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functions. We also consider the question about the bentness of certain Boolean functions introduced
by Carlet when the C-condition introduced by him doesn’t hold.
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1. Introduction

In [5], a criterion was developed for subsets of a finite abelian group to be difference sets with
specified parameters. The criterion was in terms of polynomial conditions on their characteristic vectors.
This opens up the possibilities of algebro-geometric methods in studying difference sets. Recall that for a
finite group G of order v and integers k, λ, a subset D of G is called a difference set of G with parameters
(v, k, λ), or (v, k, λ)-difference set of G, if |D| = k and |{(g1, g2) ∈ D × D : g1g

−1
2 = g}| = λ for any

non-identity element g ∈ G.
This paper discusses its applications in the study of difference sets and bent functions, which are

cryptographically significant. Recall that for an even positive integer t > 2, a Boolean function of t
variables is a bent function if and only if its support is a difference set in (Z/2Z)

t with parameters
(v, k, λ) where v = 2t, k = 2(t−1)±2(t−2)/2 and λ = 2(t−2)±2(t−2)/2(where signs are chosen consistently).

In Section 2, we show that the number of difference sets in an abelian group is given by the affine
Hilbert function of a certain ideal in a polynomial ring. As a special case, the same holds for the number
of bent functions of an even dimension. It may be pointed out that the count of bent functions is an
important unresolved issue and even the known bounds for it are quite weak, see [9] for the details. It is
hoped that Computer Algebra software like Macaulay2, Singular, which facilitate computation of Hilbert
functions, will play a role in enhancing our knowledge in this direction.
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In Section 3, the criterion of [5] is reformulated to characterize those exchanges of elements of a
difference set which again lead to a difference set. The formulation is in terms of certain values of a
polynomial function. In subsequent sections, this criterion is applied to establish non-bentness of an
infinite familiy of certain functions introduced by Carlet in [2], which we now introduce.

Let F2 = {0, 1} be the field with two elements and let m be a positive integer and t = 2m. For any
x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Fm2 , let x · y =

∑m
i=1 xiyi ∈ F2. Let L be an F2-subspace of Fm2 ,

L⊥ = {y ∈ Fm2 : x · y = 0 for all x ∈ L} be the orthogonal complement of L and let 1L⊥ : Fm2 → F2 be
defined by 1L⊥(x) = 1 if x ∈ L⊥ and 1L⊥(x) = 0 otherwise. For a permutation π of Fm2 , consider the
function f(π,L) : Ft2 = Fm2 × Fm2 → F2 be defined by

f(π,L)(x, y) = x · π(y) + 1L⊥(x).

Carlet found a class of bent functions called C-class of bent functions. For this purpose, he introduced
C-condition on (π, L) thus : (π, L) satisfies the C-condition if and only if for any a ∈ Fm2 , π−1(a+L) is a
flat (i.e. an affine subspace) in Fm2 . He then showed that C-condition is sufficient for bentness of f(π,L),
that is, if (π, L) satisfies C-condition then f(π,L) is a bent function. The class of bent functions obtained
in this manner is called the C-class of bent functions. The C-condition was further explored in [7]. But it
is not known that failure of C-condition by (π, L) implies non-bentness of f(π,L). Thus we need another
machinary to prove non-bentness of f(π,L). As supports of bent functions are difference sets, the results
of [5] become relevant.

In this paper, we consider π defined by

π(x1, . . . , xm) = ((x1 + P (x2, . . . , xm)), x2, . . . , xm)

for all (x1, . . . , xm) ∈ Fm2 , where P (X2, . . . , Xm) ∈ F2[X2, . . . , Xm]. Thus π is induced by an important
type of polynomial automorphisms of Fm2 , called elementary automorphisms, a generating set of the so
called tame automorphism group, see [10]. For several classes of (π, L), we decide when the C-condition
is satisfied and in some examples where it is not satisfied, we conclude the non-bentness of f(π,L).

2. Counting the difference sets

Let G =
∏t
l=1

(
Z
nlZ

)
be an abelian group and let v = |G|. For any il ∈ Z

nlZ ; 1 ≤ l ≤ t, let
i∗l ∈ {0, 1, . . . , nl − 1} be such that il = i∗l + nlZ. For any subset T of G, α = (αg : g ∈ G) ∈ Cv is
called the point representation or characteristic vector of T if αg = 1 for g ∈ T and αg = 0 otherwise.
Let X1, . . . , Xt be independent variables over C and let Ag, g ∈ G be v independent variables over
C[X1, . . . , Xt]. Letting X = (X1, . . . , Xt) and A = (Ag : g ∈ G), we define Ψ = Ψ(X,A) ∈ C[X,A] by

Ψ =

 ∑
(i1,...,it)∈G

Ai1···itX
i∗1
1 · · ·X

i∗t
t

 ∑
(i1,...,it)∈G

Ai1···itX
n1−i∗1
1 · · ·Xnt−i∗t

t


− λ

 ∑
(i1,...,it)∈G

X
i∗1
1 · · ·X

i∗t
t

− (k − λ).

