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Abstract. Forced vibration of non-uniform beam with nonlinear boundary condition is 

studied in this paper by proposing an iterative model combining Adomian 

Decomposition Method and modal analysis. An exponentially tapered beam with a 

hardening nonlinearity spring boundary is simulated as a case study. The model 

accuracy is proved by comparing iteration results and analysis solutions with linear and 

weakly nonlinear boundary conditions. Sin-weep nonlinear frequency spectrum is then 

obtained by the proposed model. The influence of boundary nonlinearity on the vibration 

response of non-uniform beam is analyzed. And the effect of different excitation 

amplitudes on nonlinearity in the vibration response is studied. The mathematical model 

and numerical solutions proposed in this paper can be used to solve and analysis broad 

vibration problems on general non-uniform beams with different nonlinear boundary 

conditions under various excitations. 

Key words: Nonlinear boundary, Non-uniform beam, Iterative method, Adomian 

Decomposition Method, Duhamel integral, Vibration characteristics 

1. INTRODUCTION 

In practical engineering applications, non-uniform beam structures, including 

functionally graded material (FGM) beam structures are widely used because they can 

optimize weight and change strength by changing cross-sectional area and material 

properties. Over the years, many experts and scholars have studied the dynamics of 

non-uniform beams [1-4], including vibration characteristic analysis (natural frequency and 

modal shape solution) and vibration utilization (energy harvester and stability analysis) 
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[5-9]. At the same time, the dynamics of structures with nonlinear boundary (including 

multi segment linear boundary condition) is a hot topic that has been studied in recent years. 

In real life, spring [10,11], rubber bearing [12,13], concrete and elastic material and 

foundation [14] and soil [15,16] all have nonlinear characteristics, which have been taken 

into account in the static analysis of structures, but the nonlinearity of boundary is usually 

ignored in the dynamic analysis of structures. For the vibration governing equation of beam 

structure, the boundary condition determines the result of solution. In order to obtain more 

accurate structural dynamic characteristics, it is necessary to consider the nonlinearity of 

boundary condition, so it is meaningful to study the dynamic characteristics of non-uniform 

beam structure with nonlinear boundary. 

At present, there are many methods to solve the dynamic problems of uniform beam 

structure with nonlinear boundary condition. Iterative method is one of the effective 

methods. Ma and Silva solved the fourth order differential vibration equation of uniform 

beam with nonlinear boundary by iterative method [17]. Sun and Wang studied the 

existence of monotone positive solutions for a class of elastic beam equations with 

nonlinear boundary conditions by monotone iterative method [18]. Dang and Huong 

reduced the nonlinear fourth-order problem to a series of second-order linear problems with 

linear boundary conditions, and proposed an iterative method for solving the fourth-order 

nonlinear equations of beam structures with nonlinear boundary conditions [19]. Liu and Li 

proposed a fast iterative method to transform ordinary differential equations into integral 

equations to solve nonlinear beam equations with nonlinear moment boundary conditions 

[20]. Alves et al. studied the existence of monotone positive solutions for a class of beam 

equations with nonlinear boundary conditions by monotone iterative method [21]. At 

present, the iterative method to solve the dynamic problem of uniform beam structure with 

nonlinear boundary condition is to solve the nonlinear equations about deflection. The 

deflection here has no practical physical significance, and it is more about solving a 

mathematical problem. In addition to the iterative method, the reproducing kernel method 

and the expansion method can be used to solve the nonlinear boundary problems of beam 

structures. In [22] and [23], the analytic approximate solutions of a class of fourth order 

differential equations with nonlinear boundary conditions are studied by using the iterative 

reproducing kernel method and reproducing kernel Hilbert space method, respectively. 

Geng and Cui obtained a series solution to solve the singular nonlinear second-order 

periodic boundary value problem in the reproducing kernel space [24]. Sedighi et al. 

redefined the preloading nonlinearity as the boundary condition of cantilever beam with a 

new exact equivalent function (EF) of preloading nonlinearity, and obtained the 

corresponding analytical solution by using the parameter-expansion method (PEM) [25]. Li 

and Zhang studied the existence and uniqueness of monotone positive solutions for a class 

of elastic beam equations with nonlinear boundary conditions based on a new fixed point 

theorem of generalized concave operators [26]. Sedighi et al. used the newly introduced 

equivalent function to model the preloaded nonlinear boundary conditions of the beam, and 

obtained the analytical solution of the nonlinear vibration equation of the beam by He’s 

parameter expanding method [27]. Wang et al. considered the nonlinear fourth-order 

two-point boundary value problem (BVP) of elastic beam equation, and studied the 

existence, nonexistence and uniqueness of convex monotone positive solution of elastic 

beam equation with parameter   by using the fixed point theorem of cone expansion [28]. 

In addition to the above methods, there are also a series of methods to solve the dynamic 
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problems of uniform beam with nonlinear boundary. Song uses the theorem of infinitely 

many critical points to study the existence of infinitely many solutions to the boundary value 

problem of elastic beam deflection on a fourth-order nonlinear elastic foundation that 

depends on two real parameters [29]. Mao et al. studied the nonlinear response of flexible 

structures with nonlinear general support conditions by using the modal revision method 

[30]. Rahman et al. studied the forced nonlinear vibration of Euler Bernoulli beam on 

nonlinear elastic foundation by using the improved multilevel residual harmonic balance 

method [31]. Li and Xu proposed an accurate Fourier series method for vibration analysis 

of multi span beam systems under arbitrary boundary conditions [32]. Bai and Wang 

discussed the existence of positive solutions for a class of nonlinear fourth order beam 

equations by using fixed point theorem and degree theory [33]. Wu proposed an iterative 

numerical method to solve the exact forced vibration of a cracked beam by considering the 

multiple modes and bilinear characteristics of the cracked beam [34]. 

