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Abstract. Let a, b and n be nonnegative integers (b ≥ a, b > 0, n ≥
1), Gn(a, b) be a multigraph on n vertices in which any pair of vertices is
connected with at least a and at most b edges and v = (v1, v2, . . . , vn)

be a vector containing n nonnegative integers. We give a necessary and
sufficient condition for the existence of such orientation of the edges of
Gn(a, b), that the resulted out-degree vector equals to v. We describe
a reconstruction algorithm. In worst case checking of v requires Θ(n)

time and the reconstruction algorithm works in O(bn3) time. Theorems
of H. G. Landau (1953) and J. W. Moon (1963) on the score sequences
of tournaments are special cases b = a = 1 resp. b = a ≥ 1 of our result.

1 Introduction

Ranking of objects is a typical practical problem. One of the popular ranking
methods is the pairwise comparison of the objects. If the result of a compar-
ison is expressed by dividing points between the corresponding objects, then
directed graphs serve as natural tools to represent the results: vertices cor-
respond to the objects, arcs to the points and out-degrees serve as basis for
ranking. Another natural tool to represent the results is a point table.

In this paper the terminology of D. E. Knuth [9] and the pseudocode of T.
H. Cormen and his coauthors [2] are used.
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Let a, b and n be nonnegative integers (b ≥ a, n ≥ 1), Tn(a, b) be a
directed multigraph on n vertices in which any pair of vertices is connected
with at least a and at most b arcs. Then Tn(a, b) is called interval or
(a, b)-tournament, its vertices are called players, the out-degree sequence
v = (v1, v2, . . . , vn) is called score vector and the comparisons are called
matches.

For the simplicity we suppose that v1 ≤ v2 ≤ · · · ≤ vn. The increas-
ingly ordered score vector is called score sequence and is denoted by s

= (s1, s2, . . . , sn).
If any integer partition of the points is permitted, then the tournament is

complete, otherwise incomplete [7].
If a = b ≥ 1, then we get multitournaments Tn(a) and if a = b = 1, then

we get the well-known concept of tournaments Tn.
In 1953 H. G. Landau [10] proved the following popular theorem. About

ten proofs are summarised by K. B. Reid [14] and two recent ones are due
to J. Griggs and K. B. Reid [4], resp. to K. B. Reid and C. Q. Zhang [15].
Pirzada, Shah and Naikoo investigated similar problems [13]. Several exercises
on tournaments can be found in the recent book of D. E. Knuth [8].

Theorem 1 A sequence (s1, s2, . . . , sn) satisfying 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn is

the score sequence of some tournament Tn(1) if and only if

k∑

i=1

si ≥ Bk, 1 ≤ k ≤ n, (1)

with equality when k = n.

In 1963 J. W. Moon in [11] proved the following generalisation of the Lan-
dau’s theorem.

Theorem 2 A sequence (s1, s2, . . . , sn) satisfying 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn is

the score sequence of some a-tournament Tn(a) if and only if

k∑

i=1

si ≥ aBk, 1 ≤ k ≤ n, (2)

with equality when k = n.

Figure 1 shows the point table of a tournament T6(2, 10). The score sequence
of this tournament is s = (9,9,19,20,32,34).
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Player/Player P1 P2 P3 P4 P5 P6 Score

P1 — 1 5 1 1 1 9

P2 1 — 4 2 0 2 9

P3 3 3 — 5 4 4 19

P4 8 2 5 — 2 3 20

P5 9 9 5 7 — 2 32

P6 8 7 5 6 8 — 34

Figure 1: The results of the matches of six players.

We wish to decide whether there exist tournaments with a given score se-
quence and if yes, then we wish to reconstruct one of them.

Our problems can be formulated also as follows [3]. Let Gn be a multi-
graph in which the number of connecting edges lies between a and b for any
pair of vertices. Design effective algorithms to decide whether there exist an
orientation of the edges guaranteeing a prescribed out-degree sequence and to
reconstruct a corresponding digraph.

We remark that Gyárfás et al. [5] and Brualdi [1] published quick algorithms
for 1-tournaments.

Also it is worth to remark that many enumeration type results are known.
In connection with classical tournaments it is known due to P. Tetali [16] that
only a few score sequences permit the reconstruction in a unique way: typical
is the large number of nonisomorph reconstructions. G. Péchy and L. Szűcs
[12] proposed a parallel algorithm for generation of all possible score sequences
of the 1-tournaments of n players.

