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ABSTRACT   The resolution methods applying (−)-(4R,5R)-4,5-bis(diphenylhydroxymethyl)-

2,2-dimethyldioxolane (“TADDOL”), (−)-(2R,3R)-α,α,α',α'-tetraphenyl-1,4-

dioxaspiro[4.5]decan-2,3-dimethanol (“spiro-TADDOL”), as well as the acidic and neutral 

Ca
2+

 salts of (−)-O,O’-dibenzoyl- and (−)-O,O’-di-p-toluoyl-(2R,3R)-tartaric acid were 

extended for the preparation of 1-n-butyl-3-methyl-3-phospholene 1-oxide in optically active 

form. In one case, the intermediate diastereomeric complex could be identified by single 

crystal X-ray analysis. The absolute P-configuration of the enantiomers of the phospholene 
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oxide was also determined by comparing the experimentally obtained and calculated CD 

spectra. 

KEY WORDS: Alkyl-3-Phospholene 1-oxide; P-chirality; resolution methods; optical 

isomers; X-ray crystallography; CD-spectroscopy; absolute P-configuration 

 

INTRODUCTION 

 The preparation of chiral phosphines in enantiopure form is of great interest in organic 

chemistry, as the transition metal complexes of these compounds may be applied as 

enantioselective catalysts in various homogenous catalytic reactions.
1,2

  

 Since the first enantiomeric separation of compounds having a non-symmetrically 

substituted phosophorus atom by Meisenheimer and Lichtenstadt,
3
 the preparation of optically 

active P-stereogenic substances has been the subject of continuing interest. The separation of 

optical isomers may be based on the formation of covalent diastereomers, diastereomeric 

salts, diastereomeric transition metal complexes and molecular complexes.
4–6

  

 There are several methods reported in the literature for the resolution of phosphine oxides, 

but none of these methods are of general use. The separation of enantiomers of several 

secondary and tertiary phosphine oxides with a stereogenic center either on the phosophorus 

atom, or on the backbone was accomplished via molecular complex formation with O,O’-

dibenzoyl-(2R,3R)-tartaric acid.
7–15

 In some special instances, the bromocamphorsulfonic 

acid,
3,16,17

 camphorsulfonic acid,
17

 mandelic acid,
18,19

 2,2’-dihydroxy-1,1’-binaphthalene,
18,20

 

as well as the α-methylbenzylamine
21

 were also used successfully to prepare optically active 

phosphine oxides. 

 Five-membered P-heterocycles, such as 1-substituted-3-methyl-3-phospholene 1-oxides 

are important starting materials for several five-, six-, seven- and eight-membered 

derivatives.
22–25

 Pietrusiewicz and his co-workers have reported several methods for the 

preparation of the enantiomers of phospholene oxides and their derivatives, but these methods 

are rather special.
26–29

 Recently, our research group has developed efficient resolution 

methods for the separation of the enantiomers of 1-substituted-3-methyl-3-phospholene 1-

oxides. The resolution of the 3-phospholene oxides was accomplished via molecular complex 

formation using TADDOL derivatives (2 and 3).
30–32

 The acidic Ca
2+

 salts of O,O’-dibenzoyl- 

and O,O’-di-p-toluoyl-(2R,3R)-tartaric acid (4 and 5) were also found suitable resolving 

agents via diastereomeric coordinative complex formation.
33,34

 These resolution methods were 

also extended to several phenyl-substituted 6-membered P-heterocycles.
35
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 In this paper, we studied the possibilities of the resolution of 1-n-butyl-3-methyl-3-

phospholene 1-oxide (1) considering the methods developed in our research group (Fig. 1). 

The absolute P-configuration of the resulting enantiomers of n-butyl-3-phospholene oxide (1) 

was identified by independent methods. 

 

 

Fig. 1. The n-butyl-3-phospholene oxide (1) and resolving agents [(−)-2-(−)-7] used in this 

study 

 

MATERIALS AND METHODS 

General 

 The 
31

P and 
1
H NMR spectra were taken on a Bruker AV-300 or DRX-500 spectrometer 

operating at 121.5 and 300 or 202.4 and 500 MHz, respectively.  

 The enantiomeric excess (ee) values of the phospholene oxide 1 were determined by chiral 

GC on Agilent 4890D instrument equipped with a Supelco BETA DEX
TM

 120 column (30 m 

× 0.25 mm, 0.25 µm film, FID detector, nitrogen as carrier gas, injector 240°C, detector 

300°C, head pressure: 10 psi, at 1:100 split ratio). Retention times of 1 by chiral GC 

(program: 2 min at 140°C, 20°C/min to 175°C, followed by 1°C/min to 190°C, then kept at 

190°C): 20.50 min for (R)-1 and 20.86 min for (S)-1. 

 Optical rotations were determined on a Perkin-Elmer 241 polarimeter.  

 The UV and CD spectra were measured in acetonitrile solution at 25C. The UV spectra 

were recorded on an Agilent 8453 diode array spectrometer, the CD spectra were taken on a 

Jasco J-810 spectropolarimeter. 

 1-n-Butyl-3-methyl-3-phospholene 1-oxide (1),
36

 (−)-(4R,5R)-4,5-

bis(diphenylhydroxymethyl)-2,2-dimethyldioxolane [(−)-2], (–)-(2R,3R)-α,α,α’,α’-

tetraphenyl-1,4-dioxaspiro[4.5]decan-2,3-dimethanol [(−)-3]
37

 and calcium hydrogen (−)-
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O,O’-dibezoyl-(2R,3R)-tartarate [(−)-4]
33

 were synthesized as described earlier. (−)-O,O’-

Dibezoyl- and (–)-O,O’-di-p-toluoyl-(2R,3R)-tartaric acid were purchased from Aldrich 

Chemical Co. 

