 0

1

G(1 − t, 1 − τ)G(1 − τ, 1 − s)h(1 − s)d(1 − s)d(1 − τ)

+

∫ 0

1

∫ 1

0

G(1 − t, 1 − τ)E2(s)h(s)dsd(1 − τ) +

∫ 1

0

∫ 1

0

E1(τ)[G(τ, s) + E2(s)]h(s)dsdτ

=

∫ 1

0

∫ 1

0

G(t, τ)G(τ, s)h(s)dsdτ +

∫ 1

0

∫ 1

0

G(t, τ)E2(s)h(s)dsdτ

+

∫ 1

0

∫ 1

0

E1(τ)[G(τ, s) + E2(s)]h(s)dsdτ

=

∫ 1

0

∫ 1

0

H1(t, τ)H2(τ, s)h(s)dsdτ

= u(t).

Therefore, the solution u(t) of NBVP (2.8) is symmetric on [0, 1].
Lemma 2.5. Assume that a(t) ≥ 0, b(t) ≥ 0, and α, β ∈ (0, 1), h ∈ C+[0, 1], then
the solution u(t) of NBVP (2.8) is positive on [0, 1].
Proof. Set v(t) = −u′′(t). By v′′(t) = −h(t) ≤ 0, t ∈ [0, 1], we know that v(t) is a
concave function on [0, 1]. Thus, by (2.3) we have

v(1) = v(0) =
1

1 −
∫ 1

0

b(s)ds

∫ 1

0

(
∫ 1

0

G(s, x)b(x)dx

)

h(s)ds ≥ 0.

On the other hand, due to u′′(t) = −v(t) ≤ 0, t ∈ [0, 1], we deduce that u(t) is a
concave function on [0, 1]. It follows that by (2.3)

u(1) = u(0) =
1

1 −
∫ 1

0

a(s)ds

∫ 1

0

(
∫ 1

0

G(s, x)a(x)dx

)

h(s)ds ≥ 0,

which implies that the solution u(t) ≥ 0.
Lemma 2.6. Assume that a(t) ≥ 0, b(t) ≥ 0, and α, β ∈ (0, 1), h ∈ C+[0, 1], then
the solution u(t) of NBVP (2.8) satisfies

min
t∈[0,1]

u(t) ≥ γ‖u‖, (2.10)
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where γ = γ1γ2, ‖ · ‖ is the supremum norm on C+[0, 1].
Proof. By Lemma 2.2 and (2.3), we obtain

u(t) =

∫ 1

0

∫ 1

0

H1(t, τ)H2(τ, s)h(s)dsdτ ≤
∫ 1

0

∫ 1

0

H1(τ, τ)H2(s, s)h(s)dsdτ.

So,

‖u‖ ≤
∫ 1

0

∫ 1

0

H1(τ, τ)H2(s, s)h(s)dsdτ. (2.11)

On the other hand, by Lemma 2.2 and (2.3) we have

u(t) =

∫ 1

0

∫ 1

0

H1(t, τ)H2(τ, s)h(s)dsdτ

≥ γ1γ2

∫ 1

0

∫ 1

0

H1(τ, τ)H2(s, s)h(s)dsdτ.

= γ

∫ 1

0

∫ 1

0

H1(τ, τ)H2(s, s)h(s)dsdτ.

(2.12)

Combined (2.11) with (2.12), we deduce inequality (2.10).
Now we define an integral operator T : C[0, 1] → C[0, 1] by

(Tu)(t) =

∫ 1

0

∫ 1

0

H1(t, τ)H2(τ, s)g(s)f(s, u(s))dsdτ.

Define a set P by

P =

{

u ∈ C+[0, 1] : u(t) is a symmetric and concave function on [0, 1], min
t∈[0,1]

x(t) ≥ γ‖u‖
}

,

‖ · ‖ is the supremum norm on C+[0, 1]. It is easy to see that P is a cone in C[0, 1].
Clearly, u is a solution of the NBVP (1.1) if and only if u is a fixed point of the
operator T .