Further let U = {ξ = (ξ1, . . . , ξt) ∈ Ct : ξnll = 1 for all 1 ≤ l ≤ t} and Pg(A) = A2
g − Ag ∈ C[A] for

all g ∈ G. In Theorem 3.2 of [5], we have given a polynomial criterion for (v, k, λ) difference set in G as
follows :

Theorem 2.1. For α = (αg : g ∈ G) ∈ Cv, α is a point representation of a (v, k, λ) difference set in G if
and only if α satisfies the equations Pg(A) = 0 for all g ∈ G, and Ψ(ξ, A) = 0 for all ξ = (ξ1, . . . , ξt) ∈ U .
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As a consequence, (v, k, λ) difference sets in G are in one-to one correspondence with the points of the
zero-dimensional affine algebraic set V (Ψ(ξ, A), Pg(A) : ξ ∈ U, g ∈ G) = {α ∈ Cv : Ψ(ξ, α) = 0 for all ξ ∈
U,Pg(α) = 0 for all g ∈ G}. This brings us to the concept of affine Hilbert function of an ideal in a
polynomial ring. To define this, let R = k[Z1, . . . , Zr] be the polynomial ring in r variables over a field
k and for a non-negative integer s, let R≤s = {f(Z1, . . . , Zr) ∈ R : deg f ≤ s}. For an ideal I of R, let
I≤s = I ∩ R≤s. Note that R≤s is a finite dimensional k-vector space and I≤s is its subspace. We define
the affine Hilbert function of I as the integer valued function aHFI of non-negative integers such that
aHFI(s) = dimk

(
R≤s
I≤s

)
. It turns out that there is a polynomial, called affine Hibert Polynomial of I

and denoted by aHPI , whose values coincide with the values of the affine Hilbert function of I for large
integer values of s. Letting I(V ) = {f(Z1, . . . , Zr) ∈ R : f(z1, . . . , zr) = 0 for all (z1, . . . , zr) ∈ V } for
V ⊂ kr, Exercise 11 on p. 475 of [3] shows that if |V | is finite then aHPI(V ) is the constant polynomial
|V |. We now apply this to V = V (Ψ(ξ, A), Pg(A) : ξ ∈ U, g ∈ G) to get the following

Corollary 2.2. The number of (v, k, λ)-difference sets in the group G =
∏t
l=1

(
Z
nlZ

)
is given by aHPJ(s)

for any s ∈ C where J is the ideal of C[A] generated by {Ψ(ξ, A), Pg(A) : ξ ∈ U, g ∈ G}.

Proof. In the light of the above discussion, the proof will be complete if we show that I(V (J)) = J .
By Strong Hilbert Nullstellensatz (Theorem 6 on p. 176 of [3]), I(V (J)) =

√
J . This reduces our work

to showing that
√
J = J . This follows from Theorem 8.14 on p. 343 of [1], since Pg(A) is square-free and

C is perfect.

Remark 2.3. In stead of the affine Hilbert Polynomial of J , we could use the Hilbert Polynomial of the
homogenization Jh of J as well. In some computational software, Hilbert Polynomial of a homogeneous
ideal in a graded ring is easier to deal with, hence we also give an alternate formulation of the above
corollary. Let B be an indeterminate over C[A] and let C[A]h = C[A][B]. The homogenization Jh

is the ideal of C[A]h generated by {fh : f ∈ J}, where for any f ∈ C[A], fh ∈ C[A]h is defined by
fh(A,B) = Bdeg(f)f

(
Ag
B : g ∈ G

)
. To obtain a finite generating set of Jh, note that by Theorem 4 on p.

388 of [3], if S is a Grob̈ner basis of J then {fh : f ∈ S} is the Grob̈ner basis of Jh. To define Hilbert
Function HFJh of Jh, for any non-negative integer s, consider the k-vector spaces

C[A]hs = {f ∈ Rh : f = 0 or f is homogeneous of degree s}

and Jhs = Jh ∩C[A]hs . We define HFJh(s) = dimk

(
C[A]hs
Jhs

)
. By Theorem 12 on p. 464 of [3], aHFJ(s) =

HFJh(s) for all non-negative integers s. This allows us to replace the affine Hilbert Function aHFJ by
the Hilbert Function HFJh(s).

