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BOUNDS FOR THE SUMS OF ZEROS OF SOLUTIONS OF

u(m) = P (z)u WHERE P IS A POLYNOMIAL

TING-BIN CAO, KAI LIU AND HONG-YAN XU

Abstract. The main purpose of this paper is to consider the differ-
ential equation u(m) = P (z)u (m ≥ 2) where P is a polynomial with
complex, in general, coefficients. Let zk(u), k = 1, 2, . . . be the zeros of
a nonzero solution u to that equation. We obtain bounds for the sums

j
X

k=1

1

|zk(u)|
(j ∈ N)

which extend some recent results proved by Gil’.

1. Introduction and main results

It is well known that Nevanlinna theory has appeared to be a powerful
tool in the theory of ordinary differential equations in the complex plane C.

For the linear differential equation

(1) f (k) + Ak−1(z)f (k−1) + . . . + A1(z)f
′

+ A0(z)f = 0 (k ≥ 2)

whose coefficients A0(z), ..., Ak−1(z) are entire functions, and A0(z) is not
equal to zero identically, it is well known that all solutions of (1) are entire
functions, and that if some coefficients of (1) are transcendental then (1)
has at least one solution with order ρ(f) = ∞. The active research of the
asymptotic distribution of the zeros of linear differential equations in the
complex plane was started by Bank and Laine [1]. They investigated the

equation f
′′

+A(z)f = 0 with an entire function A(z). We refer to the book
[11] and some recent works [2, 3, 4, 5, 6, 12, 13, 14, 16] for the literature on
asymptotic distribution and counting functions of zeros, and the growth of
solutions of complex differential equations.

At the same time, bounds for the zeros of solutions are very important
in various applications. Recently, Gil’ [10] obtained some results on the
bounds of the sums of the zeros of solutions for the second order differential
equation u

′′

= P (z)u with polynomial coefficients.
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In this paper, we consider the differential equation

(2) u(m) = P (z)u (m ≥ 2),

where

P (z) =
n∑

k=0

ckz
k (cn 6= 0)

is a polynomial of degree n with in general complex coefficients. Denote by
zk(u), k = 1, 2, . . . the zeros of the solution u(z) =

∑∞
k=0 ukz

k of (2) with
multiplicities taken into account. Without loss of generality we assume that
the set of the zeros of u is infinite. If u has a finite number l of zeros, then
we put

1

zk(u)
= 0 (k = l + 1, l + 2, . . .).

Rearrange the zeros of u in order of increasing modulus: |zk(u)| ≤ |zk+1(u)|
(k = 1, 2, . . .). Put

µ(P ) := exp




n∑

j=0

|cj |
j + m


 .

We obtain the following theorem which is an extension of Theorem 1.1
from [10].

Theorem 1.1. If u(0) 6= 0 and deg(P ) = n ≥ m − 1 ≥ 1, then

j∑

k=1

1

|zk(u)| ≤



(

m−1∑

k=0

|uk

u0
| n+m

√
k!

)2

· (m + 1)2

4(m − 1)2
µ2(P ) − 1




1
2

+

j∑

k=1

1
n+m
√

k + 1

holds for any j ∈ N.

Here and below in this section, we take γ := 1
n+m

. Denote by ν(u, r)

(r > 0) the counting function of the zeros of u in |z| ≤ r. We can get the
following corollary from Theorem 1.1 above and Corollary 2.2 from [10] (see
also [7]). This is an extension of Corollary 4.1 in [10].

Corollary 1.1. Under the hypothesis of Theorem 1.1, with the notation

η̃j(u) :=
j(1 − γ)

[(∑m−1
k=0 |uk

u0
|(k!)γ

)2
· (m+1)2

4(m−1)2
µ2(P ) − 1

] 1
2

(1 − γ) + (1 + j)1−γ − 1

,

the inequality |zj(u)| ≥ η̃j(u)holds and thus ν(u, r) ≤ j for any r ≤ η̃j(u)
(j = 1, 2, . . .).
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Furthermore, put

ϑ̃1 =



(

m−1∑

k=0

|uk

u0
|(k!)γ

)2

· (m + 1)2

4(m − 1)2
µ2(P ) − 1




1
2

+
1

2γ

and ϑ̃k = 1
(k+1)γ (k = 2, 3, . . .). Let ζ(.) be the Riemann Zeta function.

