COMPACTNESS METHODS FOR HÖLDER ESTIMATES OF CERTAIN DEGENERATE ELLIPTIC EQUATIONS

FENGPING YAO MIJIA LAI* HUILIAN JIA

Abstract

In this paper we obtain the interior $C^{1, \alpha}$ regularity of the quasilinear elliptic equations of divergence form. Our basic tools are the elementary local L^{∞} estimates and weak Harnack inequality for second-order linear elliptic equations, and the compactness method.

1. Introduction

In this paper we consider the following nonlinear elliptic problem

$$
\begin{equation*}
\operatorname{div}\left(g\left(|\nabla u|^{2}\right) \nabla u\right)=0 \quad \text { in } \Omega \tag{1.1}
\end{equation*}
$$

Here $g \in C^{1}([0, \infty))$ satisfies the following ellipticity condition

$$
\begin{equation*}
K^{-1}(Q+s)^{\frac{p}{2}-1} \leq g(Q)+2 g^{\prime}(Q) Q \leq K(Q+s)^{\frac{p}{2}-1} \tag{1.2}
\end{equation*}
$$

for $s \geq 0$ and $1<p<\infty$. In fact, condition (1.2) implies the following condition for a possibly larger constant K

$$
\begin{align*}
& K^{-1}(Q+s)^{\frac{p}{2}-1} \leq g(Q)+2 g^{\prime}(Q) Q \leq K(Q+s)^{\frac{p}{2}-1} \tag{1.3}\\
& K^{-1}(Q+s)^{\frac{p}{2}-1} \leq g(Q) \leq K(Q+s)^{\frac{p}{2}-1} \tag{1.4}\\
& \left|g^{\prime}(Q) Q\right| \leq K(Q+s)^{\frac{p}{2}-1} \tag{1.5}
\end{align*}
$$

Especially when $g(x)=x^{\frac{p-2}{2}}$, (1.1) is reduced to

$$
\begin{equation*}
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=0 \quad \text { in } \Omega \tag{1.6}
\end{equation*}
$$

which can be derived from the variational problem

$$
\Phi(u)=\min _{v \mid \partial \Omega=g} \Phi(v)=: \min _{v \mid \partial \Omega=g} \int_{\Omega}|\nabla v|^{p} d x .
$$

As usual, the solutions of (1.1) are taken in a weak sense. We now state the definition of weak solutions.
Definition 1.1. A function $u \in W_{l o c}^{1, p}(\Omega)$ is a local weak solution of (1.1) if for any $\varphi \in W_{0}^{1, p}(\Omega)$ we have

$$
\int_{\Omega} g\left(|\nabla u|^{2}\right) \nabla u \cdot \nabla \varphi d x=0
$$

[^0]Evans [6] have shown that ∇u is local Hölder continuous for weak solutions of (1.6) for $p \geq 2$ and then Lewis [9] extended the corresponding result to the case that $1<p<\infty$. Moreover, Uhlenbeck [10] obtained the interior $C^{1, \alpha}$ regularity estimates for weak solutions of (1.1) with condition (1.2) and

$$
\left|\rho^{\prime}\left(Q_{1}\right) Q_{1}-\rho^{\prime}\left(Q_{2}\right) Q_{2}\right| \leq K\left(Q_{1}+Q_{2}+s\right)^{p / 2-1-\beta}\left(Q_{1}-Q_{2}\right)^{\beta}
$$

for $s \geq 0, \beta>0$ and $p \geq 2$, and DiBenedetto [3] considered the more general equations. Moreover, Wang [12] used compactness methods to give a quick proof of the interior $C^{1, \alpha}$ regularity for weak solutions of (1.6) for $1<p<\infty$. Recently, Duzaar and Mingione 45] proved local Lipschitz regularity of the gradient for weak solutions of (1.1) for $1<p<\infty$ and the more general equations. In this paper we will prove the interior $C^{1, \alpha}$ regularity for weak solutions of (1.1) with condition (1.2) by a compactness method, which is introduced by the authors (see [11, 12, 13). Our basic tools are the elementary local L^{∞} estimates and weak Harnack inequality for second-order linear elliptic equations, and the compactness method.

