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Abstract. Inthis paper we study the linearizability problem of the tdimensional complex
quasi-cubic system= z+ (zW)%(azoZ + a21°W + a122W + agaW?), W = —w — (zwW)%(bzow? +
b21W?z+ b1 ,WZ + bosZ’), wherez, w, ajj, bij € C andd is a real number. We find a transforma-
tion to change the quasi-cubic system into an equivalemitiglsystem and then obtain the
necessary and ficient linearizability conditions by the Darboux lineatipa method or by
proving the existence of linearizing transformations.
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1 Introduction

Linearizability problem is one of the interesting probleaighe investigation of the ordinary féerential

system
F =2+ 3 Z(zw) = Pz w),
k:2°o (1)
W= - 2 Wdzw) = Q(z w).
where

Zzw) = ) aZ W, Wzw)= ) byw'Z,

a+B=k a+B=k
aus, byp € C, W, T are complex variables. As concerned in [1], system (1) ieddihearizableif there
is an analytic transformation
éE=2z+0((zw)), n=w+o(l(zw)) (2)
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such that

¢, dnp _
By the transformation
z:x+yi,w=x—yi,T=it,i=\/:L (4)

system (1) becomes

o

Q|

F=-y+ 5 Xk(X.Y),
k=2 (5)

I

=X+ 3 Yi(XY),
k=2

[oX

wherex, y € R, Xk(x,y) and Yk(x, y) are homogeneous polynomials of degkda x andy. We say that
system (1) is the associated system of system (5). It is abwuizat system (5) is real if and onlytifs a
real variable and the céiients of system (1) satisfy conjugate conditions, i.e.,

Bp = Dop, 20,820, a+8>2. (6)

When system (5) is real, the critical point at the origin ikezhacenterif every solution in a neighborhood
of the origin is periodic and, furthermore, @ochronous centef these periodic solutions have the same
period. It is well known that the origin of system (5) is andemnous center if and only if system (1)or
(5) can be linearized by an analytic substitution (see, g3, 4, 5]). Thus, in such sense, linearizability
problem is an extended problem of the isochronous centdilgro For polynomial systems of form
(5), a lot of works have been done in the research of centetssanhronous centers (see, e. g., survey
publications [1, 3, 6, 7]).

In recent years, some mathematicians consider the folpagstem

o

m ..
X=—y+(x2+y?)d _Zkoi,iXm_'Y',
i=

m .o
Y = x+ (& +yA)e Eo Bm-iixX™'Y,

[oX

()

Q.lQ.
<

whereA; j, B j,d € R, and obtain some results about center problem and biforcatf limit cycles
(8, 9, 10, 11]). The center problem and bifurcation of limytcles are studied in [8] for system )2
andd is a real number. The linearizability problem (or equivélienisochronous center problem) is
investigated in [9] for system (JA-> andd is a non-negative integer, in [10] for some special fornin{4)
. For the case thah = 3, center problem of system (7) is solved in [9] and [11] irelegiently. However,
there is no results about the linearizability problem ofakeociated system of (£)s.

Consider the following system

4

= 72+ (zW)9(8302 + ap12W + a102W + agawd),
T = —W — (Z\N)d(b30VV3 + b21WZZ+ b12W22 + b0323),

23R

(8)

Al
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whereays, by, T € C andd s a positive real numberzWw) lies inZ := {(z w) € C?: zw# 0}JU{(0,0)}. As
indicated in [12] the linearizability problem of system {8) Can (8) be linearized to linear system (3) by
an analytic near-identity transformation (2) near theiarig Z? In this paper, we study the linearizability
problem of (8). We find a substitution to transform the quasiic system (8) into an equivalent quintic
system and then obtain the necessary affiicgent linearizability conditions by the Darboux lineatiza
method or by proving the existences of linearizing transfations.

2 Preéiminaries

In this section we introduce some methods about lineaozatvhich will be used in the next section.

Lemma 2.1 (see[13]) For system (1) one can derive uniquely the following fornesies:

f(zw) = z+ Z G ZW, gzw) =w+ Z d Wz, (9)

k+j=2 k+j=2

where 9,0 = d’l’0 =1, c’o’1 = dé ck+lk d’k+1k =0,k=12, .., and

k+]+1
Cj = jj ka+ﬂ [(k—a+1)ays-1—(J =B+ Dbga-1]G_ 441 pi1-
k+ J:l (10)
d’ = j+l ka+,8 3[(k @+ 1)byp1— (- B+ 1)aga- l]d’_a+1] —B+1°
such that
df - .1 i dg
57 = few+ > piziw, d— = —g(zw) - quw‘”zl (11)
=1 =1

and pj and q are determined by following recursive formulas:

