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We present a theory of rare events and derive an algorithm to obtain rates from postprocessing
the numerical data of a free energy calculation and the corresponding committor analysis. The
formalism is based on the division of the saddle region of the free energy profile of the rare event
into two adjacent segments called Saddle Domains. The method is built on sampling the dynamics
within these regions: auxiliary rate constants are defined for the Saddle Domains and the absolute
forward and backward rates are obtained by proper reweighting. We call our approach Divided
Saddle Theory (DST). An important advantage of our approach is that it requires only standard
computational techniques which are available in most molecular dynamics codes. We demonstrate
the potential of DST numerically on two examples: rearrangement of alanine-dipeptide (CH3CO-
Ala-NHCH3) conformers and the intramolecular Cope reaction of the fluxional barbaralane molecule.

I. INTRODUCTION

The mechanism of a chemical reaction is under-
stood as a sequence of elementary steps. Chem-
ical kinetics measurements have a crucial role
in determining an unknown mechanism. Such
measurements provide rate laws and rate con-
stants which can then be used to derive a plau-
sible reaction mechanism. Often the elementary
steps cannot be identified unambiguously because
they are not accessible directly from measure-
ments. Over the last years several computational
methods have been developed to calculate rate
constants1–11,15–17. Theory can efficiently com-
plement experiments, but the main challenge in
computing rate constants is that a reaction is a
rare event on the molecular time-scale.

The most often invoked framework to inter-
pret rate constants is Transition State Theory
(TST)15–17. TST connects the experimental rate
constant with the concept of activation free en-
ergy (∆F ‡):

kexp =
1

βh
e−β∆F ‡

(1)

where β = 1/(kBT ), T is the temperature, kB
is the Boltzmann constant and h is the Planck
constant. Although ∆F ‡ is not an experimen-
tally observed quantity, it provides a convenient
measure to interpret reaction rates18. TST has
a couple of attractive features which boosted its
widespread use in reaction mechanism studies. It
offers an easy concept. ∆F ‡ can be estimated
from the reactive potential energy surface. It can
also be improved to incorporate the inefficiency of
the reactive vibrations by introducing the κ trans-
mission coefficient in Eq. 1. However TST suffers
from limitations. It is based on the so-called quasi
equilibrium hypothesis and the entropy of the ini-

tial and transition states is often difficult to cal-
culate accurately.

Trajectory calculations on the underlying
potential energy surface (PES) represent the
straightforward way to obtain directly reaction
rates19. Unfortunately these calculations require
high computational costs and only for systems of
few atoms can be done efficiently.

Although it has been originally developed for
PES, TST is often applied directly on free en-
ergy surface (FES). ∆F ‡ is obtained by taking
the difference between the saddle point and the
reaction-side minimum of the FES determined as
a function of a few reaction coordinates. The bar-
riers calculated in this way are used to compare
rates. This approach also has some drawbacks.
In particular the arbitrary state definition brings
ambiguity in the calculated ∆F ‡ and rate con-
stants as the FES depends on the choice of the
reaction coordinate11. Instead of applying Eq. 1
which is not strictly valid for FES, a more so-
phisticated TST-based approach is when the for-
ward and backward rate constants are obtained
from the mean residence times estimated from
the full free energy surface17,20. All these meth-
ods overestimate the actual rates as recrossings
are not taken into account and significant effort
has already been invested to improve their effi-
ciency and recover κ. One remedy is the varia-
tional TST12–16 where the dynamical bottleneck
of the reaction is varied to maximize κ. Another,
computationally more demanding possibility is to
explicitly calculate κ2–5.

Equilibrium simulations can also be applied for
direct rate constant calculations. However the
separation of time scales prevents the sufficient
sampling of the reactive events: their frequency
is orders of magnitude lower than those of the
typical atomic motions. Various rare event meth-
ods have been developed to circumvent this prob-
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lem. Reactive flux methods2–6 aim at improving
the TST by calculating κ. Their efficiency de-
pends on the quality of the reaction coordinate.
Path-sampling methods, such as the original tran-
sition path sampling (TPS)7, transition interface
sampling8, forward flux sampling10 and related
methods do not rely on a preliminary selection
of reaction coordinate. All these methods can re-
cover the transmission coefficient or directly yield
rate constant. Still, their often complicated for-
malisms and the necessary implementation efforts
prevented their widespread use. Instead, most
mechanistic studies still employ the simple TST
model and assume κ = 1 (see e.g Ref. 21).