The essence of $C^{1, \alpha}$ regularity of the solution is that the solution is almost a linear function. Actually, we can show that the difference between the solution and a linear function is like $|x|^{1+\alpha}$. Moreover, we can use the same method to prove $C^{k, \alpha}$ estimates for the solution if we replace the linear function by the k-th order polynomial function.

Definition 1.2. (1) We call $u \in C_{p}^{\alpha}$ at the point $x=0$ for $1<p<\infty$ and $0<\alpha<1$ if

$$
[u]_{C_{p}^{\alpha}(0)}=\sup _{0<r \leq 1} \frac{1}{r^{\alpha}}\left(f_{B_{r}}\left|u-\bar{u}_{B_{r}}\right|^{p} d x\right)^{\frac{1}{p}}<\infty
$$

where $\bar{u}_{B_{r}}=\frac{1}{\left|B_{r}\right|} \int_{B_{r}} u d x$.
(2) We call $u \in C_{p}^{1, \alpha}$ at the point $x=0$ for $1<p<\infty$ if there is a linear function $L(x)=A x+B$ such that

$$
[u]_{C_{p}^{1, \alpha}(0)}=\sup _{0<r \leq 1} \frac{1}{r^{1+\alpha}}\left(f_{B_{r}}|u-L|^{p} d x\right)^{\frac{1}{p}}<\infty
$$

Now let us state the main result of this work.
Theorem 1.3. If $u \in W_{l o c}^{1, p}\left(B_{1}\right)$ is a weak solution of (1.1) with condition (1.2), then $u \in C_{p}^{1+\alpha}(0)$ for some $\alpha \in(0,1)$.
Remark 1.4. If $u \in C_{p}^{1+\alpha}(0)$, then by Theorem 1.3, page 72 in [7], u is locally $C^{1, \alpha}$ in the classical sense.

2. Compactness method

In this section we will finish the proof of Theorem 1.3 by the compactness method. We first consider the following approximation problem

$$
\begin{equation*}
\operatorname{div}\left(g\left(\epsilon+\left|\nabla u^{\epsilon}\right|^{2}\right) \nabla u^{\epsilon}\right)=0, \quad x \in \Omega, \epsilon \in(0,1] \tag{2.1}
\end{equation*}
$$

EJQTDE, 2012 No. 19, p. 2

We shall show uniform $C^{1, \alpha}$ estimates in Theorem 1.3 for u^{ϵ} for small $\epsilon>0$. We will omit the index ϵ since the $C^{1, \alpha}$ estimates are uniform, and then $u^{\epsilon} \rightarrow u$ uniformly. Actually, from (2.1) we have

$$
\begin{equation*}
a_{i j} u_{i j}=:\left[g\left(\epsilon+|\nabla u|^{2}\right) \delta_{i j}+g^{\prime}\left(\epsilon+|\nabla u|^{2}\right) 2 u_{i} u_{j}\right] u_{i j}=0 . \tag{2.2}
\end{equation*}
$$

Now we denote $\widetilde{a_{i j}}$ by

$$
\begin{equation*}
\widetilde{a_{i j}}=\frac{g\left(\epsilon+|\nabla u|^{2}\right) \delta_{i j}+g^{\prime}\left(\epsilon+|\nabla u|^{2}\right) 2 u_{i} u_{j}}{\left(s+\epsilon+|\nabla u|^{2}\right)^{\frac{p}{2}-1}} \tag{2.3}
\end{equation*}
$$

Then from (1.3)-(1.5) we have

$$
K^{-1}|\xi|^{2} \leq \widetilde{a_{i j}} \xi_{i} \xi_{j} \leq 3 K|\xi|^{2} \quad \text { for any } \xi \in \mathbb{R}^{n}
$$

and

$$
\widetilde{a_{i j}} u_{i j}=0
$$

Lemma 2.1. If u is a local weak solution of (2.1) in B_{1}, then

$$
\|\nabla u\|_{L^{\infty}\left(B_{1 / 2}\right)} \leq C\left(\|\nabla u\|_{L^{p}\left(B_{1}\right)}+1\right)
$$

where C is independent of ϵ.
Proof. Let $v=\left(s+\epsilon+|\nabla u|^{2}\right)^{p / 2}$. Then we find that

$$
\begin{equation*}
\left(\widetilde{a_{i j}} v_{j}\right)_{i}=\left(p a_{i j} u_{k j} u_{k}\right)_{i} \tag{2.4}
\end{equation*}
$$