Theorem 1.1 above and Corollary 2.3 from [10] (see also [7]) imply the
following result which is an extension of Corollary 4.2 in [10].

Corollary 1.2. Let φ(t) (0 ≤ t < ∞) be a continuous convex scalar-valued

function, such that φ(0) = 0. Then under the hypothesis of Theorem 1.1,

j∑

k=1

φ(|zk(u)|−1) ≤
j∑

k=1

φ(ϑ̃k) (j = 1, 2, . . .).

In particular, for any p ≥ 1 and j = 2, 3, . . . ,

j∑

k=1

1

|zk(u)|p ≤
j∑

k=1

ϑ̃p

and therefore

∞∑

k=1

1

|zk(f)|p ≤






(

m−1∑

k=0

|uk

u0
|(k!)γ

)2

· (m + 1)2

4(m − 1)2
µ2(P ) − 1




1
2

+
1

2pγ




p

+ζ(pγ) − 2−γ − 1

provided that pγ > 1.

Finally, in the light of Theorem 1.1 above and Corollary 2.4 from [10] (see
also [7]) we obtain the following result which is an extension of Corollary
4.3 in [10].

Corollary 1.3. Let Φ(t1, t2, . . . , tj) be a scalar-valued function with an in-

teger j defined on the domain

−∞ < tj ≤ tj−1 ≤ . . . ≤ t2 ≤ t1 < +∞
and satisfying the condition

∂Φ

∂t1
>

∂Φ

∂t2
> . . . >

∂Φ

∂tj

for t1 > t2 > . . . > tj > −∞. Then under the hypothesis of Theorem 1.1,

Φ(
1

|z1(u)| , . . . ,
1

|zj(u)| ) ≤ Φ(ϑ̃1, . . . , ϑ̃j).
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In particular, let {dk}∞k=1 be a decreasing sequence of positive numbers with

d1 = 1. Then

j∑

k=1

dk

|zk(u)| ≤



(

m−1∑

k=0

|uk

u0
|(k!)γ

)2

· (m + 1)2

4(m − 1)2
µ2(P ) − 1




1
2

+

j∑

k=1

dk

(k + 1)γ

holds for j = 2, 3, . . . .

2. Preliminaries and some lemmas

Consider the entire function

(3) f(λ) =

∞∑

k=0

ckλ
k (c0 = 1)

with in general complex coefficients and finite order ρ(f). Denote by zk(f),
k = 1, 2, . . . the zeros of f with multiplicities taken into account. Similar
discussion as in the first section, without loss of generality we assume that
the set of the zeros of f is infinite. Enumerate the zeros of f in order of
increasing modulus: |zk(f)| ≤ |zk+1(f)| (k = 1, 2, . . .). The entire function
f can be rewritten in the form

(4) f(λ) =

∞∑

k=0

akλ
k

(k!)eγ
(γ̃ ∈ (0, 1), λ ∈ C, a0 = 1).

Assume that

(5) Θ(f) :=

[ ∞∑

k=1

|ak|2
] 1

2

< ∞.

The following result is proved by Gil’ in [7] (see also in Section 5.1 from [9]).

Lemma 2.1. [7] Let f be defined by (3) and condition (5) hold. Then

j∑

k=1

1

|zk(f)| ≤ Θ(f) +

j∑

k=1

1

(k + 1)eγ
(j = 1, 2, . . .).

We below extend a result of Gil’ (Lemma 3.1 in [10]).

Lemma 2.2. Let n ≥ m − 1 ≥ 1. A nonzero solution u of equation (2) can

be represented as

u(z) =

∞∑

k=0

νkz
k

n+m
√

k!
,

where the numbers νk, k = 0, 1, . . . satisfy the condition

∞∑

k=0

|νk|2 ≤
(

m−1∑

k=0

|uk| n+m
√

k!