 

Resolution of 1-n-Butyl-3-methyl-3-phospholene 1-Oxide (1) with TADDOL [(−)-2] 

(Representative Procedure A) 

 0.15 g (0.90 mmol) of racemic 1-n-butyl-3-methyl-3-phospholene 1-oxide (1) and 0.42 g 

(0.90 mmol) of TADDOL [(−)-2] was dissolved in 0.84 ml of hot ethyl acetate, and then 4.2 

ml of hexane was added. Colourless crystalline diastereomeric complex (S)-1∙(TADDOL)2 

appeared immediately. After standing at 26°C for 3 h, the crystals were separated by filtration 

to give 0.32 g (65%) of (S)-1∙(TADDOL)2 with a de of 26%. The diastereomeric complex (S)-

1∙(TADDOL)2 was purified further by two recrystallizations from a mixture of 0.84 ml of 

ethyl acetate and 4.2 ml of hexane to afford 0.14 g (28%) of the complex (S)-1∙(TADDOL)2 

with a de of 74%. The (S)-1-n-butyl-3-methyl-3-phospholene 1-oxide [(S)-1] was recovered 

from the diastereomer by column chromatography (silica gel, dichloromethane:methanol 

97:3) to give 0.018 g (23%) of phospholene oxide (S)-1 with an ee of 74%.  25

D = −12.1 (c 

2.4, CHCl3). (Table 1, Entry 1). Resolution of 1-n-butyl-3-methyl-3-phospholene 1-oxide (1) 

with TADDOL [(−)-2] was also performed in isopropyl alcohol. In this case, the racemic 3-

phospholene oxide 1 and the TADDOL [(−)-2] were dissolved in hot isopropyl alcohol, and 

the corresponding diastereomeric complexes precipitated by cooling down the mixture to 

26°C (Table 1, Entry 2). 

 

Resolution of 1-n-Butyl-3-methyl-3-phospholene 1-Oxide (1) with spiro-TADDOL [(−)-3] 

 1-n-butyl-3-phospholene oxide (1) was resolved with spiro-TADDOL [(−)-3] according to 

the Representative Procedure A. The conditions and the results are shown in Table 1, Entries 

3–6.  

 

Resolution of 1-n-Butyl-3-methyl-3-phospholene 1-Oxide (1) with Calcium Hydrogen O,O’-

Dibenzoyl-(2R,3R)-tartarate [(−)-4] (Representative Procedure B) 

 To 0.17 g (0.22 mmol) of Ca(H-DBTA)2∙(H2O)2 [(−)-4∙(H2O)2] in 0.51 ml of hot ethanol 

was added 0.15 g (0.88 mmol) of racemic 1-n-butyl-3-methyl-3-phospholene 1-oxide (1) in 

0.51 ml of acetonitrile. After the addition, the solution was allowed to cool down to 26°C, 

whereupon colourless crystals appeared. After standing at 26°C for 24 h, the crystals were 
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filtered off to give 0.17 g (72%) of Ca[((S)-1)2(H-DBTA)2] with a de of 31%. The 

diastereomeric complex was purified further by two digestions, by stirring the suspension of 

the diastereomeric complex at 26°C in a mixture of 0.51 ml of ethanol, 0.51 ml of acetonitrile 

for 24 h to afford 0.067 g (28%) of Ca[((S)-1)2(H-DBTA)2] with a de of 76%. The 

phospholene oxide (S)-1 was recovered from the diastereomeric complex by treatment of the 

2 ml dichloromethane solution of Ca[((S)-1)2(H-DBTA)2] with 2 ml of a 10% aqueous 

ammonia. The organic layer was washed with 0.5 ml of water, dried (Na2SO4), and 

concentrated to give 0.016 g (21%) of (S)-1-n-butyl-3-methyl-3-phospholene 1-oxide [(S)-1)] 

with an ee of 76%. Resolution of 1-n-butyl-3-methyl-3-phospholene 1-oxide (1) with Ca(H-

DBTA)2 [(−)-4] was also performed in a mixture of ethanol and ethyl-acetate. The conditions 

and the results are shown in Table 3, Entries 1 and 2. 

 

Resolution of 1-n-Butyl-3-methyl-3-phospholene 1-Oxide (1) with Calcium Hydrogen O,O’-

di-p-Toluoyl-(2R,3R)-tartarate [(−)-5] (Representative Procedure C) 

 To 0.18 g (0.45 mmol) of DPTTA∙H2O in a mixture of 0.56 ml of ethanol and 0.06 ml of 

water was added 0.013 g (0.23 mmol) of CaO, and the mixture was heated at the boiling point 

until it became clear. 0.16 g (0.91 mmol) of racemic 1-n-butyl-3-methyl-3-phospholene 1-

oxide (1) in 0.56 ml of ethyl acetate was then added to the solution of the in situ formed 

resolving agent Ca(H-DPTTA)2 [(−)-5]. After the addition, the solution was allowed to cool 

down to 26°C, whereupon colourless crystals appeared. After standing at 26°C for 24 h, the 

crystals were filtered off to give 0.18 g (68%) of Ca[((S)-1)2(H-DPTTA)2] with a de of 38%. 