2j+2

Pi= 3 (- s~ (B4 DsadlS] oo g
2j+2 (12)

= 3 - g = (B D g

Evidently, system (8) is linearizable if and only if i’s andq,’s given by Lemma 2.1 are zeroes.
Therefore, in order to find the linearizability conditionssystem (1), we use formula (12) to compute
p’s andgy’s and then decompose the variety of the first several qizsitit

For system (1), one offecient methods to investigate the linearizability problesrttie so-called
Darboux linearization (see [3]). An analytic functidifz, w) is called aDarboux factorif there exists
K(z, w) € C[z w], called thecofactorof f(z w), such that

2P w + 20 w) = Kz wi(zw) (13)
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If f(z w)is a polynomial, the curvé(z w) = 0 is called arinvariant algebraic curve Straight computa-
tion shows that if there are Darboux factdis s, ..., fx with the cofactordy, Ko, ..., Ky satisfying

K
Z aiK; =0, (14)
i=1

thenH = f"...f * is a first integral of system (1), and if

k
> aiKi+P,+Q), =0, (15)
i=1

then system (1) has an integrating fagios f"...f*.
Lemma 2.2 (seg[3, 14]) Assume that system (1) has a Lyapunov first inte§(alw), that is,

¥(zw) = zw+o( (zw) ), (16)
and Darboux factor jfz, w) satisfying f(0, 0) = 1 with the cofactor Kz w),i = 1,....k. If (1 - c)@ -

k
c% + > aiKj = 1 for some cas,...,ax € C, then the first equation of (1) can be linearized by the
i=1

K
substitution Z= z-CwCyC " f R If (—c)@ +(1- c)w + Elﬁi K; = —1 for some ¢B4, ..., Bk € C,
then the second equation of (1) can be linearized by the isufimn W = z-owiCyC 2. £,

Another way to prove the linearizability of (1) is given irgllif only one transformation is found for
one equation of system (1).

Lemma 2.3 (seg{15]) Assume that system (1) has a Lyapunov first intefi@ w) of the form (16), If
the first equation (second equation, respectively) of (lnearizable by the change Z Z(z w)(W =
W(z w), respectively, them the second equation (first equation,respectively]l)ofan be linearized by
the substitution W& @ Z= W respectively).

3 Thelinearizability conditions

By substitution
a3 g1 i3 d-1 :
En) = (Z4W4,W4Z4), if zw# 0, 17)
’ (0,0), if (zw) = (0,0),
system (8) can be transformed into
3—§cr =&+ 3(1 - d)bgag® + 3((1 - d)brz + (3 + d)age)e™n + 2((1 — d)bpy + (3 + d)ap1)&3n?
+ 2((1 - d)bgo + (3 + d)ay2)e?p® + 2(d + 3)agaen®, (18)

P = —n— 31~ dyaogr® - 2((1 - dyarz + (3 + d)bso)én® — 2((1 - d)agy + (3 + d)bp1)é?®
— 21— d)ago + (3+ d)b12)e®n? — 2(d + 3)bose ™.
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Similarly to [12, Theorem 2.1], it is easy to check that iftgys (8) is linearizable, i. e., there exists a
substitutionZ = z+ o(|(z, W)[), W = w + o(|(z, w)|) such thatZ = Z, W = -W, then

&3, 01 d-1 . di3
X=ZFWT =+ 0(En)). Y=2ZTWE =p+o(E )
is a linearizing substitution of system (18). By the sameho@t one can prove that (8) is linearizable
when (18) is linearizable. Thus, in order to obtain lineability conditions of system (8), we need only
to find the linearizability conditions of the quintic systé€®).

Theorem 3.1 If system (8) is linearizable, then one of the following sirditions holds:
(I) bos = b1z = ap; = b1 =ag =0,

(1) aps = a2 =bpy = a1 =bze =0,

() azo = a1 = by = apgz = b12 = (b3p — a12)d — 3a12 — bzo = 0,

(IV) bos = a12 = ap1 = by = bzo = (ago — b12)d — azo — 312 =0,

(V) @3 = b3 = az1 = b1 = b1z — a12830 = (g0 — b12)d — 2b12 = 0,

(V1) ag3 = boz = ap1 = by = ag2 + bgp = ago + b12 = 0.

Proof. As mentioned in last section, system (18) is linearizab&nd only if all p;’s andq,’s given
by Lemma 2.1 are zeroes. However, it ifidult to find the common zeroes of infinite polynomials. The
usual way is to compute the common zeroes of the first seveaaitigies to obtain the necessary conditions
for the linearizability of system (18) and then prove théfisiency of these necessary conditions by some
special methods such as Darboux linearization.