Remark 2.4. Corollary 2.2 also gives a count of all bent functions of t variables. Since the set of all bent
functions with supports of size 2(t−1) + 2(t−2)/2 and the set of those with supports of size 2(t−1)− 2(t−2)/2

are disjoint of same cardinality, the count of the bent functions in t variables for an even t is given by
2HFJh(s) where (v, k, λ) =

(
2t, 2(t−1) + 2(t−2)/2, 2(t−2) + 2(t−2)/2

)
.

3. A difference set criterion

Theorem 2.1 imposes some restrictions on exchanges of elements of a (v, k1, λ1) difference set to get
another (v, k2, λ2) difference set. By introducing a complex valued polynomial ∆(D1, D2)(X1, . . . , Xt),
we make these restrictions explicit, in terms of its certain values. Alternately, Theorem 2.1 can also be
phrased in the language of group characters, following Theorem 11.18 on p. 224 of [8].

Let G =
∏t
l=1

(
Z
nlZ

)
be an abelian group. For any il ∈ Z

nlZ ; 0 ≤ l ≤ t, let i∗l ∈ {0, 1, . . . , nl − 1} be
such that il = i∗l + nlZ.
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For any T ⊂ G, let

ρG(T )(X1, . . . , Xt) =
∑

(i1,...,it)∈T

X
i∗1
1 · · ·X

i∗t
t ∈ C[X1, . . . , Xt].

Let U = {(ξ1, . . . , ξt) ∈ Ct : ξnll = 1 for all 1 ≤ l ≤ t}. For any (ξ1, . . . , ξt) ∈ U and (i1, . . . , it) ∈ G, we
define ξi11 · · · ξ

it
t = ξ

i∗1
1 · · · ξ

i∗t
t .

Now let v = |G| and k, λ be non-negative integers. For any D ⊂ G, let D(−1) = {−d : d ∈ G}. In
(3.2∗) of [5] it was proved that

D is a (v, k, λ) difference set in G if and only if

ρG(D)(ξ1, . . . , ξt)ρG(D(−1))(ξ1, . . . , ξt)− λρG(G)(ξ1, . . . , ξt)− (k − λ) = 0

for all (ξ1, . . . , ξt) ∈ U.

Note that for any ξ ∈ C with |ξ| = 1, we have ξ−1 = ξ̄, the complex conjugate of ξ. It follows that
ρG
(
D(−1)) (ξ1, . . . , ξt) is the complex conjugate of ρG(D)(ξ1, . . . , ξt) and hence we get

D is a (v, k, λ) difference set in G if and only if
|ρG(D)(ξ1, . . . , ξt)|2 − λρG(G)(ξ1, . . . , ξt)− (k − λ) = 0

for all (ξ1, . . . , ξt) ∈ U. (1)

Now let us assume ni = 2 for all i = 1, . . . , t then ρG(D)(ξ1, . . . , ξt) ∈ R. Further ρG(G)(ξ1, . . . , ξt) =
0 if ξi 6= 1 for some i ∈ {1, . . . , t}, while ρG(D)(ξ1, . . . , ξt) = k and ρG(G)(ξ1, . . . , ξt) = v if ξi = 1 for all
i ∈ {1, . . . , t}. This has the following consequence :

If ni = 2 for all i = 1, . . . , t then D is a (v, k, λ) difference set in G if and only if for any
(ξ1, . . . , ξt) ∈ U

(ρG(D)(ξ1, . . . , ξt)) =

{
k if ξi = 1 for all i ∈ {1, . . . , t}
±
√
k − λ otherwise.

(2)

Now suppose D1 is a (v, k1, λ1) difference set in G and D2 ⊂ G. Let

∆(D1, D2)(X1, . . . , Xt) =ρG(D1 \D2)(X1, . . . , Xt)− ρG(D2 \D1)(X1, . . . , Xt).

Then we have

∆(D1, D2)(X1, . . . , Xt) = ρG(D1)(X1, . . . , Xt)− ρG(D2)(X1, . . . , Xt)

and hence:

If ni = 2 for all i = 1, . . . , t and D1 is a(v, k1, λ1) difference set in G then D2

is a (v, k2, λ2) difference set in G if and only if for any ξ = (ξ1, . . . , ξt) ∈ U

∆(D1, D2)(ξ) ∈



{k1 − k2}
if ξi = 1 for all i ∈ {1, . . . , t};

{
√
k1 − λ1 −

√
k2 − λ2,

√
k1 − λ1 +

√
k2 − λ2}

if ρG(D1)(ξ) =
√
k1 − λ1;

{−
√
k1 − λ1 −

√
k2 − λ2,−

√
k1 − λ1 +

√
k2 − λ2}

if ρG(D1)(ξ) = −
√
k1 − λ1.