For the non-uniform beam structure with linear boundary, especially for the general 

non-uniform beam with both cross-section width and thickness changing along the beam 

length, Adomian Decomposition Method (ADM) is a very effective method to solve its 

natural frequencies and mode shape functions [5]. The specific solving process of ADM is 

to decompose the solution of the equation and express it in the form of infinite series sum 

[35]. It is not necessary to use linearization, perturbation, iteration, model simplification, 

difference method and finite element method to solve the vibration differential equation 

with nonlinear term. Keshmiri et al. has used ADM to do the research work on solving the 

nature (mode shape functions and nature frequencies) and energy harvesting of non-uniform 

beam with introducing Taylor series [5-7]. But it is hard to obtain the general vibration 

response solution of non-uniform beam with nonlinear boundary because the boundary 

varies with time during the vibration process for the nonlinear vibration system. 

Furthermore, the mode function and natural frequency also change with the boundary. Even 

though, there are also some literatures on the dynamic problem of non-uniform beam with 

nonlinear boundary condition. Based on the Hamiltonian principle, Lin derived the 

governing differential equations for the non-uniform time-varying elastic boundary 

conditions of the pre-twisted non-uniform beam with coupled bending vibration and solved 

them by the method of separation of variables [36]. Kuo and Lee et al. transformed the 

governing differential equations into a set of self-adjoint linear fourth-order ordinary 

differential equations with variable coefficients by using the perturbation method, and 

studied the static deflection of a general elastic end-constrained non-uniform beam on 

nonlinear elastic foundation bearing axial and transverse forces [37]. Lee et al. extended the 

Mindlin-Goodman method and used the exact solution of the general elastic constraint 

non-uniform beam given by Lee and Kuo to study the dynamic and static responses of the 

non-uniform beam with non-uniform elastic boundary conditions [38]. Tsiatas proposed a 

boundary integral equation method for solving nonlinear problems of non-uniform beams 

on nonlinear three parameter elastic foundation [39]. Jang proposed an analysis method of 

moderately large deflections, which effectively considered the geometric nonlinearity 

caused by the moderately large deflections and the non-uniformity of the beam, and 

successfully and completely solved the moderately large deflections of the infinitely large 

non-uniform beam on the base of nonlinear elasticity question [40]. Lohar et al. assumed 

that the beam is on an elastic foundation and bears uniformly distributed loads. Considering 

different boundary conditions, static and dynamic parts are used to solve the 
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large-amplitude free vibration behavior of axially functionally graded beams with different 

tapers [41]. These methods are used to transform or approximate the vibration governing 

equations of non-uniform beam with nonlinear boundary. The transformation process is 

complex, and some transformed equations cannot be solved directly, so numerical 

approximation method have to be used to solve them anyway.  

From the literature review, different models and methods were proposed to study the 

vibration characteristics of uniform and non-uniform beam structure with nonlinear 

boundary, but to the best of authors’ knowledge, the solution without transforming the 

vibration governing equation to solve the vibration response of general non-uniform beam 

(linearly or nonlinearly tapered along both width and thickness of beam cross-section) with 

a nonlinear taper function describing the variation of both width and thickness along the 

length direction (including non-uniform cylinder beam) and nonlinear boundary has not 

been proposed. In this paper, the ADM method and an iteration process are introduced to 

solve, simulate and study the vibration response of non-uniform beam with nonlinear 

boundary condition. Under solid spring properties, the vibration response of the 

non-uniform beam can be solved by ADM and Duhamel integral. In the numerical example 

section, the influences of different excitation amplitudes and frequencies on boundary 

nonlinearity are studied. When the properties of the spring are determined, the proposed 

iterative method can be used to solve the vibration response of the non-uniform beam with 

nonlinear boundary.  

2. THEORETICAL MODEL 

In this section, general mathematical model and numerical progress describing and 

solving the vibration of a non-uniform beam sitting on a non-linear boundary are presented. 

The nonlinear boundary condition is considered to be with multi-linear elastic properties, 

while ADM method is used to solve the natures of the non-uniformed beam with different 

linear elastic foundation, and the iteration numerical method is applied to solve the 

vibration response considering the linear boundary condition in each short time iteration 

step.  

2.1 Vibration model of non-uniformed beam sitting on elastic foundation 

The equation of free vibration of a non-uniform beam without considering damping is 

given below, 

 

2 2 2

2 2 2

( , ) ( , )
( ) ( ) 0

w x t w x t
A x EI x

t x x


   
  

   
, (1) 

where x is the position variable along the beam length, ρ is the mass density, A(x) is the 

cross-sectional area, w(x, t) is the deflection function, t is time, E is the modulus of 

elasticity, I(x) is the second moment of area. 

The general boundary condition of the beam is defined as, 
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where 1Lk  and 2Lk  are the tension spring constants on the left end, 1Tk  and 2Tk  are the 

torsional spring constants on the right end.  

In this study, a sample non-uniform beam structure with exponentially varied circular 

cross section sitting on a nonlinear tension spring foundation is analyzed and shown in Fig. 