)2

· (m + 1)2

4(m − 1)2
µ2(P ).
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Proof. It follows from the Wiman-Valiron theory (see page 281 from [15])
that any nonzero solution u of (2) is of order ρ(u) = n+m

m
< ∞. Put u(z) =∑∞

k=0 ukz
k, and then (2) yields

∞∑

k=m

k(k − 1) · · · (k − m + 1)ukz
k−m =

∞∑

k=0

(

k∑

j=0

ck−juj)z
k.

Here and below we put cj = 0 for j > n. It follows from the above equality
that

(k + m)(k + m − 1) · · · (k + 1)uk+m =

k∑

j=0

ck−juj.

Take γ := 1
n+m

and νk := (k!)γuk. Then we have

(6) (k + m)(k + m − 1) · · · (k + 1)
νk+m

[(k + m)!]γ
=

k∑

j=0

ck−j

νj

(j!)γ
.

We now take into account two cases as follows.
In the case k > n, it follows from (6) that

(k + m)|νk+m|

≤ [(k + m)!]γ

(k + m − 1)(k + m − 2) · · · (k + 1)
· (

k−n−1∑

j=0

|ck−j ||νj |
((j)!)γ

+
k∑

j=k−n

|ck−j||νj |
((j)!)γ

)

=
[(k + m)!]γ

(k + m − 1)(k + m − 2) · · · (k + 1)
·

k∑

j=k−n

|ck−j ||νj |
((j)!)γ

(cj = 0 for j > n)

≤ 1

(m − 1)(k + 1)
·
(

(k + m)!

(k − n)!

)γ

·
k∑

j=k−n

|ck−j ||νj|.

Using the inequality between the arithmetic and geometric means and sim-
ilar discussion as in [10],

[
(k + m)!

(k − n)!

]γ

= [(t + 1) · · · (t + n + m)]γ (t := k − n)

≤
(

(n + m)(t + n+m+1
2 )

n + m

)γ(n+m)

= k +
m − n + 1

2
≤ k + 1 (n ≥ m − 1).
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So if k > n, then

(7) (k + m)|νk+m| ≤ 1

m − 1

k∑

j=k−n

|ck−j||νj |.

For the other case where k ≤ n, it follows from (6) that

(8) (k + m)(k + m − 1) · · · (k + 1)|νk+m| ≤ [(k + m)!]γ ·
k∑

j=0

|ck−j ||νj|.

Again by the inequality between the arithmetic and geometric means,

[(k + m)!]γ ≤
[

(k + m)(0 + k+m+1
2 )

k + m

]γ(k+m)

=
k + m + 1

2
(k ≤ n).

Thus (8) gives that

(k + m)|νk+m| ≤ 1

m − 1
· k + m + 1

2(k + 1)

k∑

j=0

|ck−j ||νj |.

If m − 1 ≤ k ≤ n, then we also have inequality

(9) (k + m)|νk+m| ≤ 1

m − 1

k∑

j=0

|ck−j||νj |.

If 0 ≤ k < m − 1 ≤ n, then k+m+1
2(k+1) ≤ m+1

2 , and thus

(10) (k + m)|νk+m| ≤ m + 1

2(m − 1)

k∑

j=0

|ck−j||νj |.

Similar discussion as in [10], by (7), (9)-(10) and the comparison theorem
(see section 1.6 in [8]), we have |νj | ≤ wj , where wj is a solution of the
equation

(11) (k + m)wk+m =
m + 1

2(m − 1)

k∑

j=0

|ck−j |wj

with w0 = |ν0|, w1 = |ν1|, . . . , wm−1 = |νm−1|. Put

(12) F (z) :=

∞∑

j=0

wjz
j .
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Then

F
′

(z) =

m−1∑

j=1

jwjz
j−1 + zm−1

∞∑

k=0

(k + m)wk+mzk.

