
PHYSICAL REVIEW E 91, 032110 (2015)

Congestion phenomena caused by matching pennies in evolutionary games
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Evolutionary social dilemma games are extended by an additional matching-pennies game that modifies the
collected payoffs. In a spatial version players are distributed on a square lattice and interact with their neighbors.
First, we show that the matching-pennies game can be considered as the microscopic force of the Red Queen
effect that breaks the detailed balance and induces eddies in the microscopic probability currents if the strategy
update is analogous to the Glauber dynamics for the kinetic Ising models. The resulting loops in probability
current breaks symmetry between the chessboardlike arrangements of strategies via a bottleneck effect occurring
along the four-edge loops in the microscopic states. The impact of this congestion is analogous to the application
of a staggered magnetic field in the Ising model; that is, the order-disorder critical transition is wiped out by
noise. It is illustrated that the congestion induced symmetry breaking can be beneficial for the whole community
within a certain region of parameters.
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I. INTRODUCTION

Multiagent evolutionary games on networks [1–4] consti-
tute a frequently used approach to study evolutionary processes
characteristic to biological and social systems. In these models
players are located on the sites of a network (or lattice) and their
strategies represent biological entities or individual choices.
For most of the cases the pair interactions among players are
characterized by two-player games [5].

In these evolutionary games a uniform, symmetric, two-
player, two-strategy game defines the payoffs for both play-
ers [6]. In that simple case we can distinguish only four
possible strategy pairs (henceforth strategy profiles) for the
elementary interactions. In Fig. 1 these strategy profiles are
illustrated by large boxes with white and black bullets repre-
senting the two possible strategies for each player. The actual
payoffs are denoted within these bullets. For the prisoner’s
dilemma, as for the most challenging social dilemmas, the
black and white bullets refer to defection (D) and cooperation
(C) strategies, respectively, while for the matching-pennies
game these symbols denote head and tail (two sides of a coin)
states. Henceforth, we use the abbreviated nomination of C and
D strategies and the traditional notation of payoffs introduced
for the investigation of social dilemmas [7,8].

The mentioned games represent two significantly different
behaviors, as illustrated in the flow diagrams where the edges
connect those strategy profiles that can be transformed into
each other by a single strategy change of a player. For the
symmetric two-player, two-strategy games the payoff varia-
tions of the active player from both the DD and CC strategy
profiles are equivalent. In fact, this is the reason why the sum
of the payoff variations of active players along the single loop
is zero independently of the values of S and T . Consequently,
all the symmetric two-player two-strategy games are potential
games [9–11]. For the potential games one can find a potential
(as a function of strategy profile) summarizing the driving
force for the unilateral strategy changes on the analogy of
the potential energy in physical systems. For the multistrategy
systems potential can exist if the above condition is satisfied

along all the possible loops in the space of strategy profiles.
The existence of potential is accompanied with some general
features. Namely, the maximal value of potential is achieved
at a pure Nash equilibrium; additional pure Nash equilibria are
represented by nodes without outgoing edges; and the absence
of directed loops is forbidden in the flow diagram. For the
potential games the latter feature allows that one can arrive to
one of the pure Nash equilibria when following the direction
of arrows from any initial state for the multistrategy and/or
multiagent games [12,13].

If a multiagent system is built up from two-player potential
games, then the potential for the whole system will be the
sum of the pair potentials. Blume [14,15] has shown that the
evolutionary potential games evolve into a Gibbs ensemble if
the evolution is controlled by a logit rule [16] that is similar
to the Glauber [17] or Metropolis [18] dynamics introduced
for the investigation of kinetic Ising models. In other words,
all these multiagent systems with symmetric two-strategy
interactions are equivalent to an Ising model [6,19–21].