Moreover, differentiating (2.1) with respect to x_{k}, we have

$$
\left(a_{i j} u_{k j}\right)_{i}=0
$$

Furthermore, (2.3) and (2.4) imply that

$$
\begin{equation*}
\left(\widetilde{a_{i j}} v_{j}\right)_{i}=p a_{i j} u_{k j} u_{k i} \geq 0 \tag{2.5}
\end{equation*}
$$

Therefore, from the maximum principle (see Lemma 1.2, Chapter 4 in [2])) we obtain

$$
\|\nabla u\|_{L^{\infty}\left(B_{1 / 2}\right)}^{p} \leq\|v\|_{L^{\infty}\left(B_{1 / 2}\right)} \leq C\left(\|\nabla u\|_{L^{p}\left(B_{3 / 4}\right)}^{p}+1\right)
$$

which finishes our proof.
From the lemma above, we may as well assume that

$$
|\nabla u| \leq 1
$$

Lemma 2.2. Let u be a local weak solution of (2.1) in B_{1} and $|\nabla u| \leq 1$. For any $\sigma>0$, there exists an $\eta(\sigma)>0$ such that if

$$
\left|\left\{x \in B_{1}:|\nabla u| \leq 1-\eta\right\}\right| \leq \eta\left|B_{1}\right|
$$

then there is a harmonic function v such that

$$
\int_{B_{1 / 2}}|u-v|^{p} d x \leq \sigma
$$

EJQTDE, 2012 No. 19, p. 3

Proof. We prove it by contradiction. If the result is false, then there would exist $\sigma_{0}>0,\left\{\epsilon_{k}\right\}_{k=1}^{\infty}$ and $\left\{u_{k}\right\}_{k=1}^{\infty}$ satisfying

$$
\begin{aligned}
& \int_{B_{1}} g\left(\epsilon_{k}+\left|\nabla u_{k}\right|^{2}\right) \nabla u_{k} \cdot \nabla \phi d x=0 \quad \text { for any } \phi \in C_{0}^{\infty}\left(B_{1}\right) \\
& \left|\nabla u_{k}\right| \leq 1 \\
& \left|D_{k}\right| \leq \frac{1}{2^{k}}\left|B_{1}\right|, \text { where } D_{k}=\left\{x \in B_{1}:\left|\nabla u_{k}\right| \leq 1-\frac{1}{2^{k}}\right\}
\end{aligned}
$$

so that for any harmonic function v in $B_{1 / 2}$ we have

$$
\begin{equation*}
\int_{B_{1 / 2}}|u-v|^{p} d x \geq \sigma_{0} \tag{2.6}
\end{equation*}
$$

Hence, we may assume that

$$
\begin{aligned}
& \epsilon_{k} \rightarrow \epsilon_{0}, \\
& u_{k} \rightarrow v \quad \text { in } L^{p}\left(B_{1}\right), \\
& \nabla u_{k} \rightarrow \nabla v \quad \text { weakly in } L^{p}\left(B_{1}\right), \\
& \left|\nabla u_{k}\right| \rightarrow 1 \quad \text { in } B_{1} \backslash D_{k}
\end{aligned}
$$

Since

$$
\left\{\int_{B_{1} \backslash D_{k}}+\int_{D_{k}}\right\} g\left(\epsilon_{k}+\left|\nabla u_{k}\right|^{2}\right) \nabla u_{k} \cdot \nabla \phi d x=0
$$

we deduce that

$$
\int_{B_{1}} g\left(\epsilon_{0}+1\right) \nabla v \cdot \nabla \phi d x=0
$$

as $k \rightarrow \infty$. That is to say, v is a harmonic function, which is contradictory to (2.6). Thus, we complete the proof.
Lemma 2.3. Let u be a local weak solution of (2.1) in B_{1} with $|\nabla u| \leq 1$. If

$$
\left|\left\{x \in B_{1}:|\nabla u| \leq 1-\eta\right\}\right| \geq \eta\left|B_{1}\right|
$$

then

$$
|\nabla u| \leq 1-\eta^{2} / C \quad \text { in } B_{1 / 2}
$$

where C is independent of ϵ.
Proof. Let $w=(s+\epsilon+1)^{p / 2}-\left(s+\epsilon+|\nabla u|^{2}\right)^{p / 2} \geq 0$. Then w is a local weak solution of