The diastereomeric complex was purified further by two digestions, by stirring the suspension 

of the diastereomeric complex at 26°C for 24 h in a mixture of 0.56 ml of ethanol, 0.56 ml of 

ethyl acetate and 0.06 ml of water to afford 0.13 g (49%) Ca[((S)-1)2(H-DPTTA)2] with a de 

of 45%. The phospholene oxide (S)-1 was recovered by treatment of the 2 ml 

dichloromethane solution of the complex with 2 ml of 10% aqueous ammonia. The organic 

phase was washed with 0.5 ml of water, dried (Na2SO4), and concentrated to give 0.034 g 

(44%) of (S)-1-n-butyl-3-methyl-3-phospholene 1-oxide [(S)-1] with an ee of 45%. The 

resolution of 1-n-butyl-3-methyl-3-phospholene 1-oxide (1) with Ca(H-DPTTA)2 [(−)-5] was 

accomplished in a mixture of ethanol and water, or in a mixture of ethanol, acetonitrile and 

water. The conditions and the results are shown in Table 2, Entries 3–5. 

 

Resolution of 1-n-Butyl-3-methyl-3-phospholene 1-Oxide (1) with Calcium O,O’-di-Benzoyl-

(2R,3R)-tartarate and Calcium O,O’-di-p-Toluoyl-(2R,3R)-tartarate [(−)-6 and (−)-7] 
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 1-n-Butyl-3-phospholene oxide (1) was resolved with Ca(DBTA) and Ca(DPTTA) [(−)-6 

and (−)-7] according to Representative Procedure C. Ca(DBTA) and Ca(DPTTA) [(−)-6 and 

(−)-7] were formed by the reaction of a 1:1 mixture of CaO and DBTA or DPTTA. The 

conditions and the results are shown in Table 3. 

 

Complete Resolution Process for 1-n-Butyl-3-methyl-3-phospholene 1-Oxide (1) with spiro-

TADDOL [(−)-3] 

 The (S)-1-n-butyl-3-methyl-3-phospholene 1-oxide [(S)-1] was obtained by the resolution 

of 0.75 g (4.3 mmol) of racemic 1 with 2.2 g (4.3 mmol) of spiro-TADDOL [(−)-3] in a 

mixture of 4.4 ml of ethyl acetate and 22 ml of hexane according to Representative Procedure 

A. The diastereomereic complex [(S)-1∙(spiro-TADDOL)2] was purified by three 

recrystallizations in a mixture of 4.4 ml of ethyl acetate and 22 ml of hexane. The (S)-1-n-

butyl-3-methyl-3-phospholene 1-oxide [(S)-1] was recovered by column chromatography 

(silica gel, dichloromethane:methanol 97:3) to afford 0.19 g (52%) of (S)-1 in an ee of 95%. 

The mother liquors of the crystallization and recrystallizations were combined, and the 

solvent was evaporated to afford 1.3 g (61%) of a white powder as a 3:2 mixture of (R)-1 with 

an ee of 32% and spiro-TADDOL [(−)-3]. 0.86 g (1.7 mmol) of spiro-TADDOL [(−)-3] was 

added to this mixture and the resolution was performed in 10 ml of ethanol according to 

Representative Procedure A. The [(R)-1∙(spiro-TADDOL)2] complex was purified by three 

recrystallizations in 10 ml of ethanol and it was decomposed by column chromatography 

(silica gel, dichloromethane:methanol 97:3) to afford 0.04 g (11%) of (R)-1-n-butyl-3-methyl-

3-phospholene 1-oxide [(R)-1] in an ee of 98%.  

 

X-Ray Measurements 

 X-ray quality crystals of the diastereomeric complex 1:spiro-TADDOL 1:1 were grown 

from the saturated ethyl acetate solution of 252 mg (1.46 mmol) of (S)-1-n-butyl-3-methyl-3-

phospholene 1-oxide [(S)-1] and 7.4 mg (0.015 mmol) of spiro-TADDOL [(−)-3]. 

 A selected single colourless, prism crystal (0.15 × 0.2 × 0.4 mm) of 1 : spiro-TADDOL 

1:1 was mounted on a Rigaku R-AXIS RAPID diffractometer (graphite monochromator Mo-

Kα radiation, λ = 0.71075 Å). Data collection was performed at room temperatures (T = 

295(2) K). Crystal data for 1 : spiro-TADDOL 1:1 = C43H51O5P, triclinic, space group P1, a = 

9.4378(7) Å, b = 10.0316(9) Å, c = 20.3550(17) Å, a = 83.320(2), b = 82.798(2), g = 

89.034(2), V = 1899.0(3) Å3, T = 295(2) K, Z = 2, Dx = 1.187 Mg/m
3
, µ = 0.116 mm

–1
. Initial 

structure model was obtained by SHELXS-97,
38

 completed by successive difference Fourier 
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syntheses and refined to convergence by SHELXL-97,
38

 R1 = 0.0669 and wR
2
 = 0.1567 for 

5644 [I>2σ( I)] and R1 = 0.1064 and wR
2
 = 0.1816 for all (8968) intensity data. Refined 

absolute structure parameter x = 0.08(19).
39

 Relevant X-ray diffraction and model information 

have been deposited at the Cambridge Crystallographic Data centre under deposition number 

CCDC XXXXXX. Copies of these data can be obtained free of charge upon application to 

CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: 00 44 (0) 1223 336033 or e-mail: 

deposit@ccdc.cam.ac.uk). 