Note that cj = 0 for j > n, and in consideration of (11) and (12),

∞∑

k=0

(k+m)wk+mzk =
m + 1

2(m − 1)

∞∑

k=0




k∑

j=0

|ck−j|wj


 zk =

m + 1

2(m − 1)
P̂ (z)F (z),

where P̂ (z) =
∑n

j=0 |cj |zj . Hence,

(13) F
′

(z) =

m−1∑

j=1

jwjz
j−1 + zm−1 m + 1

2(m − 1)
P̂ (z)F (z) (F (0) = w0).

Let z = reiθ for a fixed θ ∈ [0, 2π) and f(r) = F (reiθ), thus (13) yields

e−iθ df(r)

dr
=

m−1∑

j=1

jwjr
j−1eiθ(j−1)+rm−1eiθ(m−1) m + 1

2(m − 1)
P̂ (reiθ)f(r) (f(0) = w0),

and therefore,

|f(r)| ≤
m−1∑

j=0

wjr
j +

m + 1

2(m − 1)

∫ r

0
sm−1|P̂ (seiθ)f(s)|ds.

By the Gronwall lemma,

|f(r)| ≤
m−1∑

j=0

wjr
j · m + 1

2(m − 1)
exp

[∫ r

0
sm−1|P̂ (seiθ)|ds

]
.

But
∫ 1

0
sm−1|P̂ (seiθ)|ds ≤

∫ 1

0

n∑

j=0

|cj |sj+m−1ds

=

n∑

j=0

|cj |
∫ 1

0
sj+m−1ds

=

n∑

j=0

1

j + m
|cj |,

and thus we get that

max
|z|=1

|F (z)| ≤ max
r=1

|f(r)| ≤ m + 1

2(m − 1)

m−1∑

j=0

wj · µ(P ),
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where

µ(P ) := exp




n∑

j=0

|cj |
j + m


 .

By making use of the Parseval equality,

∞∑

k=0

w2
k =

1

2π

∫ 2π

0
|F (eiθ)|2dθ ≤ max

|z|=1
|F (z)|2 ≤




m−1∑

j=0

wj




2

· (m + 1)2

4(m − 1)2
µ2(P ).

Recall that |uj | =
|νj|
(j!)γ =

wj

(j!)γ (j = 0, 1, . . . ,m−1), where γ = 1
n+m

. In view

of |νk| ≤ wk, we get the required inequality

∞∑

k=0

|νk|2 ≤
(

m−1∑

k=0

|uk|(k!)γ

)2

· (m + 1)2

4(m − 1)2
µ2(P ).

�

3. Proof of Theorem 1.1

Let u =
∑∞

k=0 ukz
k be a solution of (2) such that u0 = u(0) 6= 0. Under

the assumption of n ≥ m − 1 ≥ 1, by Lemma 2.2 we get that

u(z) =

∞∑

k=0

νkz
k

n+m
√

k!
,

where the numbers νk, k = 0, 1, . . . satisfy the condition

∞∑

k=0

|νk|2 ≤
(

m−1∑

k=0

|uk| n+m
√

k!

)2

· (m + 1)2

4(m − 1)2
µ2(P ).

Put f(z) := u(z)
u0

. Then f(0) = 1, f(z) =
∑∞

k=0

νk
u0

zk

n+m
√

k!
, and

[ ∞∑

k=1

|νk

u0
|2
] 1

2

≤



(

m−1∑

k=0

|uk

u0
| n+m

√
k!

)2

· (m + 1)2

4(m − 1)2
µ2(P ) − 1




1
2

< ∞.

Hence, by Lemma 2.1,

j∑

k=1

1

|zk(u)| =

j∑

k=1

1

|zk(f)|

≤



(

m−1∑

k=0

|uk

u0
| n+m

√
k!

)2

· (m + 1)2

4(m − 1)2
µ2(P ) − 1




1
2

+

j∑

k=1

1
n+m
√

k + 1

holds for j = 1, 2, . . . .
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