$$
\left(\widetilde{a_{i j}} w_{j}\right)_{i}=-p a_{i j} u_{k j} u_{k i} \leq 0 \text { in } B_{1}
$$

in view of (2.5). Therefore, from Theorem 8.18 in [8] we have

$$
\inf _{B_{1 / 2}} w \geq \frac{1}{C} \int_{B_{1}} w d x
$$

which implies that

$$
\inf _{B_{1 / 2}}\left((s+\epsilon+1)^{p / 2}-\left(s+\epsilon+|\nabla u|^{2}\right)^{p / 2}\right)
$$

EJQTDE, 2012 No. 19, p. 4

$$
\begin{aligned}
& \geq \frac{1}{C} \int_{B_{1}}(s+\epsilon+1)^{p / 2}-\left(s+\epsilon+|\nabla u|^{2}\right)^{p / 2} d x \\
& \geq \frac{\eta}{C}\left((s+\epsilon+1)^{p / 2}-\left(s+\epsilon+(1-\eta)^{2}\right)^{p / 2}\right)
\end{aligned}
$$

Thus we can easily obtain the desired result by using the elementary inequality $(1-x)^{\theta} \leq 1-C \theta x$ for $0<x<1 / 2$ and $\theta>0$.

Corollary 2.4. Let $\delta_{0}=\eta^{2} / C$ as in the lemma above. Assume that u is a local weak solution of (2.1) in B_{1} with $|\nabla u| \leq 1$. If

$$
\left|\left\{x \in B_{1 / 2^{i}}:|\nabla u| \leq(1-\eta)\left(1-\delta_{0}\right)^{i}\right\}\right| \geq \eta\left|B_{1 / 2^{i}}\right| \text { for } i=0,1, \ldots, k
$$

then

$$
|\nabla u| \leq\left(1-\delta_{0}\right)^{i} \quad \text { in } B_{1 / 2^{i}} \text { for } i=1,2, \ldots, k+1
$$

where C is independent of ϵ.
Proof. We can prove by induction on i. From the lemma above, it is easy to check that our conclusion is valid for $i=0$. Assume that the conclusion is valid for some i. We denote $w_{1}(x)$ by

$$
w_{1}(x)=\frac{2^{i}}{\left(1-\delta_{0}\right)^{i}} u\left(\frac{x}{2^{i}}\right)
$$

Then we can obtain the result from the lemma above.
Lemma 2.5. Let u be a local weak solution of (2.1) in B_{1} with $|\nabla u| \leq 1, f_{B_{1}}|u|^{p} d x \leq$ 1 and

$$
\left|\left\{x \in B_{1}:|\nabla u| \leq 1-\eta\right\}\right| \leq \eta\left|B_{1}\right|
$$

(1) For any $0<\alpha<1$ and $\theta>0$, there exist $\eta>0$ and $r_{0} \in(0,1 / 4)$ depending on θ, α, p, and a linear function $L_{1}(x)=A_{1} x+B_{1}$ such that

$$
f_{B_{r_{0}}}\left|u-L_{1}\right|^{p} d x \leq \theta r_{0}^{p(1+\alpha)}
$$

(2) For any $0<\alpha<1$, there exist $\eta>0$ and $r_{0} \in(0,1 / 4)$ depending on α, p, and linear functions $L_{k}(x)=A_{k} x+B_{k}$ for $k=0,1,2,3, \ldots$, with uniformly bounded coefficients such that

$$
\begin{equation*}
f_{B_{r_{0}^{k}}}\left|u-L_{k}(x)\right|^{p} d x \leq r_{0}^{p k(1+\alpha)} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{align*}
& \left|A_{k+1}-A_{k}\right| \leq C r_{0}^{p k \alpha} \tag{2.8}\\
& \left|B_{k+1}-B_{k}\right| \leq C r_{0}^{p k(1+\alpha)} \tag{2.9}
\end{align*}
$$

(3) For any $0<\alpha<1$, there exist $\eta>0$ depending on α, p, and a linear function $L(x)=A x+B$ such that

$$
f_{B_{r}}|u-L|^{p} d x \leq C r^{p(1+\alpha)} \quad \text { for any } 0<r \leq 1
$$