On the contrary, the flow diagram of matching-pennies
game represents a fundamentally different interaction. In that
case the players are not equivalent and one of the players is
always motivated to change her strategy. As a result, there is
a uniform payoff increase (driving force) along the four edges
that represents a directed loop in the flow diagram. For this
game, potential does not exist and the single Nash equilibrium
is a mixed strategy profile where both players choose their
strategy at random [22,23]. The matching-pennies game can be
interpreted as a driving force creating circular transitions in the
flow diagram and probability current loops in the dynamical
graphs that can be quantified by evaluating the entropy
production [21,24]. The relevance of a conceptually similar
circular transition in biological systems was first described
by van Valen [25,26], who named this effect the Red Queen
mechanism. Similar endless races can be observed in social
systems between buyers and sellers [27], property owners and
criminals [28], males and females [29,30], or conformists and
rebels [31]. The consideration of an evolutionary multiagent
system on network with this type of interaction prescribes
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FIG. 1. Flow diagrams for two-payer, two-strategy games. The
left and right diagrams show the payoffs for the prisoner’s dilemmas
(S < 0 and T > 1) and matching-pennies game. Arrows along the
edges point towards the preferred strategy profile from the viewpoint
of a player who modifies unilaterally her strategy.

two kinds of players distributed on bipartite graphs or
lattices [32].

The evolutionary matching-pennies game and its combina-
tion with an anticoordination game were considered previously
for several structured populations [21]. In the present paper
we extend these analyses to systems where the mentioned
probability current loops are distorted by bottleneck effects
which can modify the macroscopic behavior significantly.

II. THE MODEL

Now we study spatial evolutionary games with players
located on a square lattice with periodic boundary conditions.
Each player has two strategies and collects income by playing
games with the four nearest neighbors. The pair interaction
is composed of a symmetric two-player, two-strategy game (a
social dilemma with T − S parametrization) and a matching-
pennies game. Our analysis focuses on the region of hawk-dove
games (T > 1 and S > 0) where chessboardlike strategy
arrangements occur for myopic or Glauber type strategy
updates preferred in statistical physics [21,33,34].

Both the suitable description of the chessboardlike strategy
arrangements and the application of the matching-pennies
game require the division of the square lattice into two
equivalent sublattices denoted as α = X or Y , resembling the
black and white squares on a chessboard. For this sublattice
division each site x (x ∈ X) is surrounded by four nearest
neighbors belonging to the opposite sublattice (x + δ ∈ Y ) and
vice versa. It is convenient to denote the strategies of players
at sites x and y by unit vectors as

sx,sy = D =
(

1
0

)
, or C =

(
0
1

)
. (1)

Using this traditional notation, the player’s income can be
given by a sum of matrix products

ux =
∑

δ

sx · Asx+δ, uy =
∑

δ

sy · Bsy+δ, (2)

where the summation runs over the four nearest neighbor
sites belonging to the opposite sublattice. According to the
model definition the pair interactions of nearest neighbors are
the composition of a social dilemma and a cyclic game. The

corresponding payoff matrix is given as

A =
(

ε T − ε

S − ε 1 + ε

)
, B =

( −ε T + ε

S + ε 1 − ε

)
, (3)

where ε quantifies the strength of matching-pennies compo-
nent.

During the elementary step of the evolutionary process a
player is chosen randomly and she modifies her strategy from
sx to s′

x with a probability depending on the payoff difference
(u′

x − ux) between the final and the initial states. Namely, the
strategy update probability is given as

W (sx → s′
x,s−x) = 1

1 + exp[(ux − u′
x)/K]

, (4)

where the strategy profile for the rest of players, denoted
traditionally as s−x , remains unchanged.

This transition favors the state providing a higher payoff
for the player x, and a similar rule is applied for the players of
the opposite sublattice. Notice that W (sx → s′

x,s−x) � 1 (or
0) if ux � u′

x (or ux � u′
x), while the “width” of the transient

region is proportional to K that measures the magnitude of
noise or the strength of selection. It is noteworthy that the
probability of strategy change [given by Eq. (4)] is equivalent
to those suggested by Glauber [17] for the kinetic Ising model.