The aim of this paper is to solve the decision and reconstruction problems
[6] for complete (a, b)-tournaments.

2 Necessary conditions for (a, b)-tournaments

It is easy too see the following necessary condition, where Bn is the binomial
coefficient n over 2 for n = 1, 2, . . . .

Lemma 1 If (s1, s2, . . . , sn) is the score sequence of some (a, b)-tournament

Tn(a, b), then
k∑

i=1

si ≥ aBk (1 ≤ k ≤ n) (3)
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and
n∑

i=1

si ≤ bBn. (4)

If a = 2 and b = 10, then the sequence s= (1, 1, 21) shows that the require-
ments of Lemma 1 are not sufficient. Since P1 and P2 divided only 2 points,
they lost at least 8 points and so the sum of the scores can be at most 22
instead of bB3 = 30. This remark can be extended to a general condition.

We define a loss function Lk (k = 0, 1, 2, . . . , n) by the following recursion:
L0 = 0 and if 1 ≤ k ≤ n, then

Lk = max

(

Lk−1, bBk −

k∑

i=1

si

)

. (5)

Now Lk gives a lower bound for the number of lost points in the matches
among the players P1, P2, . . . , Pk (not always the exact value since the
players P1, P2, . . . , Pk could win points against Pk+1, . . . ,Pn).

Lemma 2 If (s1, s2, . . . , sn) is the score sequence of some (a, b)-tournament

Tn(a, b), then

k∑

i=1

si + (n− k)sk ≤ bBn − Lk (1 ≤ k ≤ n). (6)

Proof. The member (n−k)sk of the left side is due to the monotonicity of s.
The loss function Lk takes into account the lost points of the matches among
the players P1, . . . ,Pk. ¥

These lemmas imply the following assertion.

Lemma 3 If (s1, s2, . . . , sn) is the score sequence of some (a, b)-tournament

Tn(a, b), then

aBk ≤
k∑

i=1

si ≤ bBk − Lk − (n− k)sk (1 ≤ k ≤ n). (7)

Proof. (7) is an algebraic consequence of (3) and (6). ¥
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3 Definition of the algorithms

We describe the proposed new algorithms in words, by examples and by the
pseudocode used in [2].

Algorithm ScoreCheck uses Lemma 3. Algorithm ScoreSlicing is an
extended version of Ryser’s construction method [14], and algorithm Main

organises the work of ScoreSlicing.
At first let’s consider the small tournament T3(2, 10) whose point table is

shown in Figure 2. The score sequence of this tournament is s = (3,4,5).

Player/Player P1 P2 P3 Score

P1 — 3 0 3

P2 0 — 4 4

P3 4 1 — 5

Figure 2: The results of the matches of three players.

According to (5) we have L0 = 0, L1 = 0, L2 = bB2−S2 = 3, and L3 = bB3−

S3 = 18. The requirements of Lemma 3 are aB1 = 0 ≤ S1 ≤ bB3 − 2s1 = 24,
aB2 = 2 ≤ S2 ≤ bB3−L2−s2 = 23 and aB3 = 6 ≤ S3 ≤ bB3−L3 = 12. These
inequalities hold.

Let’s try to construct a possible point table. The number of points of
Pi against Pj is denoted by ri,j (1 ≤ i, j ≤ n). Provisionally we suppose
ri,j = b = 10, if j > i, and ri,j = 0 otherwise (in the main diagonal of the table
rij = 0 is represented by –).

We begin with the possible results of the player P3 having the largest number
of points. We fix such results for P3 that after removing of its results from the
point table the score sequence (s ′1, s

′

2) of the remaining players is monotone
and satisfies (7).
P3 has only s3 = 5 points instead of the possible maximum (n − 1)b = 20,

so M3 = 20−5 = 15 points are missing. These points are win by other players
or are lost. At first we determine the points win by other players, then the
points lost by P3.

How many is the maximal permitted value of r2,3? Since we investigate
a (2,10)-tournament, r2,3 ≤ b = 10. P1 and P2 play a match where they
together have to win at least a = 2 points, therefore they can win against P3
at most A2 = s1+ s2−aB1 = 5 additional points, so r2,3 ≤ A2 = 5. A natural
requirement is r2,3 ≤ s2 = 4. The monotonicity requires r2,3 ≤ s2 − s1 = 1.
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The strongest requirement is r2,3 ≤ 1, therefore let r2,3 = 1. So we founded
place for 1 point from the 15 missing points of P3, the score sequence of the
modified T2 is (3,3), P1 and P2 have A ′2 = s ′1+ s ′2−aB1 = 4 additional points
and M ′3 = 14.