EJQTDE, 2012 No. 19, p. 5

Proof. (1) For any $\sigma>0$, from Lemma 2.2 there exists $\eta=\eta(\sigma)>0$ such that

$$
\begin{equation*}
\int_{B_{1 / 2}}|u-v|^{p} d x \leq \sigma \tag{2.10}
\end{equation*}
$$

where v is a harmonic function in B_{1}. Since $u \in W_{l o c}^{1, p}\left(B_{1}\right)$ is a weak solution of (2.1), then

$$
\int_{B_{1 / 2}}|v|^{p} d x \leq C
$$

which implies that

$$
\sup _{B_{1 / 4}}\left|D^{2} v\right| \leq C
$$

Now, let $L_{1}(x)=A_{1} x+B_{1}$ be the Taylor polynomial of v at 0 . Then we have

$$
\sup _{x \in B_{1 / 4}}\left|v-L_{1}\right| \leq C|x|^{2}
$$

Therefore, for any $0<r<1 / 4$ we have

$$
\begin{aligned}
f_{B_{r}}\left|u-L_{1}\right|^{p} d x & \leq 2^{p-1}\left(f_{B_{r}}|u-v|^{p} d x+f_{B_{r}}\left|v-L_{1}\right|^{p} d x\right) \\
& \leq 2^{p-1} \frac{\sigma}{\left|B_{r}\right|}+2^{p-1} r^{2 p}
\end{aligned}
$$

which implies that

$$
f_{B_{r_{0}}}\left|u-L_{1}\right|^{p} d x \leq 2^{p} r^{2 p}
$$

by taking σ small enough such that $\sigma \leq r^{2 p}\left|B_{r}\right|$. Finally, choosing $r=r_{0}$ such that $2^{p} r_{0}^{p(1-\alpha)}=\theta$, we can finish the proof.
(2) We prove it by induction. From (1) we know the result is true for $k=0,1$, if we take $L_{0}=0$. Let us assume it is true for k. We denote $w(x)$ by

$$
w(x)=\frac{\left(u-L_{k}\right)\left(r_{0}^{k} x\right)}{\theta r_{0}^{k(\alpha+1)}}
$$

Then w satisfies

$$
\widetilde{a_{i j}}(w) w_{i j}=0, \quad x \in B_{1} .
$$

where

$$
\begin{aligned}
& \widetilde{a_{i j}}(w)=\frac{g\left(\epsilon+\left|\theta r_{0}^{k \alpha} \nabla w+A_{k}\right|^{2}\right) \delta_{i j}}{\left(s+\epsilon+\left|\theta r_{0}^{k \alpha} \nabla w+A_{k}\right|^{2}\right)^{\frac{p}{2}-1}} \\
& +\frac{g^{\prime}\left(\epsilon+\left|\theta r_{0}^{k \alpha} \nabla w+L_{k}\right|^{2}\right) 2\left(\theta r_{0}^{k \alpha} w_{i}+\left(A_{k}\right)_{i}\right)\left(\theta r_{0}^{k \alpha} w_{j}+\left(A_{k}\right)_{j}\right)}{\left(s+\epsilon+\left|\theta r_{0}^{k \alpha} \nabla w+A_{k}\right|^{2}\right)^{\frac{p}{2}-1}}
\end{aligned}
$$

Let v be the solution of

$$
\widetilde{a_{i j}}(v) v_{i j}=0
$$

with $\left.v\right|_{B_{1 / 2}}=w$, where

$$
\widetilde{a_{i j}}(v)=\frac{g\left(\epsilon+\left|A_{k}\right|^{2}\right) \delta_{i j}}{\left(s+\epsilon+\left|A_{k}\right|^{2}\right)^{\frac{p}{2}-1}}+\frac{g^{\prime}\left(\epsilon+\left|A_{k}\right|^{2}\right) 2\left(A_{k}\right)_{i}\left(A_{k}\right)_{j}}{\left(s+\epsilon+\left|A_{k}\right|^{2}\right)^{\frac{p}{2}-1}}
$$