For ε = 0 the above system satisfies the condition of
potential games [9] because the sum of payoff variation along
the single loop is zero, as illustrated in Fig. 1. In fact, the kinetic
Ising model and the corresponding two-strategy evolutionary
potential games are equivalent; thus, the coupling constant (J )
between the neighboring spins (sx = ±1) and the strength (h)
of the external magnetic field can be expressed by the payoff
parameters as J = (1 − S − T )/4 and h = 1 + S − T , while
K corresponds to the temperature in the thermodynamical
system [6,11,19,20]. The effect of ε on the transition from the
antiferromagnetic to the paramagnetic phase as a function of K

is investigated in a recent paper for the absence of external field
h [21]. It is found that the disturbance of the matching-pennies
component reduces the critical value of K , while the universal
(Ising type) features of the critical transition are preserved.

In the present work we explore how the stationary states
of an evolutionary social dilemmas are influenced by the
matching-pennies game in the presence of an external field
(h �= 0) representing games with S �= T − 1. In the literature
of Ising models [35], it is well described that at zero
temperature the ordered antiferromagnetic state is transformed
into the preferred ferromagnetic state if h exceeds a threshold
value proportional to J (the prefactor depends on the number
of neighbors determined by the lattice structure). On the
other hand, by increasing temperature K the system exhibits
an Ising type critical phase transition from the ordered
antiferromagnetic state to the disordered spin arrangement at
a critical point (Kc) decreasing with |h| [36–38]. Now it will
be shown that the latter robust critical transition is smoothed
out for |ε| > 0. For this purpose we first study a two-player
game exhibiting the congestion phenomenon that results in
macroscopic changes in the multiplayer systems.
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FIG. 2. Probabilities of strategy pairs as a function of ε for T =
1.5, S = 0.5 (left panel, dashed lines) and T = 1.4, S = 0.3 (right
panel, solid lines) at K = 0.3.

III. CONGESTION FOR TWO-PLAYER SYSTEM

In this section we study a two-player game with the
same dynamical rule introduced in the previous section.
In that case the system has only four microscopic states
[s = (D,D), (D,C), (C,D), or (C,C)] and the corresponding
probabilities p(s) in the stationary state can be determined
numerically by solving the suitable equations of motion for
all values of payoff parameters and noise levels. In the
absence of neighborhood, we can apply a simplified version
of the traditional pair approximation (for a brief survey,
see [6,39]). Figure 2 compares the configuration probabilities
in dependence of ε for the all the four possible strategy
pairs at a fixed noise level. The dashed lines in the left
panel of Fig. 2 represent the behavior when the (D,D) and
(C,C) strategy pairs appear with the same probability for
arbitrary values of ε. This is equivalent to the h = 0 case for
the terminology of the Ising model. Here p(D,C) = p(C,D)
for any values of ε and all four configuration probabilities
tend to 1/4 if the matching-pennies components dominate
the game, as discussed in Ref. [21]. The latter behavior
reflects the fact that the matching-pennies game has only
one mixed Nash equilibrium when both players choose their
strategies at random. Notice furthermore that the variations in
the configuration probabilities are even functions of ε.

Significantly different behavior can be observed if 1 +
S − T = h �= 0 even for ε = 0. The right plot of Fig. 2
shows a situation when the preferred (C,D) and (D,C)
strategies are present with the same high probability, while
p(D,D) > p(C,C) is obtained for the payoff parameters given
in the caption of Fig. 2. It is emphasized that in the absence
of a matching-pennies component the system satisfies the
condition of detailed balance; that is, the forward and backward
transitions appear with the same probabilities along the four
edges of the flow diagram, as illustrated in the left plot of
Fig. 3.