 

CD Measurements 

 The UV absorption and CD spectra were measured in acetonitrile solution. The UV 

spectra were recorded on an Agilent 8453 diode array spectrometer, the CD spectra were 

obtained with a Jasco J-810 spectropolarimeter. 

 

Theoretical Calculations 

 Quantum chemical calculations at the density functional theory (DFT) level choosing the 

PBE0 functional
40,41

 and the 6-311++G** basis set were performed. Vertical excitation 

energies, as well as oscillator and rotator strengths (in the velocity gauge) were calculated 

using the time-dependent DFT method
42

 with the same functional and basis set. Since the 

absorption and CD spectra were measured in acetonitrile, all the DFT calculations were 

performed invoking the polarized continuum model
43

 with acetonitrile as the solvent. All 

calculations were carried out by the Gaussian 09 package.
44

 

 

RESULTS AND DISCUSSION 

Resolution of 1-n-Butyl-3-methyl-3-phospholene 1-Oxide (1) with TADDOL Derivatives [(−)-

2 and (−)-3] 

 The resolution of 3-phospholene oxide 1 was attempted with TADDOL and spiro-

TADDOL [(−)-2 and (−)-3] in different solvents. Results of the successful resolutions leading 

to crystalline diastereomers are summarized in Table 1. 

 Following the resolution method developed in our research group,
30,31

 the resolution of 1-

n-butyl-3-methyl-3-phospholene 1-oxide (1) was attempted first with TADDOL derivatives 

[(−)-2 and (−)-3] in a mixture of ethyl-acetate and hexane. According to this procedure, the 

mixture of racemic 3-phospholene 1-oxide (1) and TADDOL or spiro-TADDOL [(−)-2 or 

(−)-3, respectively] was dissolved in hot ethyl acetate. The corresponding diastereomeric 

complex precipitated after the addition of hexane to the mixture. 
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 Previously, it was established in our research group that the replacement of ethyl acetate 

by other solvents may influence the efficiency of the resolutions of the aryl-, alkyl- and 

alkoxy-substituted-3-phosphole oxides with TADDOL derivatives [(−)-2 and (−)-3].
45

 Hence, 

the resolution of the 3-phospholene oxide (1) with TADDOL derivatives [(−)-2 or (−)-3] was 

also attempted using methanol, ethanol and isopropyl alcohol as the solvent. In these cases, 

the mixtures of the racemic 3-phospholene oxide (1) and TADDOL derivatives [(−)-2 or (−)-

3] were dissolved in hot alcohol, the mixtures were cooled down to 26°C, whereupon 

crystalline diastereomeric complex appeared (Scheme 1).  

 In all cases, the diastereomers formed were filtered off from the mother liquors after 3 

hours of crystallization. The diastereomeric complexes were purified further by two 

recrystallizations from the corresponding solvents. The 3-phospholene oxide (1) was 

recovered from the corresponding diastereomers by column chromatography using silica gel 

and 3% of methanol in dichloromethane as the eluent. 

 

 

Scheme 1. General resolution procedure for racemic 3-phospholene oxide (1) using 

TADDOL derivatives [(−)-2 and (−)-3] 

 

 The composition of the diastereomers was determined by 
1
H NMR. It depended on the 

resolving agent [(−)-2 or (−)-3] and the solvent used. In all but one instance, diastereomers 

obtained contained the n-butyl-3-phospholene oxide (1) and the TADDOL derivatives [(−)-2 

or (−)-3] in a ratio of 1:2 (Table 1, Entries 1 and 3–6). The resolution of n-butyl-phospholene 

oxide 1 with TADDOL [(−)-2] in isopropyl alcohol afforded a diastereomer of (1)2∙[(−)-2]3 

(Table 1, Entry 2). In case of all resolution experiments, the half equivalent methodology
46

 

was followed, hence, considering the composition of the diastereomeric complexes, 0.75-1 

equivalents of the resolving agents [(−)-2 or (−)-3] were used (Table 1).  

 The diastereomeric complexes obtained were analysed by chiral GC after regenerating the 

3-phospholene oxide (1) from the sample of the corresponding diastereomer by preparative 
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TLC using silica gel and 3% of methanol in dichloromethane as eluent. The enantiomeric 

excess values were in the range of 26–62% after crystallization. The enantiomeric purity 

increased significantly to 70–84% after two recrystallizations (Table 1).  

 It was found that the resolving agent [(−)-2 or (−)-3] and the solvent used influenced the 

efficiency of the resolution, as well as the enantiomer of the 3-phospholene oxide (1) 

incorporated in the diastereomeric complex. The highest resolving capability (S = 0.52) was 

achieved with spiro-TADDOL [(−)-3] in ethyl acetate and hexane (Table 1, Entry 3). 

Generally, a decrease in resolving capability (S) was observed, when different alcohols were 

used as the solvent instead of a mixture of ethyl acetate and hexane. However, it is 

noteworthy that in a few instances, the use of different solvents with the same resolving agent 

[(−)-2 or (−)-3] led to complex formation with different enantiomers of the 3-phospholene 

oxide (1). Resolution with spiro-TADDOL [(−)-3] in isopropyl alcohol or in a mixture of 

ethyl acetate and hexane afforded (S)-n-butyl-3-methyl-3-phospholene 1-oxide [(S)-1], while 

the resolution in methanol or in ethanol led to the other antipode [(R)-1] (Table 1, Entries 3 

and 6 or 4 and 5).  