1. At the left fixed position, kL is a tension spring, which has a nonlinear property. Other 

non-uniform beam with general nonlinear boundary conditions can also be solved by the 

progress described below. 

With the multi-linear assumption of the non-linear spring stiffness, the vibration in each 

linear domain of kL can be solved by treating the system as a linear one. The whole nonlinear 

vibration response can be solved by iteration process with small iteration time step, while in 

each time step, the system is considered as linear with non-change spring stiffness constant. 

d

Left end

Free end

d

L

0
L

Lk

 

Fig. 1 Main and right views of an exponentially increasing tapered beam with nonlinear 

boundary condition 

For the above sample structure, its boundary condition can be expressed as below, 
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By using mode superposition method, w(x, t) in Eq. (1) can be decomposed into two 

parts, 

 
1

( , ) ( ) ( )i i
i

w x t W x q t




 , (6) 

where Wi(x) is the i-th mode shape and qi(t) is the i-th corresponding generalized coordinate 

of the free vibration response or external force. Substituting Eq. (6) into Eq. (1), one 

ordinary differential equation is obtained as, 

 

2

4 3 22
2

4 3 2

( )( )
( ) ( ) ( ) ( ) ( )

+2 + =0
( ) ( ) ( )

i i i i
i

d I xdI x
d W x d W x d W x A x W xdx dx

I x I x EI xdx dx dx


 , (7) 

where ωi is the i-th natural frequency. In order to solve the above equation, ADM is applied 

[5]. The operator form of the Eq. (7) is rewritten as, 

   2 ( ) ( )'( ) ''( )
( ) 2 '''( ) ''( )

( ) ( ) ( )

i
x i i i i

A x W xI x I x
L W x W x W x

I x I x EI x


    , (8) 

where Lx is the fourth order differential operator. 

Lx
-1 is applied on the both sides of Eq. (8) at the same time, where Lx

-1 is the fourth-order 

integral operator. 

 

2 3

1 2 3 4

1 2

( )
2! 3!

( ) ( )'( ) ''( )
2 '''( ) ''( )

( ) ( ) ( )

i

i
x i i i

x x
W x C C x C C

A x W xI x I x
L W x W x

I x I x EI x




   

 
   

 

, (9) 

where C1 to C4 are constants that can be determined by boundary conditions, the detailed 

progress defining C1-C4 can be found in [5]. 

Wi(x) is written in series form, 

 
0

( )= ( )
ii k

k

W x W x




 , (10) 

where k is the number of terms in series form. The larger the value of k is, the more accurate 

the solution is. A precise solution is often obtained with very small values of k [35]. 

Substituting Eq. (10) into Eq. (9), we have 
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For each term in the series, we can have 
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k
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Substituting Eq. (12) and Eq. (13) into Eq. (11), the i-th mode shape function, Wi(x), can 

be obtained. With different boundary conditions and structural design, the mode shape 

function from ADM can be different and hence not given here. The natural frequency can be 

obtained by introducing the mode function into the boundary condition and solving the 

eigenvalue problem. The detailed solving process of the mode shape functions and nature 

frequencies of the non-uniform beam with general linear boundary conditions can be found 

in references [5-7] and is hence not provided here.  

After the natures (natural frequencies and modes shapes) of the structure vibration are 

solved by free vibration analysis and ADM, the forced vibration response can be solved 

using the modal analysis. The forced vibration governing equation of non-uniform beam 

structure considering damping under action of F(x, t), which is from a base motion, 

sin( )Y t  , is given below, 

 

2 2 2 3

2 2 2 2

2

( , ) ( , ) ( , )
( ) ( ) + ( ) ( ) ( , )

=- ( ) sin( )

w x t w x t w x t
A x EI x C x I x F x t

t x x x t

A x Y t



  

    
  

      , (14) 

where C(x) is the strain rate damping coefficient. Y is the amplitude of the base 

displacement and   is the angular frequency of the base vibration.  

Substituting Eq. (6) into Eq. (14), the following equation can be obtained, 

 

2

2
1

2 22
2
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1 1
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i
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i

i i
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
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

 
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
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
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. (15) 

Based on the understanding from the free vibration governing equation, for the i-th 

mode of free vibration, we have 
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With the understanding from the relationship given in the above equation, both sides of 

Eq. (15) multiplied by Wj(x) (i=j) and integrated from 0 to L in space domain leads to, 
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Since in general, the damping function does not possess the orthogonality property, it is 

assumed that the structural damping is in the form of C(x)=αE where α is a constant. 

According to the orthogonality of normal vibration modes, Eq. (18) can be obtained, while 

αωi
2=2ξiωi is defined, 

 

22
2 0

2 2

0
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


, (18) 

where ξi is the modal damping ratio of the corresponding i-th order natural mode. 

Eq. (18) can be solved by Duhamel integral, and the final time domain solution for i-th 

mode is, 
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, (19) 

where 
id  is the damped frequency corresponding to the i-th vibration mode, 

2= 1-
id i i   , ( )iF   is the force coefficient corresponding to the i-th vibration mode.  

According to Eq. (12), Eq. (13) and Eq. (19), the response of the beam structure is, 
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2.2 Iteration process considering nonlinear boundary condition 

An iteration process is proposed in this section with multi-linear assumption for the 

nonlinear foundation of non-uniform beam. It is assumed that the elastic foundation in each 

short period iteration step is linear with constant stiffness constant, while the stiffness 

constant changes between different iteration steps. The premise of iterative method is that at 

t=0 s, the initial condition of vibration is known, and there is no force applied to the beam. 