In this study we present a theory of rare events
to calculate rate constants of elementary reac-
tions. The main motivation was to develop a
method where the numerical results of a typi-
cal mechanistic study (a FES exploration with
the subsequent committor analysis22–24) can be
further exploited without additional simulations.
The underlying theory has common motifs in gen-
eral with the Bennett-Chandler formalism2,3 and
in particular with the effective positive flux vari-
ant (EPF)4,25–28. The method derived from the
theory is a simple postprocessing of the available
numerical data. It directly yields both the for-
ward and backward rate constants without explic-
itly invoking the activation free energy concept.

In the following we first present the theory and
the corresponding methodology. Then we illus-
trate its potential with two examples: rearrange-
ments of alanine-dipeptide conformers and the in-
tramolecular Cope reaction of barbaralane (Fig.
4). In both cases we compare the rate constants
of the new method with those obtained from un-
biased, long MD simulations employing the same
computational setup. In this way the assessment
of the performance of the new method is free from
technical issues.

II. THEORY

The basic assumptions of the present kinetic
model are the following: i) the elementary re-
action step in question can be described with a
single reaction coordinate (λ);29 ii) reactant and
product regions can be defined on the free energy
profile, and the two regions are separated by the
dividing surface (ds); iii) within these regions the
system equilibrates much faster than the reaction
time scale, therefore the assumption of Boltzmann
distribution is valid within the regions.

Rate constant of an elementary process is gen-
erally described as the inverse of the mean lifetime
(τ)30:

k = 1/τ (2)

In a sufficiently long simulation the mean lifetime
can be calculated as an average of the time inter-
vals (tRS) the system spends in the reactant state
before a reaction takes place4,31. Hence k can be
expressed as:

k = 1/τ =
N t

ttRS
=

1

〈tRS〉
(3)

where ttRS is the total time of the system spent
in the reactant state (RS), and N t is the total
number of reactions in the actual observation.

Eq. 3 is a proper definition of the reaction rate
constant. However in the present form it does not
offer any useful strategy for an efficient rate es-
timation when the mean lifetime is much longer
than the affordable simulation time. Note how-
ever that for fast reactions this is the simplest way
to compute rate constant and for comparisons we
used also this equation.

Eq. 3 can be further transformed:

k =
N t

ttRS
(4)

kDST =
N t

ttSD
· t
t
SD

ttRS
(5)

= kSD · αSDRS (6)

In Eq. 5 we have introduced the concept of
Saddle Domain (SD) as depicted in Fig. 1. SD
is defined as a region extending from the ds to ar-
bitrary length within the reactant state. Another
SD can be defined similarly for the product re-
gion. The two SD-s are adjacent at the ds and
they constitute together the Divided Saddle (DS)
region32. kDST is the rate constant calculated by
applying this concept. tSD is the residence time
the system spends in SD. αSDRS is the fractional
concentration ie. the ratio of the probability to
find the system in this interval and the probabil-
ity to find the system in the reactant state:

αSDRS =
ttSD
ttRS

=
PSD
PRS

=

∫
λ∈SD

e−βF (λ)dλ∫
λ∈RS

e−βF (λ)dλ
(7)

It can be calculated easily from the probability
distribution of λ.

In the present context it is important to define
the reactive events contributing to N t along the
trajectory. This can be done in several ways which
are compatible with the present theory. A simple
and convenient way is to introduce indicator lines
within the two free energy wells defining stable
regions as shown in Fig. 1. The concept of the
strict definition of the stable regions is also an
important element of the EPF formalism4,25–27.
A reactive event (forward or reverse) occurs when
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FIG. 1: Top: Saddle Domain (SD) defined on a typi-
cal free energy profile for the forward (ie. left-to-right)
reaction. Green and blue dashed lines define stable re-
actant and product regions. The dividing surface is
labelled by ds. Note that it does not necessarily co-
incide with the maximum on the profile. See text for
details.
Bottom: Representation of a MD trajectory. Trajec-
tory segments associated with forward reactive events
are green, non-reactive segments are red. Note that
some of these red segments can be reactive in back-
ward direction. tiSD and tjSD are the sums of time
intervals the i-th and j-th segments spent in the SD,
respectively. For better visibility, these visits are in-
dicated by dashed green lines.

the trajectory enters one of the selected regions
after it came out from the other indicated region
last. This definition is the same as employed in
defining reactive trajectories in Transition Path
Theory33.