We divide these additional points between P1 and P2 and get r ′′2,3 = 1+2 = 3,
r ′′1,3 = 0 + 2 = 2 and M ′′3 = 10. These numbers imply r ′3,2 = b − r ′′2,3 = 7 and
r ′3,1 = b− r ′′1,3 = 8. Since A2 = 0, that is P1 and P2 have no further additional
points, they can not win further points from P3. P3 lost r2,3+ r1,3 = 3+2 = 5

points, so we found 5 of the missing M3 = 15 points. Now we determine r ′3,2
trying to decrease M ′′3 as possible. Since r ′′2,3 is large enough to guarantee
r2,3 + r3,2 ≥ a and M ′′3 = 10 is also large enough, let r ′3,2 = 0 implying
M ′′′3 = 10 − 7 = 3. The next step is to fix r ′′3,1 = r ′3,1 −M ′′′3 = 8− 3 = 5. Now
P3 has the obligatory 5 points, and P1 needs further s ′′1 = s ′1 − r ′′1,3 = 1 point,
and P2 needs further s ′′2 = s ′2 − r ′′2,3 = 1 point. So we can remove P3 receiving
a tournament T2(2, 10) with a score sequence s ′′ = (1, 1) and we can finish the
construction setting r1,2 = 1 and r2,1 = 1.

The following Figure 3 shows the reconstructed tournament.

Player/Player P1 P2 P3 Score

P1 — 1 2 3

P2 1 — 3 4

P3 5 0 — 5

Figure 3: The reconstructed results of the matches of three players.

In this simple example we can answer the question: how many possible
reconstructions are possible? Since r1,2 and s1 determine r1,3, r2,1 and s2
determine r2,3, r3,1 and s3 determine r3,2, we have at most (s1 + 1) × (s2 +

1)× (s3 + 1) = 120 reconstructions.
The exact value of the number of the possible reconstructions is smaller.

For example the permitted values of r1,2 are 0, 1, 2, and 3. But if r1,2 = 2,
then r1,3 = s1 − r1,2 = 1. Now r3,1 + r1,3 ≥ a = 2 and r3,1 ≤ s5 allow only 1,
2, 3, 4 and 5 for s3,1, that is there are only 5 possibilities instead of 6.

3.1 Definition of the checking algorithm

Input. a and b: minimal and maximal number of points divided after each
match;
n =: the number of players (n ≥ 2);
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s = (s1, s2, . . . , sn): a nondecreasing sequence of integers.
Output. One of the following messages:

i”-th score is too small”;
i”-th score is too large”;
”the sequence satisfies both necessary conditions”;
B = (B0, B1, . . . , Bn): the sequence of the binomial coefficients;
L = (L0, L1, . . . , Ln): the sequence of the values of the loss function;
S = (S0, S1, . . . , Sn): the sequence of the sums of the i smallest scores.

Working variables. i: cycle variable.

ScoreCheck(n, a, b,B,L, s,S)

01 L0 ← 0
02 S0 ← 0
03 B0 ← 0
04 for i← 1 to n

05 do Si ← Si−1 + si
06 Bi ← Bi−1 + i− 1

07 Li ← max(Li−1, bBi − Si)

08 if Si < aBi
09 then return i”-th score is too small”
10 if Si > bBn − Li − si(n− i)

11 then return i”-th score is too large”
12 return ”the sequence satisfies both necessary conditions”

Figure 1 shows the point table of a tournament of 6 players. In this case
the score sequence is s = (9, 9, 19, 20, 32, 34), L0 = 0, L1 = 0, L2 = 0, L3 =

0, L4 = 3, L5 = 11, and L6 = 27. The requirements of (7) are fulfilled: 0 ≤
S1 = 9 ≤ 105, 2 ≤ S2 = 18 ≤ 114, 6 ≤ S3 = 37 ≤ 93, 12 ≤ S4 = 57 ≤ 107,
20 ≤ S5 = 89 ≤ 107, 30 ≤ S6 = 123 ≤ 123. Therefore the conditions in lines
08 and 10 of this program never hold, so the algorithm returns the message of
line 12.