Using the formulas given in Lemma 2.1, for system (18) we cat@phe first 10 pairs of, andqj
with computer algebra systemathematicaand obtain thap,, , = ¢, , =0fori=1,...,5and

p, = %(Zam + 2bp1 + ap1d — byad),
o = %(Zam + 2bp1 — ap1d + byad),
P, = %(Zaaobsod — 2847830 — 28g3bo3 — 2812012 — 2830030 — 2012030 — @128300 — p3bo3d — 28720120 + by2b3ed),
q, = %(Za3ob30d — 2ay0830 — 2803003 — 2812012 — 2830030 — 2b12b3p + ag28300 — Apzbezd — 28120120 — by2b30d)

andpg, o, ..., Py Oy have 146, 146, 312, 312, 674, 674 terms, respectively. Wetprasent them here,
but the reader can easily calculate them using formula (1t&)any computer algebra system.
UsingminAssChaof Singular([16]), we find the decomposition

V(Ph: O --er Pho» Go) = UP 1 A

where V(9,, 05, ..., P1o. 070) iS the variety of the ideal generated pY; 0, ..., pj. 97, andAj means the set
determined by condition (i) given in the theorem. Thus, ohhe six conditions must hold if system (8)
is linearizable. [
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In Theorem 3.1, the necessity of the six conditions for sps{®) to be linearizable is proved. In the
following theorem, we prove their ficiency one by one. Therefore, actually we obtain the necgssa
and stficient linearizability conditions of system (8).

Theorem 3.2 System (8) is linearizable if and only if one of the six caad# given in Theorem 3.1 holds.

Proof. By Theorem 3.1, we need only to prove that system (18) isalimable if one of the six
conditions holds.
The system satisfying condition (I) takes form

£ = ¢+ 23+ d)acaen® + (3 + d)arz + (1 - d)bgo)é?’,

19
n = -n—- (1 - daozn® — (1 - d)agz + (3 + d)bso)én™. (19)

Though we are unable to find an explicit linearizing transfation for (19), we can prove its existence.
we look for a linearizing substitution for the second equabf (19) in the form

2 = kz; (@), (20)

wherefy(¢) (k = 2, 3,...) are some polynomials of degrke 1 andf;(n) = 1. (20) provides a linearization
of the second equation of (19) if and only if there eXig¥)’s satisfying the dierential equation

4¢£; — 4k — 1)f — (k= 3)(—(d — 1)agz + (d + 3)bz)é fi_3 — (—(d — Dagz + (d + 3)bao)e? f_4

(21)
+(k - 4)(d - Dagzfx_sa + (d + 3)agsé f, , = 0,

where f,(¢) = 0 for alln < 0. fy, fs,....fs can be obtained from (21) directly. Assume that koe

6, ..., mthere are polynomial§ of degreek — 1 satisfying (20) yielding a linearization. Solving thedar
differential equation (21), we obtain

fm+ 1)) = £'(C + f £y o) = CE™ + Py 2(€)

becausd,_; is a polynomials of degrees — 2.
In order to prove the linearizability of the first equation(©®), we show that a Lyapunov first integral

of the system can be found in the fois, ) = § ak(©n*, wheregy (&) = &, go(&) = &2 andgy(¢) are
k=1
polynomial of degred satisfying the linear diierential equation

4£g) — Akge — (k= 3)(~(d — 1)arz + (d + 3)bgo)égk-3 — (~(d — 1)arz + (d + 3)bs0)é%g;_g

(22)
+(k - 4)(d — 1)agagk-4 + (d + 3)apzég, , = 0.

Similarly, polynomialsgg’s can be determined recursively by (22) and, therefore, lgofem 2.3 the first
equation of (19) can be linearized by the charge Y(¢,7)/2.
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For the system satisfying condition (1), we firstly considy, = bgg, i. €.,

£ =&+ 3(1-d)bost®,

23
n = —n— 3(3+ d)bosé™n. (23)

Moreover, we assume thbhyz # 0. Otherwise, (23) is a linear system. When= -1, (23) has three
Darboux factors 1
fi=¢ fo=n f3=1+ §b03§4
with cofactors 1 1
Ki=1+ Sbos”, Kp=-1-Sbost”, Kz =2boat",
respectively. By Lemma 2.2, system (23) can be linearizethéysubstitution
2+bp3 2+bp3

7= 207 7= pf 33
1=&0 T, =i

Whend # -1, system (23) has three Darboux factors
fi=¢ fa=n, g=1+%u—mmg4
with cofactors
Ko =1+ 71— dboss®, Ko = ~1- (3 + boos®, Ko = ~hog(~1+ )’
respectively. By Lemma 2.2, system (23) can be linearizethbyubstitution