 

TABLE 1. Resolution of 1-n-butyl-3-methyl-3-phospholene 1-oxide (1) with TADDOL 

derivatives [(−)-2 and (−)-3] 

Entry 
Resolving  

agent 
Eq. Solvents

a
 Diastereomer complex

b
 

Yield
c,f

 

(%) 

ee
d,f

 

(%) 

S
e,f

 

(-) 

Abs. 

Config.
g
 

1 TADDOL 1 2×EtOAc/10×Hexane (1)(TADDOL)2 
(65) 

23 

(26) 

74 

(0.17) 

0.17 
(S) 

2 TADDOL 0.75 6×iPrOH (1)2(TADDOL)3 
(44) 

5 

(41) 

78 

(0.18) 

0.04 
(S) 

3 spiro-TADDOL 1 2×EtOAc/10×Hexane (1)(spiro-TADDOL)2 
(83) 

62 

(54) 

84 

(0.45) 

0.52 
(S) 

4 spiro-TADDOL 1 6×MeOH (1)(spiro-TADDOL)2 
(75) 

33 

(51) 

77 

(0.38) 

0.26 
(R) 

5 spiro-TADDOL 1 6×EtOH (1)(spiro-TADDOL)2 
(80) 

17 

(28) 

70 

(0.22) 

0.12 
(R) 

6 spiro-TADDOL 1 6×iPrOH (1)(spiro-TADDOL)2 
(86) 

43 

(62) 

78 

(0.53) 

0.33 
(S) 

a
Mixture of solvents for the crystallization and recrystallizations [ml of solvent/g of resolving agent]. 

b
The ratio of 1 and (−)-2 or (−)-3 was determined by 

1
H NMR. 

c
Based on the half of the racemate 1 that is regarded to be 100% for each antipode. 

d
Determined by chiral GC. 

e
Resolving capability, also known as the Fogassy parameter (S = Y x ee).

47
  

f
Results obtained after the first crystallization are shown in “( )”, while results obtained after two 

recrystallizations are shown in boldface. 
g
The absolute configuration of 1 was determined by X-Ray analysis and CD spectroscopy. 

 

 The phenomena that TADDOL-derivatives [(−)-2 or (−)-3] may form diastereomeric 

complexes with both antipodes of the 3-phospholene oxide (1) in different solvents allowed us 
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to develop resolution procedures to obtain both enantiomers from racemic 1-n-butyl-3-

methyl-3-phospholene 1-oxide (1). 

 Both enantiomers of 1-n-butyl-3-methyl-3-phospholene 1-oxide (1) could be prepared by 

resolution with spiro-TADDOL [(−)-3] using either a mixture of ethyl acetate and hexane, or 

ethanol. So the racemic n-butyl-3-phospholene 1-oxide (1) was resolved with 1 equivalent of 

spiro-TADDOL [(−)-3] in a mixture of ethyl acetate and hexane to afford (−)-(S)-1-n-butyl-3-

methyl-3-phospholene 1-oxide [(S)-1] with an ee of 95% and in a yield of 52% after the 

purification of the diastereomeric complex [(−)-1]∙[(−)-3]2 by three recrystallizations and 

decomplexation by column chromatography. To obtain the other antipode, the mother liquors 

of the crystallization and recrystallizations were combined, the solvent was evaporated to 

obtain a 2:3 mixture of spiro-TADDOL [(−)-3] and (R)-n-butyl-3-phospholene 1-oxide [(R)-

1] with an ee of 32% and in a yield of 121% (based on the half of the racemic 1 that is 

regarded to be 100% for each antipode). To this mixture 0.65 equivalent of spiro-TADDOL 

[(−)-3] was added to have 1.32 equivalent of spiro-TADDOL [(−)-3] in total, and the 

resolution was accomplished in ethanol to afford (+)-(R)-1-n-butyl-3-methyl-3-phospholene 

1-oxide [(R)-1] with an ee of 98% and in a yield of 11% after the purification of the 

diastereomeric complex [(+)-1]∙[(−)-3]2 by three recrystallizations and the decomplexation by 

column chromatography (Scheme 2). 
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Scheme 2. The complete resolution process of 1-n-butyl-3-methyl-3-phospholene 1-oxide (1) 

with spiro-TADDOL (−)-3. 

 

Resolution of 1-n-Butyl-3-methyl-3-phospholene 1-Oxide (1) with Calcium Hydrogen (−)-

O,O’-Dibenzoyl- or (−)-O,O’-di-p-Toluoyl-(2R,3R)-tartarate [(−)-4 or (−)-5] 

 The resolution of the 3-phospholene oxide (1) was also attempted with the acidic Ca
2+

-

salts of (−)-O,O’-dibenzoyl- or (−)-O,O’-di-p-toluoyl-(2R,3R)-tartaric acid [(−)-4 or (−)-5]. 

The results are summarized in Table 2.  

 Ca(H-DBTA)2 [(−)-4] was prepared in advance as described in our earlier studies,
33,34

 

while Ca(H-DPTTA)2 [(−)-5] was always prepared in situ by the reaction of (−)-O,O’-di-p-

toluoyl-(2R,3R)-tartaric acid and CaO in a 10:1 mixture of ethanol and water. The racemic 3-

phospholene oxide (1) in ethanol, ethyl acetate or acetonitrile was added to the hot ethanolic 

solution of 0.25 equivalents of Ca(H-DBTA)2 or Ca(H-DPTTA)2 [(−)-4 or (−)-5]. The 

crystalline diastereomers were filtrated off after 24 hours. 
1
H NMR studies proved, that the 

composition of the diastereomeric complexes were Ca(1)2(H-DBTA)2 or Ca(1)2(H-DPTTA)2. 