The presence of the matching-pennies component, how-
ever, breaks the detailed balance and induces a probability
current through the four-edge loop with a strength character-
ized by the difference of transition frequencies between the
forward and backward directions along the four edges. In the

ε=0 ε=0.1

FIG. 3. Configuration probabilities are illustrated by the heights
of columns for the absence (left plot) and presence (right plot)
of a matching-pennies component for T = 1.4 and S = 0.3. In
the right plot the directed ellipse illustrates the emergence of a
probability current loop that modifies the configuration probabilities
via a bottleneck effect and the white arrows on the faces of the
columns show how the probabilities change due to the congestion
phenomenon.

steady state these probability currents should be equivalent
due to Kirchhoff laws [40]. This uniform probability current
modifies the configuration probabilities p(s) and destroys the
equivalence between (D,C) and (C,D) configurations because
the (D,D) and (C,C) states represent different barriers (widths
of bottleneck) for the probability current flow. As a result,
p(D,C) [p(C,D)] increases [decreases] linearly with with the
strength of the matching-pennies component for small values
of ε. The white arrows in Fig. 3 show that at the bottleneck
states the corresponding probabilities increase because it
happens before the narrower bottleneck, while the probability
of the fourth should be reduced because

∑
s p(s) = 1.

Notice that the linear dependence on ε implies that the
behaviors of p(D,C) and p(C,D) are exchanged when
reversing the sign of ε, which is accompanied with a reversal of
probability current, too. For high values of ε the system tends
towards a uniform strategy distribution, as mentioned above.
Consequently, if ε is increased, then p(C,D) exhibits a local
maximum at ε � 0.1 if T = 1.4, S = 0.3, and K = 0.3. For
the opposite sign of ε the variations of p(D,C) and p(C,D) are
exchanged, as shown in Fig. 2. The results of this congestion
phenomenon resembles the impact of a staggered magnetic
field hs (hs is positive for the sites of sublattice X and negative
on the sublattice Y ) for the antiferromagnetic Ising models that
prefers one of the ordered arrangements to the other.

The driving effect of the matching-pennies component
seems to be similar to the effect of external electric field in
driven lattice gas models [41]. For these models the external
field drives the system out off the Boltzmann distribution [42]
and generates a permanent particle transport when periodic
boundary conditions are applied. It breaks inherent symme-
tries [43] and enhances the effect of noise and the impact of
local inhomogeneities [44]. In the case of repulsive interaction,
where a similar chessboardlike ordered phase is formed in the
half-filled lattice [45,46], the order-disorder phase transition
is modified due to the particle transport [47]. Last, we note
that the effect of bottlenecks along a ring was recently studied
by considering the asymmetric exclusion process [48], which
is the simplest version of the driven lattice gases. The latter
investigation is motivated by biological experiments indicating
unidirectional circular ribosome translocations along messen-
ger RNA loops with defects or slow codons in cells [49].
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FIG. 4. Frequency of strategy C as a function of K in sublattice
X (open diamonds) and Y (open boxes) for T = 1.4, S = 0.3,
and ε = 0.1. The solid symbols indicate the same quantities for
ε = 0.

The application of the matching-pennies component in
evolutionary games induces local probability currents within
many significantly shorter loops that can be quantified even
for two neighboring players when considering the transitions
among the four possible strategy profiles for most of their
quenched neighborhood [21].

IV. CONGESTION FOR A MULTIPLAYER SYSTEM

The above-mentioned weak effect of the matching-pennies
component remains valid for each pair and it is amplified for
the multiagent games. As a result, the macroscopic system
will evolve into the preferred ordered strategy distribution
at sufficiently low noise levels. This fact is illustrated in
Fig. 4, where the frequency of strategy C [ρα(C)] is plotted
as a function of noise level K for both sublattices (α =
X,Y ). For ε = 0 this system shows an Ising type critical
transition at Kc = 0.3922(1) from the sublattice ordered
strategy arrangement to a disordered state [21]. This critical
transition, however, is smoothed out if the game includes the
matching-pennies component.