At this time, the beam is considered to be at rest, and the deflection and velocity at any 

position of the beam are, 

 

( , )=0

( , )
=0

w x t

dw x t

dt







. (21) 

The step length of each iteration is Δt=tn+1-tn, 1≤n<∞, and n is the number of iteration 

steps. 

The initial condition for time t1 (t1=0 s) is, 

 

1

1

=

( , )=0

( , )
=0

t t

w x t

dw x t

dt







. (22) 

Because some variables, like time, vibration natural frequencies, mode shape functions, 

in each iteration step are different in the process of iteration of the nonlinear system, they 

are defined by iteration step subscripts. The subscript 1 represents these variables in the first 

time period/iteration step in period t1-t2. The subscript 2 represents these variables in the 

second time period/iteration step in period t2-t3 and so on. The subscript n represents these 

variables in the n-th time period/iteration step in period tn-tn+1. Detailed specific 

presentation method of variables in the iteration section is shown in Table. 1. i and j in Table. 

1 represents the i-th and j-th vibration modes, respectively. 

When the time is in t1-t2, there is no free vibration and the response of the forced 

vibration is, 

 1

1 1 1

1

1 1 1 1
1 1

- ( )

1 1 10

1
( , ) ( ) ( ) ( )

( ) sin( ( ))

i i i

i

i i

i i

i i d

t t t t

d

w x t W x q t W x

F t e t t d
  



   

 

 

  

 

     

 



 ( 1 2t t t  ).  (23) 

To simulate the nonlinearity of spring stiffness, kL is divided into n sections by different 

deflection intervals at the spring boundary location. It is considered that the value of kL 

corresponding to each deflection interval is the same, and kL, the mode shape functions and 

natural frequencies in different deflection intervals are different. By bringing each kL into 

the boundary condition, following the progress described in section 2.1, mode shape 

functions and natural frequencies can be obtained for the n-th time step (tn-tn+1) during 

iteration. The value of kL in the boundary condition of solving ( )
inW x  at time tn-tn+1 is the 

value of kL corresponding to the deflection at the spring boundary location, wn(x,t), x=0 for 
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the sample structure shown in Fig. 1, at time tn. 

Table. 1 Representation of variables in the iterative process 

Time period Variable (1≤i<∞, 1≤j<∞)  

t1≤t≤t2 

1( , )w x t  Total vibration response 

1 ( )
i

W x  i-th mode shape function 

1 ( )
i

q t ,

2

1 ( )
i

t t

dq t

dt


 
i-th corresponding generalized coordinate 

of the external force and its derivatives 

1i
 ,

1i
d  i-th natural frequency and damping frequency 

1 1( )
i

F t   
Force coefficient corresponding to the i-th 

vibration mode 

   

tn≤t≤tn+1 

( , )nw x t  Total vibration response 

( )
inW x , ( )

jnW x  i-th and j-th mode shape functions 

( , )
nfreew x t  Free vibration response 

in ,
ni

d  i-th natural frequency and damping frequency 

inA ,
inB  

Coefficients in the i-th corresponding 

generalized coordinate of free vibration 

( )
in nF t   

Force coefficient corresponding to the i-th 

vibration mode 

( )
ni

free nq t ,

( )
ni

n

free

t t

dq t

dt


 
i-th corresponding generalized coordinate of 

free vibration and its derivatives at time tn 

1( )
in nq t  ,

1

( )
i

n

n

t t

dq t

dt


 
i-th corresponding generalized coordinate of 

the external force and its derivatives at time tn+1 

( )
ni

freeq t , ( )
ni

forceq t  
i-th corresponding generalized coordinate of 

free vibration and external force during tn-tn+1 

To clarify the iteration progress, we start the derivation from the second time step, t2-t3, 

while the first step vibration solutions is only from the Duhamel integral assuming the 

structure is at rest before excitation as described in Eq. (23). During the period, t2-t3, when 

the value of kL does not change from the one in the previous period, t1-t2, we have 

1 ( )
i

W x = 2 ( )
i

W x , 1i
 = 2i

 , the free vibration response from the initial condition at t2 is, 

 
2

2 2 22 2 2
1

( , ) ( ) ( cos sin )i i

i i ii i

t

free d d
i

w x t W x e A t B t
 

 






    ( 2 3t t t  ), (24) 

where 2i
A  and 2i

B  are determined by 1 2( )
i

q t  and 
1 ( )

i
dq t

dt
 at t=t2. 

 
2 2

2 22 2 2 2 1 2( cos sin ) ( )i i

i i ii i

t

d de A t B t q t
 

 


  ; (25) 
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2 2

2 2 2

2 2

2 2 2

2

2 2 2 2

1

2 2 2 2

( cos sin )

( )
( sin cos )

i i

i ii i i

i ii

i ii i i

t

d d i d

t

d d i d

t t

t t e B

dq t
t t e A

dt

 

 

    

    









  
; (26) 

2i
A  and 2i

B  can be obtained by the above formula, 

 

2 2

2 2 2

2

2

1

2 1 2 2 1 2 2

2

( )
(( ( ) )cos( ) ( )sin( ))

=

i ii

i i ii i i

i

i

t

i d d d

t t

d

dq t
e q t t q t t

dt
B

 
    





  
; (27) 

 