7= gf](-lfl fngaa’ Z = nffl f,Bz fﬁs

2 '3

where
_ -1+3d _ 2(=1+d) 3 _ 2(-1+d) . -1+3d 3
N="rd 0 T T T 144 @=L A== 1+d °’ Pa=- 1+d’ pa=1

The system satisfying condition (IIl) arad, # bsg is of the form

- (a12 — bgo + a12b03§4)§ i = (-app - 3%2{:773 + bgo(1 + b03§4 + b30§773))77

¢ a12 — bao ’ a12 — bso ’ (24)
which has three Darboux factors
12003
fi=¢ fo=n, f3:1+m 4
with cofactors
K, = 22~ bso + ale03§4’ Ky = ~a12 — al,£n° + bao(1 + bost* + b30§773)’ Kq = 46112b03§4’
a12 - bso a12 — bao a12 — bao
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_1
respectively. We find a linearizing substitutien= £f, * for the first equation of (24). On the other hand,

it is easy to check that (15) holds with = @ = -4 andas = —%1 + ia%"ig, which implies that (24) has an

_1, 350
integrating factop = £¢~4y~4f, * *2. Furthermore, we find a first integral

212350 (bgo + @ 1 ajp—3bsg 3 agrbpse?
HEn) = -n°f, ™2 - MH(_, 12— 9030 S A1 03¢ ’
2 20 4y 2 bgpp-an

whereF1 is the Gauss hypergeometric function. ThE@, ) = (H(&, n))% is a Lyapunov first integral of
(24) yielding the linearization of the second equation @ @f the formz, = 1 f?fl“lf(g, n) by Lemma2.3.
By the substitution4,n, T) — (n,&,—T), the system satisfying condition (Il) (resp. conditioN))
can be transformed into the system satisfying conditio(rédp. system satisfying condition (lIl)), which
implies that it is linearizable.
For system satisfying condition (V), we only considigg = 0, i. e.,

p b:
&= ¢+ Hanp + bo)ePy® + Telgazrbud g4y

. (25)
i =1 - 22 (@12 + bao)e®n” — §(au2 + bao)én’,

because (18) is linear if condition (V) holds abgh = 0. System (25) has three Darboux factors
a a
fo= 1o (L4 p)aod®n, fo= 1+ (@2 + bso)én’s fo = 1+ (auz -+ bao)ér” + (L+ § D)asot ™,

which yield a linearizing substitution

of (25) by Lemma 2.2.
System satisfying condition (V1) is of the form

& = & — 3(bro(1 + d)e*n — aga(1 + d)E2°),

26
1 = —n — 3(bia(1 + d)&®n? — aga(1 + d)én?), (20)

which has a Darboux factdi (¢, 7) = 1 — bio(1 + d)é3n — aio(1 + d)én®. Let

1
g m="Hf-1, Xszle, Y=77f1 .

ol

Then,g(&,7) = 9(X, Y) /T1(&, n), that is,g(X, Y)? = g(&,17)?/(1 + 9(&, n)). From (26), we obtain
X = X(L+9(Em/2).Y = -Y(1+9E n)/2). (27)

We clam that there exists a function(X, Y) such thatm = g(¢,n). In fact,we need only to solve the

equation
om _nom _ _9En) g(x.y)
Xox — Yoy = THEn2 = \egoe/a’ (28)
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Since the right-hand side of (28) can be expanded in odd mowfay(X, Y), there is no termX*YK in
the expansion. Thus, we can solve (28) fiaX, Y) satisfyingm(0, 0) = 0. Therefore, substitutior; =
XeMX/2 v, = YdXY)/2 |inearizes system (26). [

In [17] all linearizability conditions of quintic systemsitlv homogeneous nonlinearities are given by
computing the linearizability quantities ([5]). From Thiem 2 of [17] we also obtain the same lineariz-
ability conditions of system (18) as given in Theorem 3.1t BBuhis paper we find these conditions by
calculating the first ten pairs of singular point values ardqu constants, which is aftirent method
from that used in [17]. On the other hand, we also ugkedint methods to prove thefRaiency of these
conditions. For instance, for the system satisfying caoowli{l) we prove the existence of linearizing
transformations directly and in [17] it is to find a transwrsommuting system, which usually is more
difficult because there is no general methods to do this. For #tersysatisfying condition (lll) the exis-
tence of a linearizing transformation is proved in [17], outhis paper we find the explicit expression of
the linearizing transformation.

If a,3 andb,g satisfy conjugate conditions (6), then by substitutionsiggtem (8) can be transformed
into system (7).=3. The linearizability condition is actually the isochromsocenter condition and Our
results are consistent with that of [9] and [11].
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