(3)
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Moreover, if (v, k1, λ1) = (v, k2, λ2) then

D2 is a (v, k1, λ1) difference set in G if and only if for any ξ = (ξ1, . . . , ξt) ∈ U

∆(D1, D2)(ξ) ∈



{0}
if ξi = 1 for all i ∈ {1, . . . , t};

{0, 2
√
k1 − λ1}

if ρG(D1)(ξ) =
√
k1 − λ1;

{−2
√
k1 − λ1, 0}

if ρG(D1)(ξ) = −
√
k1 − λ1.

(4)

4. The analysis of C-condition

In the rest of the paper, we continue with the notation and terminology introduced in Section 1.
Moreover we identify Fr12 × · · · × Fru2 with Fr1+···+ru2 in a natural way. Also for any integer u ≥ 0, we
denote by 0u the element of Fu2 whose all components are 0 and by 1u the element of Fu2 whose all
components are 1.

To search for examples when C-condition is not satisfied, we study the C-condition for (π, L).

Since for any x ∈ F2, x2 = x, by reducing all the exponents of variables mod 2, without loss of
generality we can assume

P (X2, . . . , Xm) =

m−1∑
`=0

∑
2≤i1<i2<···<i`≤m

αi1···i`Xi1 · · ·Xi`

where αi1···i` ∈ F2 for all 2 ≤ i1 < i2 < · · · < i` ≤ m.

To search for examples when C-condition is not satisfied, the search space is provided by the following:

Theorem 4.1. Let m ≥ 2 and s ∈ [1,m] be integers.
(A) Let L = {(x1, . . . , xs,0m−s) : xi ∈ F2, 1 ≤ i ≤ s} be a linear subspace of Fm2 . Then C-condition is
satisfied by (π, L).
(B) Let L = {(0s, xs+1, . . . , xm) : xi ∈ F2, s + 1 ≤ i ≤ m} be a linear subspace of Fm2 . If αi1···i` = 0 for
all (i1, . . . , i`) such that |{ij : ij > s}| ≥ 2 then C-condition is satisfied by (π, L).
(C) Let L = {(0s, xs+1, . . . , xm) : xi ∈ F2, s + 1 ≤ i ≤ m} be linear subspace of Fm2 . If αi1···i` = 1 for
some (i1, . . . , i`) such that |{ij : ij > s}| ≥ 2 then C-condition is not satisfied by (π, L).

Moreover in (A) and (B), f(π,L) is a C-class bent function.

Proof. The proof is based on the following observation :

A nonempty subset F ⊂ Fm2 F is a flat
⇔ F − b is a subspace of Fm2 for some b ∈ F
⇔ F − b is a subspace of Fm2 for all b ∈ F. (5)

We will apply this when F = π−1(a+ L) and b = π−1(a) where a ∈ Fm2 .

(A) For any a = (a1, . . . , am) ∈ Fm2 we see that a + L = a∗ + L where a∗j = aj if j > s and
a∗j = 0 otherwise. Thus we can assume, without loss of generality, that aj = 0 for j ≤ s. Therefore
a+ L = {(x1, . . . , xs, as+1, . . . , am) : x1, . . . , xs ∈ F2}. It is enough to show that π−1(a+ L)− π−1(a) is
a subspace of Fm2 for all a = (0s, as+1, . . . , am) ∈ Fm2 .

143



P. H. Keskar, P. Kumari / J. Algebra Comb. Discrete Appl. 8(2) (2021) 139–149

Clearly, π−1(a+L)−π−1(a) ⊂ L and they have same cardinality. Since |L| is finite, we get π−1(a+L)−
π−1(a) = L.

Thus π−1(a + L) − π−1(a) is a subspace for all a = (0s, as+1, . . . , am) ∈ Fm2 . Hence (π, L) satisfies
the C-condition.

(B) For any a = (a1, . . . , am) ∈ Fm2 we see that a + L = a∗ + L where a∗j = aj if j ≤ s and
a∗j = 0 otherwise. Thus we can assume, without loss of generality, that aj = 0 for j > s. Therefore
a + L = {(a1, . . . , as, xs+1, . . . , xm) : xs+1, . . . , xm ∈ F2}. Consequently it is enough to show that
π−1(a+ L)− π−1(a) is a subspace of Fm2 for all a = (a1, . . . , as,0m−s) ∈ Fm2 .