2 2

2

2

1 2 2 2

2

2

( ) sin( )
=

cos( )

i i

i i i

i

i

t

d

d

q t e B t
A

t

 




 
; (28) 

During the period, t2-t3, the total vibration response is, 

 

2 2

2

2 2

2 2 2

2

2

2 2 2 2
1 1

2 2 2
1

- ( )

2 2 20

( , ) ( ) ( )= ( )( ( )+ ( ))

= ( )( ( cos sin )

1
( ) sin( ( )) )

i i i i i

i i

i i ii i

i i

i i

i

free force
i i

t

d d
i

t t t t

d

d

w x t W x q t W x q t q t

W x e A t B t

F t e t t d

 

  

 

   


 

 






  



 

      

 





( 2 3t t t  ). (29) 

where 
2

( )
i

freeq t  is i-th corresponding generalized coordinate of free vibration during t2-t3, 

2
( )

i
forceq t  is i-th corresponding generalized coordinate of the external force induced 

vibration during t2-t3. 

On the other hand, when the value of kL at time t2-t3 is different from that of t1-t2 with 

relative large boundary deflection, w(0, t), at t=t2 reaching to a different deflection interval, 

the corresponding vibration mode shape functions and generalized coordinates of free 

vibration at time t2-t3 also change. In order to calculate the generalized coordinates of free 

vibration at time t2-t3, the deflection function at time t2 need to be reassigned, 

 
2 21 2 2 2 2

1

( , ) ( , )= ( ) ( )
i i

free free
i

w x t w x t W x q t




   (30) 

where w1(x,t2) is the deflection at time t2 from the previous iteration period, t1-t2.. 

2 2( , )freew x t  is the response of the free vibration at time t2, 2 ( )
i

W x  is the mode shape 

function of the structure starting at time t2, 2 1( ) ( )
i i

W x W x , 
2 2( )
i

freeq t  is the i-th 

generalized coordinate of free vibration at time t2. 

Both sides of Eq. (30) are multiplied by 2 ( )
j

W x  and integrated on 0-L giving 
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21 2 2 2 2 20 0

1

( , ) ( ) ( ) ( ) ( )
j i ji

L L

free
i

w x t W x dx W x q t W x dx




   . (31) 

Considering the significant vibration natural frequencies and mode shapes changes due 

to the different boundary conditions with varying kL and the inevitable error in the mode 

shape functions derived by ADM method, when 
2 2( )
i

freeq t (i=1,2,3) are solved, mode shape 

functions 2 ( )
j

W x  (j=1,2,3) are introduced in Eq. (31), respectively. Through Eq. (31), if 

only the generalized coordinates of first three orders are taken consideration as an example, 

we can then obtain, 

 

2 3 13

1 1 3

1 2 1 3 2 3 1

3 1 1 2 1 3

2

2 2 1 2 20 0

2 1 2 2 20 0

2

2 2 2 2 2 2 20 0 0 0

2 2

2 2 2 2 2 20

( ) ( ( ) ( , ) ( )

( ) ( , ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ) /

( ( ) ( ) ( ) ( ) ( ) ( )

L L

free

L L

L L L L

q t W x w x t dx W x dx

W x w x t dx W x W x dx

G W x W x dx W x W x dx G W x W x dx W x dx

W x dx W x dx H W x W x dx W x W x dx





 



 

 

   

1 3 2 3 1

0 0 0

2 2

2 2 2 2 20 0 0
( ( ) ( ) ) ( ) ( ) ( ) )

L L L L

L L L

W x W x dx H W x W x dx W x dx 

   

  

, (32) 

 
2 22 3

2 2( ) ( )free freeq t G H q t   , (33) 

 

2 1 2 1 21 2

2 1 33

1

2 2 1 2 2 2 20 0

2 2 20 2

20

( ) ( ( ) ( , ) ( ) ( ) ( )

1
( ) ( ) ( ) )

( )

L L

free free

L

free L

q t W x w x t q t W x W x dx

q t W x W x dx
W x dx

 

 

 




, (34) 

where  

 
1 2 1 2 1

2 1 1 2

2

2 2 1 2 2 2 2 1 20 0 0 0

2 2 2

2 2 2 20 0 0

( ) ( ) ( , ) ( ) ( ) ( ) ( , )

( ) ( ) ( ( ) ( ) )

L L L L

L L L

W x dx W x w x t dx W x W x dx W x w x t dx
G

W x dx W x dx W x W x dx






   

  
, (35) 

 
1 2 1 3 2 3 1

2 1 1 2

2

2 2 2 2 2 2 20 0 0 0

2 2 2

2 2 2 20 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ( ) ( ) )

L L L L

L L L

W x W x dx W x W x dx W x W x dx W x dx
H

W x dx W x dx W x W x dx






   

  
, (36) 

21
2( )freeq t , 

22
2( )freeq t  and 

23
2( )freeq t  are the first 3-th generalized coordinates of free 

vibration at time t2.  

We assume the free vibration response function during time t2-t3 to be, 

 
2 2

2

2
1

2 2 2 2 2
1

( , ) ( ) ( )

= ( ) ( cos sin )

i i

i i

i i i i i

free free
i

t

i

w x t W x q t

W x e A t B t
 

 










 

 




( 2 3t t t  ), (37) 
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where 2i
A  and 2i

B  here are determined by the initial conditions of the current iteration step 

at t=t2, 2 2( )
i

freeq t  and 
2

2

( )
i

free

t t

dq t

dt


, which can be obtained from Eqs. (32-36). 