These diastereomers [Ca(1)2(H-DBTA)2 or Ca(1)2(H-DPTTA)2] were purified further by two 

digestions (i.e., stirring the crystals in the corresponding solvent at 26°C for 24 hours). The 3-

phospholene oxide (1) was recovered by treating the dichloromethane solution of the 



12 

corresponding complex Ca(1)2(H-DBTA)2 or Ca(1)2(H-DPTTA)2 with 10% aqueous 

ammonia. The enantiomeric excess of the 3-phospholene enantiomers (1) was determined by 

chiral GC. 

 

P
O nBu

Me

+ 0.25 eq.
solvent*

P

O nBu

Me

+

(-)-4 (-)-51 1[(-)-4] [(-)-5][1]2 [1]2

P

O nBu

Me

2

H O(O)CAr

HOOC COO-
HArC(O)OCa2+

2

Ar =

H O(O)CAr

HOOC COO-
HArC(O)OCa2+

2

or

Ph p-MePh

or

Precipitate Solution

* See Tables 2  

Scheme 3. General resolution procedure for racemic 3-phospholene oxide (1) using  

Ca(H-DBTA)2 or Ca(H-DPTTA)2 [(−)-4 or (−)-5] 

 

 In case of the resolutions with Ca(H-DBTA)2 [(−)-4], the enantiomer of the 3-

phosphospholene oxide (1) incorporated in the diastereomeric complex Ca(1)2(H-DBTA)2 

was dependent on the solvent used. The (R)- or the (S)-n-butyl-3-phospholene 1-oxide [(R)-1 

or (S)-1] could be obtained with Ca(H-DBTA)2 using either a mixture of ethyl acetate and 

ethanol, or a mixture of acetonitrile and ethanol, respectively (Table 2, Entries 1 and 2).  

 The highest ee and resolving capability (S) values obtained with Ca(H-DBTA)2 or Ca(H-

DPTTA)2 [(−)-4 or (−)-5] were 77% and 0.21 after purification by two digestions (Table 2, 

Entry 4). Considering the resolving capability (S), the application of Ca(H-DPTTA)2 [(−)-5] 

seems to be more advantageous than that of Ca(H-DBTA)2 [(−)-4] (Compare Table 2, Entries 

1–2 and 3–5). 

 Compared to the results achieved with the TADDOL-derivatives [(−)-2 and (−)-3], lower 

ee and resolving capability (S) values could be obtained by using Ca(H-DBTA)2 or Ca(H-

DPTTA)2 [(−)-4 or (−)-5]. However, the use of the Ca(H-DBTA)2 and Ca(H-DPTTA)2 [(−)-4 

and (−)-5] may seem more favourable when the price difference between (−)-O,O’-dibenzoyl- 

or (−)-O,O’-di-p-toluoyl-(2R,3R)-tartaric acid and the TADDOL-derivatives [(−)-2 and (−)-3] 

is considered. Moreover, the decomposition of the diastereomeric complexes of the Ca(H-

DBTA)2 and Ca(H-DPTTA)2 [(−)-4 and (−)-5] is simpler, than that of the TADDOL-

derivatives [(−)-2 and (−)-3] (extraction versus column chromatography). 
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TABLE 2. Resolution of 1-n-butyl-3-methyl-3-phospholene 1-oxide (1) with 0.25 equivalent 

of Ca(H-DBTA)2 or Ca(H-DPTTA)2 [(−)-4 or (−)-5] 

Entry Resolving agent Solvents
a
 Diastereomer complex

b
 

Yield
c,f

 

(%) 

ee
d,f

 

(%) 

S
e,f

 

(-) 

Abs. 

Config.
g
 

1 Ca(H-DBTA)2 3×EtOAc/3×EtOH Ca(1)2(H-DBTA)2 
(67) 

14 

(6) 

13 

(0.04) 

0.02 
(R) 

2 Ca(H-DBTA)2 3×MeCN/3×EtOH Ca(1)2(H-DBTA)2 
(72) 

21 

(31) 

76 

(0.22) 

0.16 
(S) 

3 Ca(H-DPTTA)2 3×EtOAc/3×EtOH/10%H2O Ca(1)2(H-DPTTA)2 
(68) 

44 

(38) 

45 

(0.26) 

0.20 
(S) 

4 Ca(H-DPTTA)2 6×EtOH/10%H2O Ca(1)2(H-DPTTA)2 
(65) 

27 

(61) 

77 

0.40 

0.21 
(S) 

5 Ca(H-DPTTA)2 3×MeCN/3×EtOH/10%H2O Ca(1)2(H-DPTTA)2 
(55) 

21 

(38) 

62 

(0.21) 

0.13 
(S) 

See Table 1 for footnotes. 

 

Resolution of 1-n-Butyl-3-methyl-3-phospholene 1-Oxide (1) with Calcium (−)-O,O’-

Dibenzoyl- and (−)-O,O’-di-p-Toluoyl-(2R,3R)-tartarate [(−)-6 and (−)-7] 

 Based on our earlier study,
34

 the resolution of n-butyl--3-phospholene oxide (1) was also 

attempted with the neutral Ca
2+

 salts of (−)-O,O’-dibenzoyl- and (−)-O,O’-di-p-toluoyl-

(2R,3R)-tartaric acid [(−)-6 and (−)-7], as these resolving agents have also been found suitable 

for the resolution of some 3-phosholene oxides. Results of the successful resolutions leading 

to crystalline diastereomers are summarized in Table 3. 