For any (i1, . . . , i`), if αi1···i` = 1 then
∏
i∈{ij :ij≤s} ai is a constant in F2, and |{ij : ij > s}| ≤ 1. So

for any a = (a1, . . . , as,0m−s) ∈ Fm2 ,

π−1(a+ L)− π−1(a) = {(l(xs+1, . . . , xm),0s−1, xs+1, . . . , xm) : xs+1, . . . , xm ∈ F2}

where l(Xs+1, . . . , Xm) ∈ F2[Xs+1, . . . , Xm] is a polynomial of degree ≤ 1.
Now for any u, v ∈ π−1(a+ L)− π−1(a) and α, β ∈ F2, where

u = (l(xs+1, . . . , xm),0s−1, xs+1, . . . , xm) and
v = (l(x∗s+1, . . . , x

∗
m),0s−1, x

∗
s+1, . . . , x

∗
m),

αu+ βv = α(l(xs+1, . . . , xm),0s−1, xs+1, . . . , xm) + β(l(x∗s+1, . . . , x
∗
m),0s−1, x

∗
s+1, . . . , x

∗
m)

= (αl(xs+1, . . . , xm) + βl(x∗s+1, . . . , x
∗
m),0s−1, αxs+1 + βx∗s+1, . . . , αxm + βx∗m)

Now π−1(a+0m)−π−1(a) = 0m. Therefore l(Xs+1, . . . , Xm) is a polynomial with no constant term.
Hence l(Xs+1, . . . , Xm) is a linear transformation. Then

αu+ βv = (l(αxs+1 + βx∗s+1, . . . , αxm + βx∗m),0s−1, αxs+1 + βx∗s+1, . . . , αxm + βx∗m),

therefore αu+ βv ∈ π−1(a+ L)− π−1(a).

As a consequence, π−1(a+ L)− π−1(a) is a subspace of Fm2 for all a = (a1, . . . , as,0m−s) ∈ Fm2 and
hence (π, L) satisfy C-condition.

(C) We classify nonzero terms of P (X2, . . . , Xm) in two types.

Type 1 : corresponding to (i1, . . . , i`) such that |{ij : ij > s}| ≥ 2,

Type 2 : corresponding to (i1, . . . , i`) such that |{ij : ij > s}| < 2.

Let T1 = Xi∗1
· · ·Xi∗

`∗
be minimal among all nonzero terms of P (X2, . . . , Xm) of Type 1 with the

divisibility partial order. Hence for every nonzero term T 6= T1 of Type 1 of P (X2, . . . , Xm) corresponding
to (i1, . . . , i`) , there exists 1 ≤ j ≤ ` such that ij 6∈ {i∗1, . . . , i∗`∗}, and therefore T is divisible by Xij . For
any a = (a1, . . . , am) ∈ Fm2 we see that a + L = a∗ + L where a∗j = aj if j ≤ s and a∗j = 0 otherwise.
Thus we can assume, without loss, that aj = 0 for j > s. Therefore a+ L = {(a1, . . . , as, xs+1, . . . , xm) :
xs+1, . . . , xm ∈ F2}. In view of (5), we want to show that π−1(a+ L)− π−1(a) is not a subspace of Fm2
for some a = (a1, . . . , as,0m−s) ∈ Fm2 .

Let aj = 1 for all j = i∗u ≤ s and aj = 0 for any j ∈ {1, 2, . . . , s} \ {i∗1, . . . , i∗`∗}. Since any term of
P (X2, . . . , Xm) of Type 1 except T1 is divisible by Xij for some ij 6∈ {i∗1, . . . , i∗`∗}, in addition if we let
xj = 0 for all j ∈ {s+ 1, . . . ,m} \ {i∗1, . . . , i∗`∗} then

π−1(a1, . . . , as, xs+1, . . . , xm) =

((
a1 + l(xs+1, . . . , xm) +

`∗∏
r=s0

xi∗r

)
, a2, . . . , as, xs+1, . . . , xm

)
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where s0 = min{j ∈ {1, . . . , `∗} : i∗j > s} and l(Xs+1, . . . , Xm) is a polynomial of degree ≤ 1 coming from
terms of Type 2. Therefore, in this case,

π−1(a+ L)− π−1(a)

=

{((
l(xs+1, . . . , xm)− l(0m−s) +

`∗∏
r=s0

xi∗r

)
,0s−1, xs+1, . . . , xm

)
: xs+1, . . . , xm ∈ F2

}
.