Led by chemical intuition we selected these
ranges to include 90% of the configurations of
a given well. Note that the calculated rate
constants are not sensitive to small variations
of the indicator lines due to the separation of
timescales34.

N t is unaffected by the size of SD. Eq. 6

shows that αSDRS and kSD are inversely propor-
tional. Therefore extending SD affects only kSD
and αSDRS , but not k. In fact, in the limit where
SD is extended over the whole reactant state
(SD ≡ RS), αSDRS becomes unity and kSD = k.

We stress that the present SD region differs
fundamentally from the transition state used by
TST. Indeed, SD is a part of the reactant state, it
is in equilibrium with the rest of the reactant state
by virtue of construction and does not extend over
the ds.

III. METHOD

In the following we derive an expression to es-
timate kSD in an efficient manner, where kSD be-
longs to the forward reaction. Analogous expres-
sion can be derived for the backward rate. We
start the derivation by analyzing a hypothetical,
sufficiently long trajectory featuring many reac-
tive transitions as depicted in Fig. 1. We select
segments from this trajectory which connect an
exit from one of the stable regions with the next
entry to any of the stable regions after at least one
visit of the SD. Some of these segments can be as-
sociated with a forward reactive event. In Fig. 1
we plotted these reactive segments in green while
the others (reverse reactive events and nonreactive
events) in red. We denote the total time spent by
the ith segment in SD as tiSD. We assign a reac-
tivity index N i to each segment with N i = 1 if it
is forward reactive and N i = 0 otherwise. Then
kSD can be written as follows.

kSD =
N t

ttSD
(8)

=

∑
N i∑
tiSD

(9)

=
〈N〉segments
〈tSD〉segments

(10)

In the last equation the averages are calculated
on the ensemble of trajectory segments which is
not straightforward to sample. In principle an
infinitely long ergodic NVT trajectory visits all
phase points of SD. In turn, all SD phase points
are elements of these segments. Therefore we can
generate these segments by propagating the equa-
tion of motions forward and backward from an
NVT sample of the SD phase-phase points. How-
ever, the segments obtained in this way do not
represent a proper sampling of the ensemble re-
quired in Eq. 10. This is because the probability
of sampling segment i is proportional to the time
spent within SD (tiSD). For example in Fig. 1
at the bottom panel the segment j would be sam-
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pled with the factor tjSD/t
i
SD more often than seg-

ment i. Hence to calculate properly the average
〈 〉segments we have to use an 1/tiSD weighting to
obtain the final formula:

kSD =
〈N〉segments
〈tSD〉segments

(11)

=
〈N/tSD〉NV T
〈tSD/tSD〉NV T

(12)

=

〈
N

tSD

〉
NV T

(13)

Note, that reweighting by reciprocal path lengths
also appears in TPS-based algorithms with vari-
able path length6.

The overall rate constant can be expressed as:

kDST =

〈
N

tSD

〉
NV T

∫
λ∈SD

e−βF (λ)dλ∫
λ∈RS

e−βF (λ)dλ
(14)

In practice we can employ the following pro-
cedure. First a series of equilibrium simulations
is done with appropriate umbrella potentials to
generate the FES as a function of λ. To iden-
tify the ds, committor analysis is performed, ie.
from an NVT ensemble of configurations trajec-
tories are initiated forward with momenta drawn
isotropically from a Maxwell-Boltzmann distribu-
tion and backward with reversed momenta. The
configurations are selected from the saddle region
which is defined to include the ds and the SD-s
for both the forward and reverse reactions. The
committor function p(λ) is determined as the av-
erage committor value measured at λ. After iden-
tifying ds where p(λ) = 0.5, the SD ranges are
definded. Then for both the forward and reverse
reactions the rate constants can be calculated by
post-processing the trajectory segments generated
for the committor analysis using Eqs. 7, 13, and
then 14. We stress that ∆F ‡ does not enter our
equations and our formalism does not require that
the dynamical bottleneck be at the FES maxi-
mum; thus the method provides a larger flexibil-
ity in λ selection. The width of SD is important
and our experience shows that it should cover a
region where the free energy change is of order of
kT .