 
2 2

2 2 22 2 2 2 2( cos sin ) ( )i i

i ii i i

t

d d freee A t B t q t
 

 


  ; (38) 

  

2 2

2 2 2

22 2

2 2 2

2

2 2 2 2

2 2 2 2

( cos sin )

( )
( sin cos )

i i

i ii i i

i ii

i ii i i

t

d d i d

freet

d d i d

t t

t t e B

dq t
t t e A

dt

 

 

    

    









  
; (39) 

2i
A  and 2i

B  can hence be obtained by the above formula, 

22 2

2 2 2 2 2

2

2

2 2 2 2 2

2

( )
(( ( ) )cos( ) ( )sin( ))

=

i ii

i i i i i i

i

i

freet

i free d d free d

t t

d

q t
e q t t q t t

dt
B

 
    





  
; (40) 

 

2 2

2 2

2

2 2 2

2

2

( ) sin( )
=

cos( )

i i

ii i

i

i

t

free d

d

q t e B t
A

t

 




 
; (41) 

When kL changes from the previous iteration, during the second time step, t2-t3, the total 

vibration response is hence, 

 

2 2

2

2 2

2 2 2

2

2

2 2 2 2
1 1

2 2 2
1

- ( )

2 2 20

( , ) ( ) ( )= ( )( ( )+ ( ))

= ( )( ( cos sin )

1
( ) sin( ( )) )

i i i i i

i i

i i ii i

i i

i i

i

free force
i i

t

d d
i

t t t t

d

d

w x t W x q t W x q t q t

W x e A t B t

F t e t t d

 

  

 

   


 

 






  



 

      

 





 ( 2 3t t t  ). (42) 

For general vibration solution during the iteration, when the time is tn-tn+1, if the value of 

kL is equal to the one in previous period tn-1-tn, the total vibration response is hence, 

 

 

1 1

1

- ( )

0

( , ) ( ) ( )= ( )( ( ) ( ))

= ( ) ( ( cos sin )

1
( ) sin( ( )) )

i i i n ni i

i ni

i i n i ni i

n i n ni

i ni

ni

n n n n free force
i i

t

n n d n d
i

t t t t

n n d n

d

w x t W x q t W x q t q t

W x e A t B t

F t e t t d

 

  

 

   


 

 






  

 

 

      

 





( 1n nt t t   ).   (43) 
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where ( )
ni

freeq t  is i-th corresponding generalized coordinate of free vibration during tn-tn+1, 

( )
ni

forceq t  is i-th corresponding generalized coordinate of the external force during tn-tn+1. 

inA  and 
inB are given as follow with known 1 ( )

in nq t  from the previous iteration step, 

 

1

1 1

( )
(( ( ) )cos( ) ( )sin( ))

=

i d nn ii

i i n n i ni i i

n

i

ni

t n

i n n n d n d n n d n

t t

n

d

dq t
e q t t q t t

dt
B

 
    





 



  
;(44) 

 
1 ( ) sin( )

=
cos( )

i n ni

i i ni

i

ni

t

n n n d n

n

d n

q t e B t
A

t

 




  
; (45) 

On the other hand, if the value of kL during the time period tn-tn+1 changes from that of 

tn-1-tn, the total vibration response is, 

 

1 1

1

- ( )

0

( , ) ( ) ( )= ( )( ( ) ( ))

= ( ) ( ( cos sin )

1
( ) sin( ( )) )

i i i n ni i

i ni

i i n i ni i

n i n ni

ni

ni

n n n n free force
i i

t

n n d n d
i

t t t t

n n d n

d

w x t W x q t W x q t q t

W x e A t B t

F t e t t d

 

  

 

   


 

 






  

 

 

      

 





 ( 1n nt t t   ). (46) 

inA  and 
inB  can be obtained by the above formula with the known vibration response, 

-1( , )n nw x t , at t=tn from the previous step, 

( )
(( ( ) )cos( ) ( )sin( ))

=

i d n nn ii

i n n n n ni i i i i

n

i

ni

t free

i n free n d n d free n d n

t t

n

d

dq t
e q t t q t t

dt
B

 
    





  
; (47) 

 
( ) sin( )

=
cos( )

i n ni

n i ni i

i

ni

t

free n n d n

n

d n

q t e B t
A

t

 




 
; (48) 

where the first 3-th generalized coordinates of free vibration at time tn, ( )
ni

free nq t (i=1,2,3), 

are given as below, 
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3 13

1 1 3

1 2 1 3 2 3 1

3 1 1 2 1 3

2

10 0

10 0

2

0 0 0 0

2 2

( ) ( ( ) ( , ) ( )

( ) ( , ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ) /

( ( ) ( ) ( ) ( ) ( ) (

n

L L

free n n n n n

L L

n n n n n

L L L L

n n n n n n n

n n n n n n

q t W x w x t dx W x dx

W x w x t dx W x W x dx

M W x W x dx W x W x dx M W x W x dx W x dx

W x dx W x dx N W x W x dx W x W x









 



 

 

   

1 3 2 3 1

0 0 0 0

2 2

0 0 0

)

( ( ) ( ) ) ( ) ( ) ( ) )

L L L L

L L L

n n n n n

dx

W x W x dx N W x W x dx W x dx 

   

  

, (49) 

 
2 3

( ) ( )
n nfree n free nq t M Nq t  , (50) 