For s0 ≤ j ≤ `∗, let ei∗j = (xs+1, . . . , xm) be such that xi∗j = 1 and xi = 0 for i 6= i∗j and

let fi∗j = π−1(a + (0s, ei∗j )) − π−1(a). Then fi∗j =
(
l(ei∗j )− l(0m−s),0s−1, ei∗j

)
, as xi∗u = 0 for

u 6= j. Now fi∗j ∈ π−1(a + L) − π−1(a) for all s0 ≤ j ≤ `∗. On the other hand,
∑`∗

j=s0
fi∗j =(

l(
∑`∗

j=s0
ei∗j )− l(0m−s),0s−1,

∑`∗

j=s0
ei∗j

)
, as l(Xs+1, . . . , Xm) − l(0m−s) is a homogeneous linear poly-

nomial. Denoting
∑`∗

j=s0
ei∗j by (ys+1, . . . , ym), we have

∑`∗

j=s0
fi∗j = (y1,0s−1, ys+1, . . . , ym) where

y1 = l(ys+1, . . . , ym)− l(0m−s). Since
∏`∗

r=s0
yi∗r = 1, we see that

∑`∗

j=s0
fi∗j 6∈ π

−1(a+ L)− π−1(a).

As a consequence, π−1(a + L) − π−1(a) is not a subspace of Fm2 and hence (π, L) does not satisfy
C-condition.

5. Non-bentness of an infinite family

The violation of C-condition by (π, L) is not sufficient to show f(π,L) is not bent. Using the adaptation
of difference set criterion from Section 3, we will show the non-bentness of f(π,L) for several (π, L) in
every even dimension. We require the following

Lemma 5.1. Let m ≥ 3 and 1 ≤ s ≤ m− 2 be integers. Then∑
(xs+1,...,xm)∈Fm−s2

(−1)(
∑m
i=s+1 xi+

∏m
i=s+1(xi+1)) = −2.

Proof. More generally, we will prove : for any j = s, s+ 1, · · · ,m− 1,∑
(xj+1,...,xm)∈Fm−j2

(−1)(
∑m
i=j+1 xi+

∏m
i=j+1(xi+1)) = −2. (†)

We prove (†) by induction on u = m− j. If u = 1, we have j = m− 1. Since∑
xm∈F2

(−1)(1+(xm+1))(−1)xm = 2,

(†) holds for u = 1.

Assume (†) for u = ν where ν ≤ m− 2 and let u = ν + 1, that is, j = m− ν − 1. Now

∑
(xj+1,...,xm)∈Fm−j2

(−1)(
∑m
i=j+1 xi+

∏m
i=j+1(xi+1))

=
∑

(xm−ν ,...,xm)∈Fν+1
2

(−1)(
∑m
i=m−ν xi+

∏m
i=m−ν(xi+1))

= −
∑

(xm−ν ,...,xm)∈Fν+1
2

(
(−1)(1+

∏m
i=m−(ν−1)(xi+1))

)(xm−ν+1)

(−1)(
∑m
i=m−(ν−1) xi)
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= −
∑

(x(m−ν)+1,...,xm)∈Fν2

(−1)(1+
∏m
i=(m−ν)+1(xi+1))(−1)(

∑m
i=(m−ν)+1 xi)

−
∑

(x(m−ν)+1,...,xm)∈Fν2

(−1)(
∑m
i=(m−ν)+1 xi)

Since
∑
xm∈F2

(−1)xm = 0,

∑
(x(m−ν)+1,...,xm)∈Fν2

(−1)(
∑m
i=(m−ν)+1) xi) =

m∏
i=(m−ν)+1

( ∑
xi∈F2

(−1)xi
)

= 0.

Moreover as (†) holds for u = ν, that is j = m− ν, we have∑
(x(m−ν)+1,...,xm)∈Fν2

(−1)(
∏m
i=(m−ν)(xi+1))(−1)(

∑m
i=(m−ν)+1 xi) = −2.

As a consequence, (†) holds for u = ν + 1. This completes the proof.

Now we come to the main result.

Theorem 5.2. Let m ≥ 3 and 1 ≤ r ≤ s ≤ m − 2 be integers. Further let L = {(0s, xs+1, . . . , xm) :
xi ∈ F2, s + 1 ≤ i ≤ m} be an m − s dimensional linear subspace of Fm2 and π(x) =(
(x1 +

∏m
i=r+1 xi), x2, . . . , xm

)
be a permutation of Fm2 . Then f(π,L) : F2m

2 → F2 is not a bent func-
tion.

Proof. Since L = {(0s, xs+1, . . . , xm) : xi ∈ F2, s+ 1 ≤ i ≤ m}
we have L⊥ = {(x1, . . . , xs,0m−s) : xi ∈ F2, 1 ≤ i ≤ s}.
Also for any y = (y1, . . . , ym) ∈ Fm2 , π−1(y) =

((
y1 +

∏m
i=r+1 yi

)
, y2, . . . , ym

)
. Therefore

f(π,L)(x, y) =

m∑
i=1

xiyi + x1

m∏
i=r+1

yi +

m∏
i=s+1

(xi + 1)

= f(x, y) + x1

m∏
i=r+1

yi

where f(x, y) =
∑m
i=1 xiyi +

∏m
i=s+1(xi + 1) is aM-class bent function in 2m variables, see p. 90 of [4].