Open symbols in Fig. 4 show the Monte Carlo (MC) results
we obtained for ε = 0.1 on a square lattice with a linear size
L = 400. Each full MC step (MCS) gives a chance for every
player to change its strategy once on average. To get reliable
simulation results the sampling and relaxation times are chosen
to be ts = tr = 10 000 MCS. When reversing the sign of ε, the
strategy occupations in the sublattices are exchanged. As we
argued, this phenomenon is a straightforward consequence
of the congestion effect we described in the two-player
model. Furthermore, the sublattice occupations tend toward the
prediction of the Ising model if ε → 0 in a way resembling the
vanishing of the staggered magnetic field. Evidently, we have
to use significantly larger system sizes (L = 2000) and longer
runs (ts = tr = 106 MCS) for obtaining the reference data at
ε = 0 in order to suppress the undesired effects of the diverging
fluctuations and critical slowing down when approaching the
above-mentioned critical point.

Our numerical analysis is repeated in the full payoff
parameter region, which covers all social dilemma games at
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FIG. 5. (Color online) Frequency of strategy C as a function of
payoff parameters T and S in both sublattices for K = 0.3 and
ε = 0.1. Blue and red lines (dark and light grey, thick dashed lines
in printed version) illustrate MC data where the sublattices are
equivalent. Purple (dark grey solid) and green (light grey dotted)
lines show ρC in the sublattices X and Y respectively.

fixed values of ε and noise level (K = 0.3). The MC data are
summed in Fig. 5, where the lines are obtained by varying
T − S at fixed values of T + S. The MC results indicate the
absence of sublattice ordering, that is, ρX(C) = ρY (C), within
large regions of the prisoner’s dilemma, harmony, and stag hunt
games. The C strategies dominate equally both sublattices in
the zero noise limit if T < 1 and (T − 1 − S) < 0 and the
homogeneous D state is stable if S < 0 and (T − 1 − S) > 0
for the zero noise limit (K → 0).

Staying at the same limit, only one of the sublattice ordered
structures appears in the hawk-dove game quadrant (T > 1
and S > 0). More precisely, ρX(C) → 1 and ρY (C) → 0 if
ε > 0 and (T − 1 − S) < 0 or when ε < 0 and (T − 1 − S) >

0. Evidently, when reversing the sign of ε and (T − 1 − S)
separately, the preference between the two sublattice ordered
structures are exchanged.

The similarity between the impact of staggered mag-
netic field in the Ising model and the introduction of a
matching-pennies component in the hawk-dove game can
be demonstrated by monitoring the motion of an interface
separating the two sublattice ordered arrangements. For both
cases the visualization of the evolutionary process shows
clearly the expansion of the preferred sublattice ordered
structure via the motion of separating interface.

It is emphasized that the twofold degeneracy can be
observed only along the line T − 1 − S = h = 0 separating
regions where the chessboard and antichessboard arrange-
ments of the D and C strategies occur, as shown in Fig. 5.
It is noteworthy that Ising type critical transitions can take
place only along this line if the noise level is increased.

When decreasing the values of ε and K , the widths of
the intermediate transition regions shrink, too. Additionally,
one can observe a disordered state at close proximity to the
central point (T − 1 = S = 0) of the T − S plane, where both
the coupling constant J and the external magnetic field h

vanish in the equivalent Ising model. Evidently, the absence of
ordering will also characterize the system behavior if ε and/or
K exceeds threshold values depending on T and S.
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FIG. 6. Comparison of average payoffs versus noise (K) for
evolutionary games on square lattice at T = 1.9 and S = 0.3. Open
circles and boxes represent MC data obtained for ε = 0 and 0.1 if the
evolution is controlled by the logit rule defined by Eq. (4). The solid
line illustrates MC results obtained when the evolution is controlled
by collective pairwise strategy update [54].

V. EXPLOITATION OF CONGESTION

The systematic analysis of the evolutionary games has
highlighted the existence of many different mechanisms
enhancing the total income of societies even for the cases
of social dilemmas (for a survey, see [4,6,50,51]). It is
already known that the total income of a society can be
influenced by the game itself (payoffs and strategy set), the
connectivity network, the dynamical rules including the noise
level, and allowing coevolutionary processes in all ingredients
of the systems. In the light of these results the utilization of
congestion phenomenon emerges directly. The relevance of
this question is stressed by recent experiments investigating
human behavior in real-life situations involving the matching-
pennies component in the payoffs [31,52,53].