 

1 1 21 2

1 33

1

10 0

0 2

0

( ) ( ( ) ( , ) ( ) ( ) ( )

1
( ) ( ) ( ) )

( )

n n

n

L L

free n n n n free n n n

L

free n n n L

n

q t W x w x t q t W x W x dx

q t W x W x dx
W x dx

 

 

 




, (51) 

where we have,  

1 2 1 2 1

2 1 1 2

2

1 10 0 0 0

2 2 2

0 0 0

( ) ( ) ( , ) ( ) ( ) ( ) ( , )

( ) ( ) ( ( ) ( ) )

L L L L

n n n n n n n n n

L L L

n n n n

W x dx W x w x t dx W x W x dx W x w x t dx
M

W x dx W x dx W x W x dx

 




   

  
,(52) 

 
1 2 1 3 2 3 1

2 1 1 2

2

0 0 0 0

2 2 2

0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ( ) ( ) )

L L L L

n n n n n n n

L L L

n n n n

W x W x dx W x W x dx W x W x dx W x dx
N

W x dx W x dx W x W x dx






   

  
. (53) 

3. NUMERICAL STUDIES, RESULTS AND DISCUSSION 

As shown in Fig. 1, a non-uniform cylindrical beam with positive exponential 

cross-section variation function is chosen for numerical case studies. The length of the 

beam is L=0.2 m and the diameter of the left end of the non-uniform beam is d=0.01 m. The 

diameter at x position along the length of the beam is ( ) n xd x d e   , with the taper ratio as 

n=2.0. The material of the beam is 6061 aluminum alloy with the elastic modulus as E 

=70×109 N/m2 and the density as ρ=2.7×103 kg/m3.  The cross-section area and bending 

moment of inertia are 2( ) ( / 2)n xA x d e    and 4( ) 1/ 64 ( )n xI x d e    , respectively. 

The sampling interval is 0.0001 s. The relationship between spring force and deflection is 

shown by a diagram in Fig. 2. In this paper, the continuous nonlinear boundary is treated as 

a multi- segment linear approximation. k1, k2, ..., in a diagram shown by Fig. 2 represent the 

kL values after the multi-linear segmentation. It is seen that the multi-linear assumption 

cannot present the exact nonlinear behavior/property of the reality nonlinear material with 

certain error leading to ‘slower’ hardening process with displacement increment. 

Considering certain number of linear segments, more obvious error can be noticed while the 

nonlinearity is more significant. However, such error can be further limited by introducing 
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more refined multi-linear segments leading to more precise spring force considered during 

the calculation. In this work, we consider 10 segments for the case study to present the 

theory. The deflection intervals are determined according to the deflection range calculated 

by all kL values, and the left bound of deflection interval is defined to be smaller than the 

amplitude of steady state deflection. And it is more reasonable to define the interval 

according to the steady state amplitude to ensure that all kL values can be obtained during 

the vibration under harmonic excitation. When the deflection of the left end of the beam is 

greater than the maximum value in the interval of deflection, the elastic stiffness coefficient 

kL will change. There are many kinds of relationships between the tension (torsion) 

coefficient and deflection for different nonlinear springs, we just study one of them here.  

Deflection

S
p

ri
n

g
  
fo

rc
e

Real deflection and 

spring force curve

Deflection and spring 

force curve in calculation

k1

k2

k3

k4

k5

 

Fig. 2 Relationship of deflection and spring force 

3.1 Verification of mathematical model 

In this section, the accuracy of the proposed mathematical model is verified by using the 

iterative and non-iterative method to calculate the vibration response of non-uniform beam 

with linear boundary, and the iterative method to calculate the vibration response of beam 

with weakly nonlinear boundary defined by that kL changes within a small range 

(kL=20000-21800 N/m). The excitation angular frequency of  =672 rad/s and the base 

motion amplitude of Y=0.005 m are chosen for the verification. For the kL values with weak 

nonlinearity, the amplitudes of steady state deflections and their corresponding sectional 

intervals are shown in Table. 2. When values of kL are different, the mode functions and 

natural frequencies of the beam are different, and the amplitudes of steady state deflections 

at left end are also different. The amplitudes of steady state deflections at left end shown in 

Table. 2 will be larger closer to resonance. Since the variation range of kL is very small, it is 

considered that the values of kL change linearly with deflections variation at the left end of 

the beam. When the deflection at the left end is larger than the corresponding range of 

sectional intervals, the value of kL will change. Vibrations of the non-uniform beam at its 

free end in time domain are shown in Fig. 3. 
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Table. 2 kL values, amplitudes of steady state deflection and corresponding sectional 

intervals  

kL values (N/m) 
Amplitudes of steady state 

deflections at left end (m) 

Sectional intervals of 

deflection at left end 

(m) 

20000 0.008154417514000 0-0.000855 

20200 0.008205248588000 0.000855-0.00171 

20400 0.008256681170000 0.00171-0.002565 

20600 0.008308729902000 0.002565-0.00343 

20800 0.008361411807000 0.00343-0.004275 

21000 0.008414724816000 0.004275-0.00513 

21200 0.008468682431000 0.00513-0.005985 

21400 0.008523295153000 0.005985-0.00684 

21600 0.008578582863000 0.0684-0.007695 

21800 0.008634553316000 0.007695- 

 

 