Let D(π,L) and D denote the supports of f(π,L) and f respectively.Then

D \D(π,L) = {(x, y) ∈ D : x1

m∏
i=r+1

yi = 1}.

We know

x1

m∏
i=r+1

yi = 1 ⇐⇒ x1 = yr+1 = · · · = ym = 1.

Therefore

(x, y) ∈ D and x1
m∏

i=r+1

yi = 1

⇐⇒ y1 +

r∑
i=2

xiyi +

m∑
i=r+1

xi +

m∏
i=s+1

(xi + 1) = 1 and
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x1 = yr+1 = · · · = ym = 1

⇐⇒ y1 = 1 +

r∑
i=2

xiyi +

m∑
i=r+1

xi +

m∏
i=s+1

(xi + 1) and

x1 = yr+1 = · · · = ym = 1.

Consequently

D \D(π,L)

= {(1, x2, . . . , xm, 1 +

r∑
i=2

xiyi +

m∑
i=r+1

xi +

m∏
i=s+1

(xi + 1), y2, . . . , yr,1m−r) :

x2, . . . , xm, y2, . . . , yr ∈ F2}

and hence

|D \D(π,L)| = 2m+r−2.

Now, if D̄ denotes the complement of D in F2m
2 ,

D(π,L) \D

= {(x, y) ∈ D̄ : x1

m∏
i=r+1

yi = 1}

= {(1, x2, . . . , xm,
r∑
i=2

xiyi +

m∑
i=r+1

xi +

m∏
i=s+1

(xi + 1), y2, . . . , yr,1m−r) :

x2, . . . , xm, y2, . . . , yr ∈ F2}

and hence

|D(π,L) \D| = 2m+r−2.

Let U = {1,−1}2m. Then for any (ξ, η) ∈ U we have

∆(D,D(π,L))(ξ, η) = ξ1ηr+1 · · · ηm(η1 − 1)×∑
(x2,...,xm,y2,...,yr)∈Fm+r−2

2

ξx2
2 · · · ξxmm η

(
∑r
i=2 xiyi+

∑m
i=r+1 xi+

∏m
i=s+1(xi+1))

1 ηy22 · · · ηyrr .

Henceforth let ξ1 = · · · = ξr = 1, ξr+1 = · · · = ξs = −1, ξs+1 = · · · = ξm = 1, η1 = −1, η2 = · · · = ηm = 1.
Further let

Λ1 =
∑

(x2,...,xr,y2,...,yr)∈F2r−2
2

(−1)(
∑r
i=2 xiyi) and

Λ2 =
∑

(xs+1,...,xm)∈Fm−s2

(−1)(
∑m
i=s+1 xi+

∏m
i=s+1(xi+1)).

Then

∆(D,D(π,L))(ξ, η) = −2
∑

(xr+1,...,xs)∈Fs−r2

(Λ1Λ2)

= −2s−r+1 (Λ1Λ2) .
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Now Λ1 =
(∑

(x2,y2)∈F2
2
(−1)x2y2

)
· · ·
(∑

(xr,yr)∈F2
2
(−1)xryr

)
and∑

(xi,yi)∈F2
2
(−1)xiyi = 2 for any i = 2, . . . , r. Hence by Lemma 5.1,

∆(D,D(π,L))(ξ, η) = −2sΛ2 = 2s+1.

Since |D \D(π,L)| = |D(π,L) \D| = 2m−1, we have |D| = |D(π,L)|. If f(π,L) is a bent function, then
D(π,L) is a difference set. Thus by Ryser’s condition (see Section 3 of [5]), it follows that parameters
(v, k, λ) of D(π,L) are same as those of D, hence k−λ = 2t−2 = 22(m−1). Consequently, by (4) of Section
3, for any (ξ, η) ∈ U , ∆(D,D(π,L)) ∈ {0,±2

√
(k − λ)} = {0,±2m}.

But we have found (ξ, η) ∈ U such that ∆(D,D(π,L)) = 2s+1 6∈ {0,±2m} for any 1 ≤ s ≤ m − 2.
Therefore f(π,L) is not bent function.

Remark 5.3. The alternate tools for proving the non-bentness of f(π,L) could have been Theorem on p.
94 of [2] or Proposition 1 on p. 398 of [6]. As far as [2] is concerned, checking the required conditions is
tedious. On the other hand, to prove non-bentness of f(π,L) using [6],it is sufficient to have either (a) the
Hamming distance d(f, f(π,L)) < 2m or (b) d(f, f(π,L)) = 2m and either support A of f + f(π,L) is not a
flat or the restriction of f to A is not an affine function. Now d

(
f, f(π,L)

)
= |D \D(π,L)|+ |D(π,L) \D| =

2m+r−1. So if r > 1 then Proposition 1 of [6] doesn’t help, though it suffices for r = 1.