3.1.1 Complexity analysis of the checking algorithm

The running time of ScoreCheck is Θ(n) in worst case.
For incorrect sequences the running time of ScoreCheck can be small.

For example if s1 = s2 = (n− 1)b or a > 0 and s1 = s2 = 0, then the running
time is O(1).

We remark that adding a linear time sorting algorithm [2] ScoreCheck

can be extended for score vectors too (saving the linear running time).
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The memory requirement of ScoreCheck is Θ(n). If the stepwise input
of the scores is permitted, then we can implement this algorithm using only
O(1) memory.

3.2 Definition of the main algorithm

The work of the slicing program is managed by the following program Main.
Input. a and b: minimal and maximal number of points divided after each

match;
B = B0, B1, . . . , Bn): the sequence of the binomial coefficients;
L = (L0, L1, . . . , Ln): the values of the loss function;
n: the number of players (n ≥ 2);
s = (s1, s2, . . . , sn): a nondecreasing sequence of integers satisfying (7);
S = (S1, S2, . . . , Sn): the sums of the scores.

Output. R = [ri,j]n×n: point table of the reconstructed tournament Tn(a, b).
Working variables. g, i, k: cycle variables;

p = (p1, p2, . . . , pn): a provisional score sequence;
pk = (p1, p2, . . . , pk) (k = 1, 2, . . . , n): prefixes of the provisional score se-
quence p;
q = (q1, q2, . . . , qk−1) = (r1,k, r2,k, . . . , rk−1,k);
r = (r1, r2, . . . , rk−1) = (rk,1, rk,2, . . . , rk,k−1).

During the reconstruction process we have to take into account the following
bounds:

a ≤ ri,j + rj,i ≤ b (1 ≤ i, j ≤ n, i 6= j); (8)

modified scores have to satisfy (7); (9)

ri,j ≤ pi (1 ≤ i, j ≤ n, i 6= j); (10)

the monotonicity p1 ≤ p2 ≤ . . . ≤ pk has to be saved (1 ≤ k ≤ n). (11)

Main(a, b, n,B,L,p,R)

01 for i← 1 to n

02 do Ri,i ← 0
03 pi ← si
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04 if n ≥ 3
05 then for k← n downto 3

06 do ScoreSlicing(a, b,B,L,k,pk−1,pk)
07 for g← 1 to k− 1

08 do Rg,k ← qg
09 Rk,g ← rg
10 r1,2 ← b(p1 + p2)/2c
11 r2,1 ← d(p1 + p2)/2e
12 return R

3.3 Definition of the slicing algorithm

The key part of the reconstruction is the following algorithm ScoreSlicing.
Input. a, b: minimal and maximal number of points divided after each

match;
B = (B1, B2, . . . , Bn): the sequence of the binomial coefficients;
L = (L1, L2, . . . , Lk): the values of the loss function;
k: the number of the actually investigated players (k > 2);
pk = (p1, p2, . . . , pk): provisional score sequence;
s = (s1, s2, . . . , sk): a nondecreasing sequence of integers satisfying (7);
S = (S1, S2, . . . , Sk): the sums of the scores.

Output: pk−1 = (p1, p2, . . . , pk−1): a provisional score sequence;
q = (q1, q2, . . . , qk−1) = (r1,k, r2,k, . . . , rk−1,k);
r = (r1, r2, . . . , rk−1) = (rk,1, rk,2, . . . , rk,k−1).

Working variables. A = (A1, A2, . . . , An) the number of the additional
points;
d: difference of the maximal increasable scores and the following largest score;
e: number of sliced points per player;
f: frequency of the number of maximal values among the scores p1, p2, . . . , pk−1;
g, h, i: cycle variables;
m: maximal amount of sliceable points;
M: missing points: the difference of the number of actual points and the num-
ber of maximal possible points of Pk;
p0: number of points of the hypothetical ”negative player“ P0 used in line 15;
P = (P1, P2, . . . , Pn): the sums of the provisional scores;
x: the maximal index i with i < k and ri,k < b.
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ScoreSlicing(a, b,B,L,n,pk−1,pk)

01 p0 ← 0
02 P0 ← 0
03 for i← 1 to k− 1

04 do Pi ← Pi−1 + pi
05 Ai ← Pi − aBi
06 for g← 1 to k− 1

07 do rg,k ← 0;
08 rk,g ← b;
09 M← (k− 1)b− pk
10 while M > 0 and Ak−1 > 0

11 do x← k− 1

12 while rx,k = b

13 do x← x− 1

14 f← 1
15 while px−f+1 = px−f
16 do f = f+ 1

17 d← px−f+1 − px−f
18 m← min(b, d, dAx/fe, dM/fe)
19 for g← f downto 1

20 do y← min(b− rx+1−g,k,m,M,Ax+1−g, px+1−g)