In the following we show how our formalism is
related to the Bennett-Chandler-type formalisms.
To this end we select the EPF method4,25–27,
which employs an analogous definition for stable
reactant and product states. We first note that
the conceptual difference between BC-type meth-
ods and DST is that the formers measure the flux
through the ds, whereas DST counts reactive and
nonreactive events. In case of proper sampling,

both formalisms give the same, exact rate con-
stant. Comparison of the two methods can be
done only at the zero-width SD limit because of
the definition of EPF. We now demonstrate that
both formalisms lead to the same rate constant
value although for the individual trajectories the
evaluations proceed differently. At the zero-width
SD limit Eq. 14 transforms to:

kDST =

〈
N

tSD

〉
NV T

· dλ · e−βF (λ=ds)∫
λ∈RS

e−βF (λ)dλ
(15)

One can recognize the so-called unnormalized
transmission coefficient4 in our equation:

RDST =

〈
N

tSD

〉
NV T

· dλ (16)

We can compare this expression with that of the
EPF method4,25–27:

REPF =
〈
λ̇ds ·Θ(λ̇ds)χ

EPF
〉
NV T

, (17)

where χEPF = 1 if integrating backward the tra-
jectory it reaches the stable reactant region be-
fore crossing ds and integrating forward reaches
the stable product region before reaching the sta-
ble reactant region. Otherwise χEPF = 0. The
dot notation indicates time derivative. The Heav-
iside function Θ selects the positive velocities. We
can rewrite this expression by taking into account
only the non-zero contributions to the average:

REPF =

〈
χEPF

tfSD

〉
NV T

· dλ (18)

Here tfSD denotes the infinitesimal time pe-
riod spent by a reactive trajectory with velocity

dλ/tfSD during the first crossing of the SD of dλ
width. Comparing Eqs. 16 and 18 we find that
the terms of the fraction within the averages rep-
resent different quantities and it is not evident
that they yield the same NVT average. To show
this we notice that in sampling the phase-space
points belonging to SD, a given reactive trajec-

tory yields a single 1/tfSD term within the EPF

framework, whereas in the DST it gives tSD/t
f
SD

times more non-zero 1/tSD terms. For this trajec-
tory this factor exactly compensates the difference
between the lengths of the time periods in the de-
nominator. Therefore the two expressions yield
the same rate.

In case of postprocessing available trajectories,
at the zero-width SD limit our method is more
efficient than EPF. Indeed, DST exploits the full
data set available. In contrast, EPF utilizes only
those trajectories which contribute to the effective
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positive flux and throws out the others including
several reactive ones. This implies that for the
same statistical accuracy EPF requires more tra-
jectories than DST. In contrast EPF is more ad-
vantageous when trajectories are not available and
have to be generated for the rate constant calcula-
tions. We compare numerically the two methods
for alanine-dipeptide in the next section.

In summary, the main advantage of the present
method is practical: to obtain forward and back-
ward rate constants no additional calculations are
required, the necessary ingredients are available
from the simulations carried out for the explo-
ration and analysis of the FES along the putative
λ. Indeed, the NVT ensemble of the SD points
are available from the sampling of the probabil-
ity distribution of λ, whereas the trajectories are
available from the analysis of the committor func-
tion p (λ) employed to identify the true dynamical
bottleneck along the λ35. At variance with the
Bennett-Chandler-type methods, where only tra-
jectories initiated at exactly the dividing surface
(in practice within a very thin λ region) can be
utilized, here all the committor trajectories initi-
ated from the preselected finite λ region are em-
ployed. This can significantly improves the statis-
tics and can be very useful in case of transforma-
tions where the FES is very flat around the ds.
In addition, we can see that by varying the width
of the SD within the reactant state region, DST
unifies the direct, brute-force rate constant calcu-
lations (when SD covers the full reactant basin)
with the Bennett-Chandler type methods at the
zero-width limit.

IV. COMPUTATIONAL DETAILS

The CP2K program package has been used for
the calculations36. For alanine-dipeptide we have
employed the Amber force field37 in a nonperi-
odic model. Electrostatic interactions were han-
dled analytically. The integration of the equa-
tions of motion has been carried out with the
Verlet-algorithm, applying 0.3 fs time steps in the
simulations. The NVT conditions at 300 K were
maintained by coupling the system to a Nose-
Hoover global thermostat-chain. The free energy
surface as a function of Φ, and Ψ has been ob-
tained by the metadynamics method38 and plot-
ted in Fig. 2. In the simulations for obtaining
rate constants we have used a 1D projection of
Φ, and Ψ: λ = a · Φ + b · Φ + c for describing
the progress of the reaction. The a, b and c were
obtained by projecting Φ, and Ψ-s onto the line
connecting the two FES minima and rescaling the
new coordinate by setting the positions of the two
minima to 0 and 1 (a = 0.30, b = −0.36, c = 1.79).