Since $g \in C^{1},\left\|\widetilde{a_{i j}}(w)-\widetilde{a_{i j}}(v)\right\|_{L^{\infty}\left(B_{1}\right)}$ is small enough if we choose θ small enough. For any $\tau>0$, from Lemma 13 in [1] we can obtain

$$
\|w-v\|_{L^{\infty}\left(B_{1 / 2}\right)} \leq \tau
$$

by choosing θ small enough. Now, let $L^{*}(x)=A^{*} x+B^{*}$ be the Taylor polynomial of v at 0 . Then we have

$$
\sup _{x \in B_{r}}\left|v-L^{*}\right| \leq C r^{2} \quad \text { for any } r \in(0,1 / 4)
$$

Furthermore, choosing $\tau \leq r_{0}^{p(1+\alpha)}$, we find that

$$
f_{B_{r_{0}}}\left|w-L^{*}\right|^{p} d x \leq \tau+C r_{0}^{2 p} \leq C r_{0}^{p(1+\alpha)}
$$

Finally, from the definition of w we can obtain

$$
f_{B_{r_{0}^{k+1}}}\left|w-L_{k+1}\right|^{p} d x \leq C r_{0}^{p(k+1)(1+\alpha)}
$$

by taking $L_{k+1}=L_{k}-\theta r_{0}^{k(\alpha+1)} L^{*}\left(\frac{x}{r_{0}^{k}}\right)$. Thus, (2.7)-(2.9) are true.
(3) From (2) it is easy to see that A_{k}, B_{k} converge to A_{∞}, B_{∞} as $k \rightarrow \infty$ respectively. Now let $L(x)=A_{\infty} x+B_{\infty}$. Then we have

$$
f_{B_{r_{0}^{k}}}|u-L(x)|^{p} d x \leq r_{0}^{p k(1+\alpha)} \quad \text { for } k=0,1,2, \ldots
$$

Therefore, we have

$$
f_{B_{r}}|u-L(x)|^{p} d x \leq r^{p(1+\alpha)} \quad \text { for any } 0<r \leq 1
$$

which completes our proof.
Now we are ready to prove the main result, Theorem 1.3
Proof. We may as well assume that $u(0)=0$ and $f_{B_{1}}|u|^{p} d x \leq 1$. We denote k by

$$
\begin{equation*}
\left|\left\{x \in B_{1 / 2^{i}}:|\nabla u| \leq(1-\eta)\left(1-\delta_{0}\right)^{i}\right\}\right| \geq \eta\left|B_{1 / 2^{i}}\right|, \quad i=0,1,2, \ldots, k-1 \tag{2.11}
\end{equation*}
$$

but,

$$
\begin{equation*}
\left|\left\{x \in B_{1 / 2^{k}}:|\nabla u| \leq(1-\eta)\left(1-\delta_{0}\right)^{k}\right\}\right| \leq \eta\left|B_{1 / 2^{k}}\right| \tag{2.12}
\end{equation*}
$$

We divide into two cases:
Case 1: $k=\infty$. That is to say, (2.11) is true for any i. Then, from Corollary 2.4] we find that

$$
|\nabla u| \leq\left(1-\delta_{0}\right)^{i} \quad \text { in } B_{1 / 2^{i}}
$$

EJQTDE, 2012 No. 19, p. 7
which implies that

$$
|u(x)|=|u(x)-u(0)| \leq|x|\left(1-\delta_{0}\right)^{i} \leq \frac{1}{1-\delta_{0}}|x|^{1+\alpha_{0}} \quad \text { for }|x| \leq 1
$$

where $\alpha_{0}=-\log _{2}\left(1-\delta_{0}\right)$. Now fix an α and then determine δ_{0} and α_{0}. Let $\alpha_{1}=\min \left\{\alpha_{0}, \alpha\right\}$. Therefore, we have

$$
|u(x)| \leq C|x|^{1+\alpha_{0}} \leq C|x|^{1+\alpha_{1}} \quad \text { for }|x| \leq 1
$$

Case 2: $k<\infty$. Similarly, Corollary 2.4 implies that

$$
\begin{equation*}
|\nabla u| \leq\left(1-\delta_{0}\right)^{i} \quad \text { in } B_{1 / 2^{i}} \quad \text { for } \quad 0 \leq i \leq k \tag{2.13}
\end{equation*}
$$

which implies that

$$
|u(x)| \leq C|x|^{1+\alpha_{1}} \quad \text { in } B_{1 / 2^{i}} \quad \text { for } \quad 0 \leq i \leq k
$$