21 rx+1−g,k ← rx+1−g,k + y

22 px+1−g ← px+1−g − y

23 rk,x+1−g ← b− rx+1−g,k
23 M←M− y

24 for h← g downto 1

25 Ax+1−h ← Ax+1−h − y

26 if M = 0

27 then for g← 1 to k− 1

28 do rg,k ← max(rg,k, 0)

29 rk,g ← min(rk,g, b)

30 go to 41
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31 if Ax = 0

32 then for g← k− 1 downto 1

33 do rg,k ← max(rg,k, 0)
34 for g← k− 1 downto 1

35 do y← max(a− rg,k, 0)

36 if M ≥ b− y

37 then rk,g ← y
38 M←M− (b− y)

39 else rk,g ← b−M

40 M← 0
41 for g← 1 to 1

42 do qg ← rg,k
43 rg ← rk,g
44 return p, q, r

Let’s demonstrate the work of Main and ScoreSlicing by the reconstruc-
tion of the tournament whose point table is shown in Figure 1.

The basic idea is that Main slices (partitions) the points of P6,P5, . . . ,P1
by repeated calls of ScoreSlicing.

The details are as follows. After assigning zeros to the elements of the main
diagonal of R (in lines 01–03) Main calls ScoreSlicing with k = 6. Then
ScoreSlicing computes the sequence of the additional points A, further the
provisional last column and the provisional last row of R (lines 03-09). The
results of the execution of lines 03–08 of ScoreSet are represented in Fi-
gure 4.

Player/Player P1 P2 P3 P4 P5 P6 p6 A

P1 — 0 9 9

P2 — 0 9 16

P3 — 0 19 31

P4 — 0 20 45

P5 — 0 32 69

P6 10 10 10 10 10 — 34 93

Figure 4: The results of lines 04–08 of ScoreSlicing.

Line 09 yields the actual number of the missing points M, then in the lines
10–43 the sequences pk−1, q, and r are determined.
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The steps of the reconstruction of the tournament are shown in Figure 5 in
digital form. The second column of the figure contains the starting state of
the reconstruction — the score sequence p6 = (9, 9, 19, 20, 32, 34).

p6 p6 p6 p6 p5 p5 p5 p4 p3 p2
P1 9 9 9 9 9 9 9 8* 2* 1*

P2 9 9 9 9 9 9 9 8* 2* 1*

P3 19 19 19 16* 16 16 9* 8* 2* –

P4 20 20 19* 17* 17 16* 9* 9 – –

P5 32 22* 22 22 22 22 22 – – –

P6 34 34 34 34 – – – – – –

Figure 5: Steps of the reconstruction (stars denote changes).

The second column of Figure 6 contains the actual parameters k, x, Ax, M,
f, d, m, and y.

Parameter/k 6 6 6 6 5∗ 5 5 5 4∗ 3∗ 2∗

x 5 4* 4 4 4 4 4 4 3* 2* –

Ax 69 59* 58* 53* 39* 38* 24* 12* 18* 2* –

M 16 6* 5* 0* 18* 17* 3* 0* 21* 18* –

f 1 1 2* – 1* 2* 4* – 3* 2* –

d 12 1* 10* – 1* 9* 9* – 8* 2* –

m 10 1* 3* – 1* 7* 1* – 6* 0* –

y 10 1* 2* – 1* 7* 1* – 6* 0* –

Figure 6: Parameters of the reconstruction (stars denote changes).