In the rest of the paper, we make the following assumptions:
(B1) a, b ∈ L1[0, 1], a(t), b(t) ≥ 0, α, β ∈ (0, 1);

(B2) g : (0, 1) → [0,+∞) is continuous, symmetric, and 0 <
∫ 1

0
H2(s, s)g(s)ds <

+∞;
(B3) f : [0, 1]× [0,+∞) → [0,+∞) is continuous, and f(·, x) is symmetric on [0, 1]
for all x ∈ [0,+∞).

Remark 2.2. (B2) implies that g(t) may be singular at t = 0 and t = 1.
Remark 2.3. If (B1) holds, then for all t, s ∈ [0, 1], we have

H1(1 − t, 1 − s) = H1(t, s), H2(1 − t, 1 − s) = H2(t, s).

Lemma 2.7. Assume that conditions (B1), (B2) and (B3) hold. Then T : P → P

is a completely continuous operator.
Proof From Lemma 2.4, Lemma 2.5 and Lemma 2.6, we know that T (P ) ⊂ P .
Now we prove that operator T is completely continuous. For n ≥ 2 define gn by

gn(t) =











inf{g(t), g( 1
n
)}, 0 < t ≤ 1

n
,

g(t), 1
n
≤ t ≤ 1 − 1

n
,

inf{g(t), g(1− 1
n
)}, 1 − 1

n
≤ t < 1.
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Then, gn : [0, 1] → [0,+∞) is continuous and gn(t) ≤ g(t), t ∈ (0, 1). And Tn : P →
P by

(Tnu)(t) =

∫ 1

0

∫ 1

0

H1(t, τ)H2(τ, s)gn(s)f(s, u(s))dsdτ.

Obviously, Tn is compact on P for any n ≥ 2 by an application of the Ascoli- Arzela
Theorem. Let BR = {u ∈ P : ‖u‖ ≤ R}. We claim that Tn converges uniformly to
T as n → ∞ on BR. In fact, let MR = max{f(s, x) : (s, x) ∈ [0, 1] × [0, R]},M =

max{H1(τ, t) : τ ∈ [0, 1]}, then MR,M <∞. Since 0 <
∫ 1

0
H2(s, s)g(s) <∞, by the

absolute continuity of integral, we have

lim
n→∞

∫

e( 1

n
)

H2(s, s)g(s)ds = 0,

where e( 1
n
) = [0, 1

n
] ∪ [1 − 1

n
, 1]. So, for any t ∈ [0, 1], fixed R > 0 and u ∈ BR, we

have

|(Tnu)(t) − (Tu)(t)| =

∣

∣

∣

∣

∫ 1

0

∫ 1

0

H1(t, τ)H2(τ, s)(gn(s) − g(s))f(s, u(s))dsdτ

∣

∣

∣

∣

≤MMR

∫ 1

0

H2(s, s)|gn(s) − g(s)|ds

≤MMR

∫

e( 1

n
)

H2(s, s)g(s)ds

→ 0 (n→ ∞),

where we have used assumptions (B1)-(B3) and the fact that H2(t, s) ≤ H2(s, s) for
t, s ∈ [0, 1]. Hence the completely continuous operator Tn converges uniformly to T
as n→ ∞ on any bounded subset of P , and therefore T is completely continuous.

3 The Main Results

We first define the nonnegative, continuous concave functional ϕ : P → [0,∞) by

ϕ(u) = min
t∈[0,1]

u(t).

Obviously, for every u ∈ P we have

ϕ(u) ≤ ‖u‖.

We shall use the following notation:

Λ =
1

∫ 1

0

∫ 1

0
H1(τ, τ)H2(s, s)g(s)dsdτ

.

Our main result is the following theorem.
Theorem 3.1. Suppose conditions (B1), (B2) and (B3) hold, and there exist positive
constants a, b and c with 0 < a < b < γc such that
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(A1) f(t, u) < Λc, for t ∈ [0, 1], 0 ≤ u ≤ c;

(A2) f(t, u) ≥ Λb

γ
, for t ∈ [0, 1], b ≤ u ≤ b

γ
;

(A3) f(t, u) ≤ Λa, for t ∈ [0, 1], 0 ≤ u ≤ a.
Then the NBVP(1.1) has at least three symmetric positive solutions u1, u2 and u3

such that
‖u1‖ < a, b < ϕ(u2), and ‖u3‖ > a with ϕ(u3) < b.