The saddle region has been sampled by a 15
kcal/λ2 umbrella deposited at the maximum of
the 1D FES at λ = 0.57. The NVT ensem-
ble of the configurations has been recovered by
reweighting. For each sampled configuration a
trajectory was initialized with velocity taken from
a 300 K Maxwell-Boltzmann distribution and the
equations of motion were integrated for both the
forward and reverse directions till the first cross-
ing of an indicator line.

For barbaralene we have employed the BLYP
exchange correlation functional40. We have used
the double-ζ basis sets with a set of polariza-
tion functions in conjunction with the Goedecker-
Teter-Hutter41 pseudopotentials. The edge length
of the periodic cubic simulation box was 20.8
bohr. A plane-wave basis set with an energy cut-
off of 300 Ry has been used to expand the electron
densities. The Martyna-Tuckermann method42

has been employed to decouple the electrostatics
of the periodic images. The time step for integrat-
ing the Verlet-equations was 0.3 fs. NVT sam-
pling at 1000 K has been achieved by using Nose-
Hoover global thermostat. The λ for the system
was chosen as the difference of the actual bond
lengths of the breaking and forming C-C bonds
(d1 − d2), as depicted in Fig. 4. The free en-
ergy profile has been calculated directly from the
probability density histogram. SD was sampled
according to the 1000 K probability distribution
with a 15.0 kcal/bohr2 umbrella and trajectories
were initialized with velocity taken from a 1000
K Maxwell-Boltzmann distribution. We followed
again the trajectories in both forward and back-
ward directions till the first indicator line crossing.
Note that the intramolecular reaction of barbar-
alane is degenerate: the forward and backward
reactions are the same transformation, hence the
rate constants are equal.

V. RESULTS

As our first test case we have selected alanine-
dipeptide in vacuum. Alanine-dipeptide is a suit-
able model to study protein backbone conforma-
tion equilibria which play important role in the
motifs of protein folding such as α-helix and β-
sheet . In the present case we studied the tran-
sition equilibrium between the extended C5 and
the C7 equatorial conformations. To this end we
have first explored the FES as a function of the
Ramachandran Φ and Ψ torsional angles44 and
identified the corresponding free energy minima
(Fig. 2) by metadynamics. We have sampled
2000 configurations in the saddle region which
were used for the shootings. The total simula-
tion time of these trajectories was 1.06 ns. The
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FIG. 2: Definition of the reaction coordinates (Φ, Ψ),
and λ on the corresponding free energy surface (de-
picted in kcal/mol units) for the C5 
 C7eq confor-
mational change in alanine-dipeptide.

actual position of the ds was assigned to 0.57 by
the p(λds) = 0.5 definition, which coincides with
the FES maximum in this case. We have then
determined the forward and backward reaction
rates by our method. The SD-s were definded
as λ ∈ [0.40, 0.57] and λ ∈ [0.57, 0.67] intervals
for the forward and backward reactions, respec-
tively. 1167 of the sampled configurations were
in the forward SD (701 ps), whereas 833 were in
the backward SD (362 ps). A 500 ns long unbi-
ased MD simulation has been also carried out to
obtain the reaction rates for comparison. The re-
sults are collected in Table I. We can see that the
performance of the new method is very good. The
discrepancies between the rate constants obtained
with DST and those from long, unbiased trajec-
tories are less than the standard errors of their
estimation. It is important to note that the cal-
culated rate constants are also in nice agreement
with earlier calculations. In terms of transition
times the earlier results for the backward reaction
(C7eq −→ C5) are 0.1-3.0 ps (Ref. 45), 2.7 ps (Ref.
46) and 4.05 ps (Ref. 47) compare well with our
value of 1/ka−1=6.39 ps. In sharp contrast, TST
significantly overestimates the rates. While over-
estimation in general is expected from the fact
that TST neglects the correlated recrossings, our
data show that in this case their contributions are
significant for the overall rate.

FIG. 3: Deviation of the calculated rate constants
of reaction C5 −→ C7eq from the best estimate as a
function of the number of generated trajectory seg-
ments for EPF (red, square) and DST (green, circles)
methods. Inset: rate constants (in 1011 s−1 units) as
a function of the number of generated trajectory seg-
ments for EPF (red, square) and DST (green, circles)
methods. Dashed line: best estimate from direct MD.