P5 has A5 = 69 > 0 additional points (computed in line 05) and P6 has
M = 16 > 0 missing points (computed in line 9), therefore ScoreSlice

executes lines 10–25. The algorithm determined in lines 11–13 that Px = P5
is the first player who can get from the missing points of P6. The frequency
of players having px points is f = 1 (computed in lines 14–16). The difference
p6,5 − p6,4 = 12 (computed in line 17). At the moment we can slice at most
m = 10 points per player (computed in line 18). Since A5 is large enough
we get y = 10 (computed in line 20), and decrease the number of points
of P5 by y = 10 points (in line 21). Therefore the updated new values are
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r5,6 = 10, r6,5 = 0, M = 6 and A5 = 59. The new score vector p6 =

(9, 9, 19, 20, 22∗, 34) is in the third column of Figure 5 (stars denote changes).
Since M = 6 > 0 and A5 = 59 > 0, we use again lines 11–25 and since

r5,6 = 10, we get a new, smaller value x = 4. f remains 1, d = 1, m = y = 1,
so r4,6 = 1, p4 = 19, r6,4 = 9, M = 5, A4 = 58. The new parameters are in
the third column of Figure 6, the new score vector p6 = (9, 9, 19, 19∗, 22, 34)

appears in the fourth column of Figure 5.
Now M = 5 > 0 and A5 = 58 > 0, so continuing with lines 10–25 x

remains 4 but the frequency is now f = 2, the difference d = 10, the small
M allows only m = 3 and y = 3 (see fourth column of Figure 6). So it
follows r3,6 = 3, p3 = 16, r4,6 = 1 + 2 = 3, p4 = 17, M = 0, A5 = 53, and
p6 = (9, 9, 16∗, 17∗, 22, 34) is shown in the fifth column of Figure 5. Since M
decreased to zero, ScoreSlicing continues in line 26 and executing line 44
returns to Main the sequences p5 = (9, 9, 16∗, 17∗, 22), q = (10, 10, 7, 7, 0),
and r = (0, 0, 3, 3, 10) shown in the sixth column of Figure 5, resp. in seventh
line and seventh column of Figure 7.

Player/Player P1 P2 P3 P4 P5 P6 Score

P1 — 0 0 0 0 0 9

P2 10 — 0 0 0 0 9

P3 10 10 — 0 0 3 19

P4 10 10 10 — 0 3 20

P5 10 10 10 10 — 10 32

P6 10 10 7 7 0 — 34

Figure 7: The partially reconstructed results of the matches of six players of
the given tournament T6(2, 10) after determining of the results of P6, where
bold numbers denote final values.

After updating R Main calls SliceScoring with the parameter k = 5.
The parameters determined in lines 11–16 are shown in the sixth column of

Figure 6. Since M = 18 > 0 and A4 = 39 > 0, the algorithm executes lines
11–25 and gets r4,5 = 1, p4 = 16, r5,4 = 9,M = 17, and A4 = 38. The new
score vector p4 = (9, 9, 16∗, 16, 22) is shown in the seventh column of Figure
6.

Since M = 17 > 0 and A4 = 38 > 0, the algorithm in lines 11–16 computes
the values shown in the seventh column of Figure 6 and then in lines 18–23 gets
r3,6 = 1+ 7 = 8, p3 = 9, r6,3 = 2, r4,6 = 0+ 7 = 7, p4 = 9, r6,4 = 3, M = 3,
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and A4 = 24. The new score vector p5 = (9∗, 9∗, 9, 9, 22) is shown in the tenth
column of Figure 6.

Now M = 3 > 0 and A4 = 24 > 0, therefore the algorithm continues
in line 11 and gets the parameter values contained in the eighth column of
Figure 6. These values imply in lines 18–25 r1,5 = 1, p1 = 8, r2,5 = 1, p2 =

8, r3,5 = 1, p3 = 8, p4 = (8, 8, 8, 9) and M = 0. Since M = 0, the algorithm
continues in line 26 and in lines 26–30 gets q = (1, 1, 8, 8) and r = (9, 9, 2, 2).
ScoreSlicing returns these vectors to Main and it finishes the filling of the
sixth line and sixth column of R. The resulted R is shown in Figure 8.

Main continues by calling ScoreSlicing for k = 4. Since M = 21 > 0 and
A3 = 18 > 0, the algorithm gets in lines 11–16 the parameters shown in the
ninth column of Figure 6. Line 20 results y = 6 due to the small amount of
additional points of P3. So we get r1,4 = 6, p1 = 2, r4,1 = 4, r2,4 = 6, p2 =

2, r4,2 = 4, r3,4 = 6, p3 = 2, r4,3 = 4, M = 0, then p = (2, 2, 2), q = (6, 6, 6)

and r = (3, 3, 3). Using the returned vectors Main fills the fifth row and the
fifth column of R as Figure 9 shows.