6. Computational results

In this section, we report some more (π, L) such that f(π,L) is not bent. This was established
through implementations of methods of previous sections as well as [5] using programs in C++ language.
In Section 5, the polynomial P (X2, · · · , Xm) contained only one term of Type 1 (as described in case (C)
of Theorem 4.1). Examples 6.1 and 6.2 contain more than one term of Type 1.

Example 6.1. Let L = {(0, 0, x3, x4) : x3, x4 ∈ F2} be a linear subspace of F4
2 and π(x) = (x1 +αx2x3 +

βx2x4 + γx3x4 + δx2x3x4, x2, x3, x4) : α, β, γ, δ ∈ F2 be a permutation of F4
2. Then f(π,L) : F4

2 × F4
2 → F2

is a C-class bent function when γ = δ = 0 and f(π,L) is not a bent function otherwise.

Let us provide some justification for this. Clearly when γ = δ = 0, then by (B) of Theorem 4.1, (π, L)
satisfies C-condition. Let D(π,L) denote the support of f(π,L). When γ = 1, for ξ = (1, 1, 1, 1,−1, 1, 1, 1) ∈
U , we see that

(
ρG(D(π,L))(ξ)

)2 − λρG(G)(ξ)− (k − λ) = −64 6= 0. When (γ, δ) = (0, 1), (α, β) 6= (1, 1),
for ξ = (1,−1, 1, 1,−1, 1, 1, 1) we have

(
ρG(D(π,L))(ξ)

)2−λρG(G)(ξ)− (k−λ) = −64 6= 0. Further when
α, β, γ, δ) = (1, 1, 0, 1), for ξ = (1,−1, 1, 1,−1, 1, 1, 1) we have

(
ρG(D(π,L))(ξ)

)2 − λρG(G)(ξ)− (k − λ) =
192 6= 0.

When α = β = γ = 0 and δ = 1, we get a special case of the family in Section 5. Using Matlab, we
have also determined that its Walsh-Hadamard spectrum (see [7]) contains -16 with multiplicity 104, 16
with multiplicity 88, each of -32 and 32 with multiplicity 8 and 0 with multiplicity 48. It has also been
verified that in the other non-bentness cases of Example 6.1, Walsh-Hadamard spectrum is not contained
in {±2m}. This provides another verification of non-bentness, following the definition in [7].

Example 6.2. Let L = {(0, 0, x3, x4, x5, x6) : x3, x4, x5, x6 ∈ F2} be a linear subspace of F6
2 and π(x) =

(x1 + x3x4 + x5x6, x2, x3, x4, x5, x6) be a permutation of F6
2. Then f(π,L) : F6

2 × F6
2 → F2 is not a bent

function.

This can be justified by observing that
(
ρG(D(π,L))(ξ)

)2 − λρG(G)(ξ)− (k − λ) = −768 6= 0 where
D(π,L) is the support of f(π,L) and ξ = (1, 1, 1, 1, 1, 1,−1, 1, 1, 1, 1, 1) ∈ U .
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7. Concluding remarks

In this paper, we have connected the count of abelian difference sets with given parameters to
computation of Hilbert functions of an ideal. There are algorithms for computation of Hilbert function.
While diffculties in implementation for large values of parameters need to be addressed, the theoretical
consequences of this connection can also be explored.

We also undertook to explore bentness of f(π,L) when (π, L) does not satisfy C-condition. Theorem
4.1 (C) helped us determine the choice of (π, L) for exploration and Sections 5 and 6 provided the results
of exploration.This work was prompted by the following questions which still await the answers.

Question 1. Is C-condition necessary for bentness of f(π,L)? If yes, then provide the proof or else
provide the counter-example.

Question 2. As a consequence of Theorem 4.1 (B) and (C), it follows that if L =
{(0s, xs+1, . . . , xm) : xi ∈ F2, s+ 1 ≤ i ≤ m} and πi(x1, . . . , xm) = (x1 + Pi(x2, . . . ,mm), x2, . . . , xm) for
i = 1, 2 are such that (πi, L) satisfies C-condition for i = 1, 2 then (π1 ◦ π2, L) also satisfies C-condition.
What can we say about bentness of f(π1◦π2,L) if we know bentness of f(πi,L) for i = 1, 2? In general, for a
given subspace L of Fm2 , is there a semigroup structure on the set of all permutations π of Fm2 such that
f(π,L) is bent? If not, what are the counterexamples?

We hope to continue our exploration further guided by these questions.
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