 In all instances, the Ca(DBTA) and Ca(DPTTA) [(−)-6 and (−)-7] were prepared in situ 

by the reaction of a 1:1 ratio of CaO and (−)-O,O’-dibenzoyl- or (−)-O,O’-di-p-toluoyl-

(2R,3R)-tartaric acid in a mixture of ethanol and water. To this solution was added the 

racemic 3-phospholene oxide (1) in ethanol, ethyl acetate or acetonitrile. The crystalline 

diastereomeric complexes formed were removed from the mother liquor by filtration after 24 

hours. The diastereomers were purified by digestions. In one case, only one purification step 

was applied, as the corresponding diastereomeric complex may have dissolved completely 

during the second digestion (Table 3, Entry 1). 
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Scheme 4. General resolution procedure for racemic 3-phospholene oxide (1) using CaDBTA 

or CaDPTTA [(−)-6 or (−)-7] 

 

 The composition of the diastereomeric complexes was determined by 
1
H NMR. The ratio 

of the 3-phospholene oxide (1) and the CaDBTA or CaDPTTA [(−)-6 or (−)-7] was 1:1 

(Table 3, Entries 1 and 2), but diastereomers with a ratio of 2:5 were also formed (Table 3, 

Entries 3–4). In all instances, the (S)-n-butyl-3-phospholene oxide [(S)-1] was obtained by 

resolution with CaDBTA or CaDPTTA [(−)-6 and (−)-7] (Table 3). 

 In all but one instances, using CaDBTA and CaDPTTA [(−)-6 and (−)-7], the resolving 

capability (S) was in the range of 0.02-0.08 after purification (Tables 3), what is lower than 

the results obtained with the corresponding acidic Ca
2+

 salts [(−)-4 and (−)-5] (Table 2). The 

difference in the resolving capability (S) may be explained by the lower yields (3–12%) 

obtained with CaDBTA and CaDPTTA [(−)-6 and (−)-7]. However, among the acidic and the 

neutral Ca
2+

-salts of the (−)-O,O’-dibenzoyl- or (−)-O,O’-di-p-toluoyl-(2R,3R)-tartaric acid 

[(−)-4 - (−)-7], the highest resolving capability (S = 0.36) was obtained during the resolution 

of n-butyl-3-phospholene oxide (1) with CaDPTTA in a mixture of ethanol and water (Table 

3, Entry 3). 

 

TABLE 3. Resolution of 1-n-butyl-3-methyl-3-phospholene 1-oxide (1) with Ca(DBTA) or 

Ca(DPTTA) [(−)-6 or (−)-7] 

Entry Resolving agent Eq. Solvents
a
 Diastereomer complex

b
 

Yield
c,f

 

(%) 

ee
d,f

 

(%) 

S
e,f

 

(-) 

Abs. 

Config.
g
 

1 CaDBTA 0.5 3×MeCN/3×EtOH/10%H2O Ca(1)(DBTA) 
(25) 

11* 

(58) 

75* 

(0.14) 

0.08* 
(S) 

2 CaDPTTA 0.5 3×EtOAc/3×EtOH/10%H2O Ca(1)(DPTTA) 
(41) 

12 

(51) 

55 

(0.21) 

0.07 
(S) 

3 CaDPTTA 1.25 6×EtOH/10%H2O Ca5(1)2(DPTTA)5 
(79) 

48 

(44) 

75 

(0.34) 

0.36 
(S) 

4 CaDPTTA 1.25 3×MeCN/3×EtOH/10%H2O Ca5(1)2(DPTTA)5 
(80) 

3 

(56) 

56 

(0.44) 

0.02 
(S) 

See Table 1 for footnotes. 
* Diastereomeric complex was purified with one recrystallization. 
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Single Crystal X-Ray Analysis of Diastereomeric Complex [(S)-1](spiro-TADDOL) 

 X-ray quality crystals could only be grown by mixing spiro-TADDOL [(−)-3] with a large 

excess of (S)-1-n-butyl-3-methyl-3-phospholene 1-oxide [(S)-1] in ethyl acetate. The slow 

evaporation of solvent afforded a single crystal incorporating (S)-1-n-butyl-3-phospholene 1-

oxide [(S)-1] and spiro-TADDOL [(−)-3] in a ratio of 1:1, contrary to the diastereomeric 

complex [(S)-1](spiro-TADDOL)2 obtained during the resolution experiments by reacting the 

1-n-butyl-3-phospholene 1-oxide (1) with an equimolar amount of spiro-TADDOL [(−)-3] 

(Table 1, Entry 3).  

 Results from the crystal structure determination of the 1 : spiro-TADDOL 1:1 molecular 

associate (Fig. 2) apart from revealing the respective molecular structures as well as absolute 

configurations of its components also give an insight into the mode of binding and the 

underlying physical phenomena of  molecular recognition. The disordered alkyl tail on the P-

heterocycle underlines the possibility of alternating conformations of this moiety. This, apart 

from an obvious entropic gain for these crystals also indicates that the phospholene rings do 

have some intrinsic pseudo-rotatory ability. This kind of inherent disorder gives an indication 

as to the origin of the relative low scattering power of the crystals. The recognition of 1 is 

apparently facilitated by the H-bridges. These, apart from the expected internal O—H ... O 

bridge lending some additional stiffness to the spiro-TADDOL backbone bind the 

phospholene oxide O-acceptor to the remaining OH of the master molecule, another classic 

recognition motif of the TADDOL - type host molecules.  