Player/Player P1 P2 P3 P4 P5 P6 Score

P1 — 0 0 0 1 0 9

P2 10 — 0 0 1 0 9

P3 10 10 — 0 8 3 19

P4 10 10 10 — 8 3 20

P5 9 9 2 2 — 10 32

P6 10 10 7 7 0 — 34

Figure 8: The partially reconstructed results of the matches of six players of
the given tournament T6(2, 10) after determining of the results of P5, where
bold numbers denote final values.

Main continues by calling ScoreSlicing for k = 3. Since nowM = 18 > 0,
and A2 = 2 > 0, the algorithm gets in lines 11–16 the parameters shown in
the tenth column of Figure 6. So lines 18-25 give the results r1,3 = 1, p1 =

1, r2,3 = 1, p2 = 1, and M = 0. Then we get in lines 26–29 that q = (1, 1)

and r = (1, 1). Using the returned vectors Main fills the fifth row and the
fifth column of R, then in lines 10–11 determines r1,2 and r2,1.

Figure 10 shows the point table of the reconstructed tournament.
Figure 11 shows the rounds of the reconstruction in graphical form.
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Player/Player P1 P2 P3 P4 P5 P6 Score

P1 — 0 0 6 1 0 9

P2 10 — 0 6 1 0 9

P3 10 10 — 6 8 3 19

P4 3 3 3 — 8 3 20

P5 9 9 2 2 — 10 32

P6 10 10 7 7 0 — 34

Figure 9: The partially reconstructed results of the matches of six players of
the given tournament T6(2, 10) after determining of the results of P4, where
bold numbers denote final values.

Player/Player P1 P2 P3 P4 P5 P6 Score

P1 — 1 1 6 1 0 9

P2 1 — 1 6 1 0 9

P3 1 1 — 6 8 3 19

P4 3 3 3 — 8 3 20

P5 9 9 2 2 — 10 32

P6 10 10 7 7 0 — 34

Figure 10: The fully reconstructed results of the matches of players of the
given tournament T6(2, 10).

3.3.1 Complexity analysis of ScoreSlicing and Main

The running time of this algorithm equals to O(bn3), since the sum of the
missing points Mk is O(bk2), and the sum of the additional points Ak is
O(bk2), and the sum of the scores si is O(bn2), and the processing of a
missing point, of an additional point and also of a win point requires O(n)

steps.
The memory requirement of ScoreSlicing equals to Θ(n2).
The running time of lines 01–03 of Main is Θ(n). In lines 04–09 algorithm

Scoreslicing is executed Θ(n) times, so the running time of Main depends
on the running time of Scoreslicing and is O(bn3).
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Figure 11: The staircase functions of the score sequences p6 =

(9, 9, 19, 20, 32, 34), p5 = (9, 9, 16, 17, 22), p4 = (8, 8, 8, 9), p3 = (2, 2, 2), and
p2 = (1, 1).

4 Necessary and sufficient condition

for (a, b)-tournaments

Theorem 3 A sequence (s1, s2, . . . , sn) satisfying 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn is

the score sequence of some tournament Tn(a, b) if and only if

aBk ≤
k∑

i=1

si ≤ bBn − Lk − (n− k)si (1 ≤ k ≤ n).

Proof. Lemma 3 implies the necessity of these inequalities.
The sufficiency of these inequalities can be shown by induction based on the

correctness of the reconstruction algorithm.
If n = 2, then a ≤ s1 + s2 ≤ b due to 6 and then the scores r1,2 ← bS2/2c

and r2,1 ← dS2/2e received by lines 10 and 11 of Main are correct values.
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Let now n > 2. It is sufficient to show that ScoreSlicing reduces the
input problem of size n to the reconstruction of the scores of n− 1 players.
Ak = Sk − aBk ≤ bBk − aBk and M = b(n − 1) imply min(Ak,M) ≤

min((b − a)Bk, b(n − 1)) ≤ bn(n − 1)/2. This minimum decreases at least
by 1 in each execution of the while cycle in lines 23 and 25 – or at least one
of M and Ak becomes to zero (if f = 1, then Ak > 0 due to line 10, and if
f ≥ 2, then Ax+1−g > 0, since otherwise Ax−g < 0, what is impossible) and
ScoreSlicing ends quickly in lines 26–30 or in lines 31-40.

The inequality (8) is guaranteed by lines 18, 20, and 35.
The inequality (9) is guaranteed by lines 18 and 20.
The inequality (10) is guarantedd by line 20.
The inequality (11) is guaranteed by line 19–23. ¥
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