Now we denote w by

$$
w(x)=\frac{2^{k}}{\left(1-\delta_{0}\right)^{k}} u\left(\frac{x}{2^{k}}\right)
$$

Therefore, by Lemma 2.5 (3) and the definition of α_{1}, there is a linear function $L(x)=A x+B$ such that

$$
f_{B_{r}}|w-L|^{p} d x \leq C r^{p(1+\alpha)} \leq C r^{p\left(1+\alpha_{1}\right)}
$$

for any $0<r \leq 1$. Recalling the definition of w, we have

$$
\begin{equation*}
f_{B_{r}}\left|u(x)-\left(1-\delta_{0}\right)^{k} A x-\frac{\left(1-\delta_{0}\right)^{k} B}{2^{k}}\right|^{p} d x \leq C r^{p\left(1+\alpha_{1}\right)} \tag{2.14}
\end{equation*}
$$

for any $0<r \leq 1 / 2^{k}$. Moreover, for any $1 / 2^{k}<r \leq 1$ we have

$$
\begin{aligned}
& f_{B_{r}}\left|u(x)-\left(1-\delta_{0}\right)^{k} A x-\frac{\left(1-\delta_{0}\right)^{k} B}{2^{k}}\right|^{p} d x \\
& \leq C\left(\sup _{B_{r}}|u|^{p}+\left|\left(1-\delta_{0}\right)^{k} A r\right|^{p}+\left|\frac{\left(1-\delta_{0}\right)^{k} B}{2^{k}}\right|^{p}\right) \\
& \leq C r^{p\left(1+\alpha_{1}\right)}
\end{aligned}
$$

since $\left(1-\delta_{0}\right)^{k}=2^{-k \alpha_{0}} \leq r^{\alpha_{0}} \leq r^{\alpha_{1}}$.

References

[1] L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. (2), 130(1)(1989), 189-213.
[2] Y. Chen \& L. Wu, Second order elliptic partial differential equations and elliptic systems, American Mathematical Society, Providence, RI, 1998.
[3] E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7(8)(1983), 827-850.
[4] F. Duzaar \& G. Mingione, Local Lipschitz regularity for degenerate elliptic systems, Ann. Inst. H. Poincareé, 27(6)(2010), 1361-1396.
[5] F. Duzaar \& G. Mingione, Gradient estimates via linear and nonlinear potentials, J. Funct. Anal., 259(11)(2010), 2961-2998.

EJQTDE, 2012 No. 19, p. 8
[6] L. C. Evans, A new proof of local $C^{1, \alpha}$ regularity for solutions of certain degenerate elliptic p.d.e., J. Differential Equations, 45(3)(1982), 356-373.
[7] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton Univ. Press, 1983.
[8] D. Gilbarg \& N. Trudinger, Elliptic Partial Differential Equations of Second Order (3rd edition), Springer Verlag, Berlin, 1998.
[9] J. L. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J., 32(6)(1983), 849-858.
[10] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138(1977), 219-240.
[11] M. Shaw \& L. Wang, Hölder and L^{p} estimates for \square_{b} on $C R$ manifolds of arbitrary codimension, Math. Ann., 331(2)(2005), 297-343.
[12] L. Wang, Compactness methods for certain degenerate elliptic equations, J. Differential Equations, 107(2)(1994), 341-350.
[13] L. Wang, Hölder estimates for subelliptic operators, J. Funct. Anal., 199(1)(2003), 228-242.
(Received August 7, 2011)

Fengring Yao
Department of Mathematics, Shanghai University, Shanghai 200444, China
E-mail address: yfp@shu.edu.cn
Mijia Lai
Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA
E-mail address: mijialai@gmail.com
Huilian Jia
Department of Mathematics, Xian Jiaotong University, Xian 710049, China
E-mail address: jiahl@mail.xjtu.edu.cn

[^0]: 2000 Mathematics Subject Classification. 35J60; 35J70.
 Key words and phrases. Hölder estimates; Degenerate; Elliptic; Compactness Method.
 *Corresponding author. This work is supported in part by the $\operatorname{NSFC}(11001165,11101324)$, Research Fund for the Doctoral Program of Higher Education of China (20093108120003) and Shanghai Leading Academic Discipline Project (J50101).