In Fig. 3 the efficiency of our method is com-
pared with that of the EPF approach. We have
generated a new NVT ensemble of configurations
for the forward DS and for the ds (isocommittor
region). By shooting off forward and backward di-
rections with reversed momenta we have obtained
the corresponding trajectory segments and calcu-
lated the rate constants by the two methods. Fig.
3 shows that both methods converge very quickly
although in the present case DST behaves slightly
better. Note however that EPF employs an order
of magnitude less CPU time by following only a
small fraction of the trajectories. Clearly, the effi-
ciency of DST lies in its use to postprocess already
generated trajectories.

Barbaralane is a fluxional molecule featuring
an intramolecular Cope rearrangement. During
the reaction the molecule rearranges itself into
chemically identical but configurationally differ-
ent structure as shown in Fig. 4. At elevated
temperature the reaction can be sampled very
efficiently48. Curiously at this T only the Cope
reaction takes place, no other process, such as
fragmentation occurs within the simulation time.
Hence it is an ideal system to test our method.
The λ ∈ [−0.20 bohr, 0.00 bohr] interval has been
selected for the SD region. The FES and all av-
erages were calculated by taking advantage of the
inherent symmetry of the rearrangements. We
generated trajectories from 200 phase points be-
longing to the SD. These simulations summed
up to 16.3 ps overall simulation time and yielded
a rate constant of 1.926 · 1012 s−1, ie. 0.52 ps
transition time. In contrast, the unbiased MD
run has been followed for 1 ns and gave a rate
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FIG. 4: Definition of the distances, the corresponding
free energy surface and the 1D collective variable for
the Cope rearrangement of barbaralene. Units are
kcal/mol and bohr.

constant of 1.863 · 1012 s−1 which is equivalent
to a transition time of 0.54 ps. Similarly to the
alanine-dipeptide calculations, the DST rate is in
very good agreement with that obtained from di-
rect calculations. TST overestimates the inter-
conversion rate by a factor of three for barbar-
alane. Clearly, TST performs better for barbar-
alane than for alanine-dipeptide. This may be
due to the fact that the reaction coordinates em-
ployed for barbaralane are of better quality and
the corresponding transition region on the FES is
narrower49.

Additional information can be obtained from
the simulations. The ratio of the forward and
backward rate constants gives the equilibrium
constant between reactant and product states
(RS and PS):

KRS
PS =
k1

k−1
(19)

The equilibrium constant obtained from DST for
the C5 
 C7eq conformational change in alanine-
dipeptide compares nicely with that obtained
from direct calculations. The 25% underestima-
tion of TST can be attributed to the limitations
of the original TST equation (Eq. 1. ). In case

TABLE I: Comparison of the computed rate constants
and equilibrium constants with those obtained from
unbiased runs. Values are in 1011 s−1 units. Standard
error is given in parenthesis.

directc present method TSTc

ka1 0.266 (0.011) 0.257 (0.014) 1.474 (0.063)

ka−1 1.629 (0.033) 1.564 (0.068) 11.866 (0.464)

Ka 0.163 (0.006) 0.164 (0.011) 0.124 (0.007)

kb 19.26 (0.51) 18.63 (1.65) 49.63 (6.25)

aalanine-dipeptide;
bbarbaralene;
cdirect: rate constants from unbiased MD runs, TST:

from Eq. 1.

of barbaralane the K is unity by all methods ow-
ing to the degenerate nature of the its Cope rear-
rangement.

VI. CONCLUSIONS

We have developed a method to calculate rate
constant from equilibrium simulations in a rela-
tively cheap manner. The method requires the
free energy profile of the reaction, implying that
a suitable reaction coordinate is already identi-
fied. The ideas behind the method are to de-
fine the Saddle Domains within the reactant and
the product states and to recognize that the rate
kSD can be calculated very efficiently. The phe-
nomenological rate constants can be easily re-
covered by reweighting kSD with the statistical
weight of the selected SD within the full reactant
or product states. The method allows the accu-
rate estimation of the rate of rare events when
the mechanism is already known in terms of reac-
tion coordinates. If necessary, the calculated rate
constants can be used to derive activation free en-
ergies and related quantities. This can be useful
to test the applicability of a kinetic model or to
compare with previous results. Further studies
are underway to assess the efficiency of DST and
to compare it with other methods.
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