Proof. we show that all the conditions of Theorem 2.1 are satisfied. We first assert
that there exists a positive number c such that T (P c) ⊂ P c. By (A1) we have

‖Tu‖ = maxt∈[0,1](Tu)(t)

= maxt∈[0,1]

∫ 1

0

∫ 1

0

H1(t, τ)H2(τ, s)g(s)f(s, u(s))dsdτ

≤ Λc

∫ 1

0

∫ 1

0

H1(t, τ)H2(τ, s)g(s)dsdτ

≤ Λc

∫ 1

0

∫ 1

0

H1(τ, τ)H2(s, s)g(s)dsdτ

= c.

Therefore, we have T (P c) ⊂ P c. Especially, if u ∈ P a, then assumption (A3) yields
T : P a → Pa.

We now show that condition (i) of Theorem 2.1 is satisfied. Clearly, {u ∈
P (ϕ, b, b

γ
)| ϕ(u) > b} 6= ∅. Moreover, if u ∈ P (ϕ, b, b

γ
), then ϕ(u) ≥ b, so

b ≤ ‖u‖ ≤ b
γ
. By the definition of ϕ and (A2), we obtain

ϕ(Tu) = mint∈[0,1](Tu)(t)

= mint∈[0,1]

∫ 1

0

∫ 1

0

H1(t, τ)H2(τ, s))g(s)f(s, u(s))dsdτ

≥
∫ 1

0

∫ 1

0

γH1(τ, τ)H2(s, s)g(s)f(s, u(s))dsdτ

≥
∫ 1

0

∫ 1

0

γH1(τ, τ)H2(s, s)g(s)γ
−1Λbdsdτ

= b.

Therefore, condition (i) of Theorem 2.1 is satisfied.
Finally, we address condition (iii) of Theorem 2.1. For this we choose u ∈

P (ϕ, b, c) with ‖Tu‖ > b
γ
. Then from Lemma 2.6, we deduce

ϕ(Tu) = min
t∈[0,1]

(Tu)(t) ≥ γ‖Tu‖ > b.

Hence, condition (iii) of Theorem 2.1 holds. By Theorem 2.1, we obtain the NBVP(1.1)
has at least three symmetric positive solutions u1, u2 and u3 such that

‖u1‖ < a, b < ϕ(u2), and ‖u3‖ > a with ϕ(u3) < b.
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4 Examples

In the section, we present a simple example to explain our results.
Example 4.1. Consider the following fourth-order singular nonlocal boundary value
problems (NBVP)



































u′′′′(t) =
1

6t(1 − t)
(
1

2
|1 − 2t| + 2 min{u2,

√
2u}), 0 < t < 1,

u(0) = u(1) =
48

25

∫ 1

0

su(s)ds,

u′′(0) = u′′(1) =
48

25

∫ 1

0

su′′(s)ds, ,

(4.1)

where g(t) = 1
6t(1−t)

, a(t) = b(t) = 48
25
t, and f(t, u) = 1

2
|1−2t|+2 min{u2,

√
2u}, then

g(t), a(t), b(t) and f(t, u) satisfy the assumptions (B1)-(B3). A direct computation
shows

α = β =
24

25
, η1 = η2 =

4

25
, γ =

16

25
,Λ =

12

5
.

We choose a = 1
2
, b = 8

15
, c = 8. Obviously, a < b < γc. Moreover,

(i) for (t, x) ∈ [0, 1] × [0, c], we have
f(t, u) ≤ f(1, c) = 1

2
+ 4

√
2 < 12

5
× 8 = Λc ;

(ii) for (t, x) ∈ [0, 1] × [b, γ−1b], we have
f(t, u) ≥ f(1

2
, b) = 8

15

√
15 > 2 = γ−1bΛ ;

(iii) for (t, x) ∈ [0, 1] × [0, a], we have
f(t, u) ≤ f(1, a) ≤ 1

2
+ 2

4
< 12

5
× 1

2
= Λa.

By Theorem 3.1, we know the NBVP (4.1) has at least three positive solutions.
Acknowledgments The authors are grateful to the referees for their valuable

suggestions and comments.
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