The above results justify that the main impact of matching
pennies is related to the preference of one of the chessboardlike
strategy arrangements that suppresses the critical transition
related to the existence of two equivalent (optimal) ordered
strategy arrangements. As a result, the preferred structure
dominates the system behavior if K > Kc within the region
of hawk-dove games. The latter effect can increase the total
income because of the reduction of the length of interfaces
responsible to the loss in the total payoff. Conceptually similar
congestion induced increase of collective income may be
expected in human societies.

For an illustration of the mentioned phenomenon we
compare the average payoffs as a function of noise K for three
different evolutionary rules, whereas the payoff parameters
(T and S) are fixed. For the selected payoffs (T = 1.9 and
S = 0.3) the maximum average payoff [2(T + S)] is achieved
if the C and D strategies form a chessboardlike structure in the
zero noise limit. It is emphasized that the matching-pennies
component does not affect the average payoff because it is a
zero-sum game.

Figure 6 illustrates that the presence of a matching-pennies
component increases the average payoff for the given payoff

parameters. The most relevant increase occurs in the vicinity
of the critical noise level [Kc(T = 1.9,S = 0.3) = 0.590(4)].
The importance of the congestion phenomenon becomes more
striking when the average payoff is compared to results
obtained for other types of dynamical rules. Within the hawk-
dove region the imitation-based rules cannot be considered as
an adequate reference because the imitation of the neighboring
strategy prevents the formation of the optimal strategy arrange-
ment [55]. Up to now one of the highest average payoffs is
achieved by the application of the collective pairwise strategy
update [54], where the stochasticity is introduced via a noise
parameter K , too. For the latter rule the fraternal players take
into consideration the coplayer’s income. The corresponding
MC data of the average payoffs are illustrated by the solid
line in Fig. 6. Accordingly, there is a region of K where
the introduction of the matching-pennies payoffs provide the
highest average income for the whole population.

VI. SUMMARY

In this paper we have studied two-strategy evolutionary
games on a square lattice when matching-pennies games with
a strength ε are added to the payoffs in order to modify the
interactions between neighboring players. Here a matching-
pennies game represents the simplest cyclic dominant game
for the description of the Red Queen effect in two-strategy
games if the evolutionary process is controlled by the logit
rule resembling the Glauber dynamics in statistical physics.
In that case the matching-pennies component of the pair
interactions can be considered as a microscopic driving force
that destroys the detailed balance by inducing probability
current loops throughout the four microscopic states for each
pair interaction.

The presence of the matching-pennies component elim-
inates the equivalence between the players residing in the
two sublattices. Additionally, the equivalence between the
two ordered (chessboard- and antichessboardlike) strategy
distributions is also destroyed via a contagion mechanism
affecting the configuration probabilities if the disfavored
strategy pairs [e.g., (D,D) and (C,C)] would be present with
different probabilities at ε = 0. The direction of preference
varies with the sign of ε. Note that the presence of both
ordered phases with equal weights is disadvantageous because
along the separating interfaces frustrating players cannot enjoy
sufficiently high payoff. This ambiguity can be resolved by the
matching-pennies component in a desired way.

Finally we emphasize that similar cyclic dominance can
be created by the rock-paper-scissors component in three-
strategy evolutionary games for equivalent players, as reported
for the description of many systems (for a survey, see
Refs. [3,4,6,11]). In the latter cases, however, the matching-
pennies components and their effects can be recognized within
all the 2 × 2 subgames where the interacting players are
limited to using two different strategy pairs. The latter feature
underlines the importance of the matching-pennies games
because it can be included within the 2 × 2 subgames for
most of the symmetric n × n (n > 2) matrix games.
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