 

 

Fig. 2. Perspective view of the crystallographic asymmetric unit of the 1 : spiro-TADDOL 1:1 

molecular associate with all H atoms but those involved in O—H ... O hydrogen bridges 

(shown in broken lines) omitted for the sake of visibility. Disordered atomic positions of n-

butyl tails are clearly visible at both independent molecules  
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CD Spectra of 1-n-Butyl-3-methyl-3-phospholene 1-Oxide (1) 

 The UV absorption and CD spectra of the 1-n-butyl-3-methyl-3-phospholene 1-oxide (1) 

were recorded (Table 4) and analyzed. To determine the absolute configuration of the 3-

phospholene 1-oxide (1), quantum chemical calculations at the density functional theory 

(DFT) level choosing the PBE0 functional and the 6-311++G** basis set were performed. 

 

TABLE 4. Observed UV and CD spectral bands of 1-n-butyl-3-methyl-3-phospholene 1-

oxide (1) 

 

UV spectra CD spectra 

λ [nm] ε [dm
3
mol

–1
cm

–1
] λ [nm] Δε [dm

3
mol

–1
cm

–1
] 

1-n-butyl-3-methyl-3-phospholene 1-

oxide (1) 

191 3200 Negative Cotton effect 

216 (sh) 1300 215 9.6 

   238 –8.3 

 

 In our calculations simplified model compounds were considered. We modelled 1-n-butyl-

3-methyl-3-phospholene 1-oxide (1) by 1-ethyl-3-methyl-3-phospholene 1-oxide (Fig. 3.). 

This simplification significantly reduces the computation time, but it is not expected to affect 

the assignment of absolute configuration because the spectral properties of the compounds in 

the UV-visible region are almost independent of the substituent. This is well justified by the 

fact that the measured spectrum was in good agreement with that of the n-propyl-substituted 

derivative available from our previous studies.
31

 

 

 

Fig. 3. Optimized geometry for the lowest-energy conformer of 1-ethyl-3-methyl-3-

phospholene 1-oxide. Selected bond lengths (Å) and angles (°) are as follows: P1-O1 1.510, 

P1-C1 1.836, C1-C2 1.501, C2-C3 1.339, C3-C4 1.492, C3-C5 1.508, C5-P1 1.833, P1-C6 

1.819; C1-P1-C5 95, O1-P1-C6 114; O1-P1-C6-C7 56, O1-P1-C1-C2 140. 
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 First, a systematic conformation analysis was carried out for the simplified molecule. 

Three low energy conformers were found for the model compound, which lie at ca. 5 kJ/mol 

above the most stable one. These conformers were considered in the subsequent calculations. 

The geometries for all of them were optimized, and excitation energies and the transition 

moments were calculated. The theoretical UV absorption and CD curves were obtained as 

superpositions of individual Gaussian functions centered at the wavelengths of the 

theoretically calculated transitions and having heights proportional to the corresponding 

calculated oscillator and rotator strengths, respectively. The spectra of the individual 

conformers were Boltzmann-weighted. The simulated spectra were normalized so that the 

height of the dominating peak is identical to that of the experimental spectra, beside this, the 

spectra were shifted to the red so that the position of the most intense band of the absorption 

spectra be identical. 

 The optimized geometry and selected geometrical parameters for the most stable 

conformer are presented in Fig. 3, while the calculated and measured spectra are compared in 

Fig. 4. The agreement of the experimental and theoretical absorption spectra of the 

compounds is satisfactory and justifies the selection of the applied theoretical model. The sign 

of the dominant features in the measured and computed CD spectra are identical, thus the 

absolute configuration of the synthesized compounds corresponds to that for the isomers 

considered in the calculations.  
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Fig. 4. Calculated (dashed line) UV absorption (a) and CD (b) spectra of (S)-1-ethyl-3-

methyl-3-phospholene 1-oxide together with the respective measured (solid line) spectra of 

(−)-1-n-butyl-3-methyl-3-phospholene 1-oxide [(−)-1] in acetonitrile 

 

(a) (b) 
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The dominant features of the spectra could be assigned on the basis of the theoretical 

calculations. The intense negative band at 238 nm in the CD spectrum belongs to two close 

lying transitions, which can be described as excitations from the C=C and noxygen orbitals to 

low lying diffuse virtual orbitals. These transitions have low oscillator strengths, but high 

rotator strengths, leading only to a weak absorption in the UV spectrum at the position of their 

intense signal in the CD spectrum.  

 

CONCLUSIONS 

 Resolution procedures were elaborated for 1-n-butyl-3-methyl-3-phospholene 1-oxide (1) 

using TADDOL-derivatives [(−)-2 and (−)-3], as well as acidic and neutral Ca
2+

-salts of the 

(−)-O,O’-dibenzoyl- or (−)-O,O’-di-p-toluoyl-(2R,3R)-tartaric acid [(−)-4 - (−)-7]. It was 

investigated how the solvents influence the efficiency of the resolutions. Both antipodes of 1-

n-butyl-3-phospholene 1-oxide (1) were prepared with an ee > 95% by exploiting the different 

antipode preference of the TADDOL-derivatives [(−)-2 and (−)-3] in different solvents. 

 The absolute configuration of 3-phospholene oxide enantiomer 1 was determined by X-

ray crystallography and CD spectroscopy using quantum chemical calculations for the 

analysis of the spectra. The X-ray crystallographic measurement allowed us to investigate the 

interactions between the resolving agent and the 3-phospholene oxides 1, thus revealing apart 

from the expected H-bonding scheme, the inherent mobility of these P-heterocycles. 
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