Fig. 3 Deflections of non-uniform beam solved by iterative and non-iterative method in 

time domain 

It can be seen from Fig. 3 that the results of vibration response of non-uniform beam 

with linear boundary obtained by the iterative and non-iterative method are consistent with 

each other which preliminarily proves the accuracy of the iterative process. The difference 

between the vibration response of the beam with weakly nonlinear boundary and that with 

linear boundary solved by the iterative method is very small, which further proves the 

correct consideration of the nonlinearity with the iterative method. 
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3.2 Sin-sweep curves 

The vibration of the non-uniform beam with nonlinear boundary condition under 

different excitation frequencies are studied in this section. For the varying frequency of the 

base-motion excitation from 200 to 850 rad/s, the magnitude of the base-motion induced 

inertia force is kept equal. The kL values, the amplitudes of steady state deflections and their 

corresponding sectional intervals are the same as the values given in Table. 3. The value of 

kL is determined by the deflections at the left end and varies nonlinearly. It only represents 

one of the cases that the spring coefficient changes with the deflection. Maximum steady 

state vibration deflection at free end of non-uniform beam under a harmonic sweep test with 

different excitation frequencies are shown in Fig. 4. 

Table. 3 kL values, amplitudes of steady state deflections and corresponding sectional 

intervals  

kL values (N/m) 
Amplitudes of steady state 

deflections at left end (m) 

Sectional intervals of 

deflection at left end 

(m) 

20000 0.008154417514000 0-0.002 

22759 0.008912748913000 0.002-0.004 

31594 0.012528617870000 0.004-0.006 

41120 0.020219170700000 0.006-0.008 

50863 0.026634596390000 0.008-0.01 

60702 0.017120586210000 0.01-0.012 

70591 0.010843838260000 0.012-0.014 

80511 0.007735876899000 0.014-0.016 

90450 0.005971986427000 0.016-0.018 

100402 0.004850948731000 0.018- 

 

It can be seen from Fig. 4 that for a beam with hardening nonlinear spring boundary (kL 

value changes following the deflection interval given in Table 3) under the increase of 

excitation frequency, the maximum steady state of the deflection will continue to increase 

and then suddenly drop. As a common nonlinear vibration phenomenon, this is because the 

natural frequencies of the beam with nonlinear boundary is varying during the vibration at 

different excitation frequencies and vibration amplitudes. Through the sin-sweep frequency 

progress, the deflection will become larger when the excitation frequency is close or equal 

to the higher natural frequency of the structure with hardening nonlinear spring boundary. 

When the excitation frequency is passing the range of the natural frequencies, the deflection 

will decrease significantly. At the same time, with the larger the excitation amplitude 

(0.0005-0.01 m), the stronger the level of the boundary nonlinearity can be noticed leading 

to wider frequency range with high vibration amplitude in the spectrum as shown in Fig. 4 

(200-550 rad/s-200-765 rad/s). 



 Study on Vibration Response of a Non-Uniform Beam with Nonlinear Boundary Condition 19 

 

 

Fig. 4 Steady state vibration amplitude at free end of non-uniform beam under different 

excitation frequencies 

3.3 Influence of the degree of boundary nonlinearity on non-uniform beam 

vibration 

Based on the proposed iterative method, further studies on the vibration response of 

non-uniform beam under nonlinear boundary condition are carried on. In order to study the 

influence of boundary nonlinearity on the vibration characteristics of non-uniform beam, 

the vibration response at the free end of the beam in time and frequency domain with fixed 

spring stiffness kL of 20000 N/m (linear boundary condition), 20000-31594 N/m, 

20000-60702 N/m and 20000-90450 N/m are simulated. The excitation angular frequency 

is  =672 rad/s and the base motion amplitude is Y=0.005 m. Under this certain excitation, 

the multi-linear kL values, the amplitudes of steady state deflections at the left end of the 

beam and their corresponding sectional intervals are shown in Table. 3. The relationship 

between deflection and kL in Table. 3 is used for different degrees of nonlinear boundary. 

For kL  in the ranges of 20000-31594 N/m, 20000-60702 N/m and 20000-90450 N/m, when 

the deflection is larger than the maximum value of deflection intervals (0.006 m, 0.012 m 

and 0.018 m) during vibration, the kL  keeps unchanged.  The vibration response at free end 

of the beam is shown in Fig. 5 (normalization was done in Fig. 5 (b)). The normalization 

process is to divide the magnitude by the maximum magnitude value to make the magnitude 

between 0-1. 
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(a) 

 
(b) 

Fig. 5 Vibration response of non-uniform beam at free end with different degree of 

boundary nonlinearity ((a) time domain, (b) frequency domain) 

From Fig. 5, while the spring constant at the boundary is changing during vibration, 

compared with the linear boundary, with the increment of time, the deflection of the beam 

with nonlinear boundary will only approach a semi-steady state with variable amplitude in 

the time domain signal and clear wide bandwidth in frequency domain. This phenomenon is 

more obvious for stronger nonlinearity case with larger spring constant variation range 

(such as kL=20000-80511 N/m as given in Table 3). From the Fig. 5(b) it can be seen that for 
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the beam with kL=20000 N/m, the frequency corresponding to the first peak and second 

peak are the natural frequency and excitation frequency. For the beam with 

kL=20000-31594 N/m, 20000-60702 N/m and 20000-80511 N/m, there are only one 

obvious peak. This is because the beam with linear boundary just has one natural frequency 

close to the excitation frequency. The natural frequencies of the beam with nonlinear 

boundary will change with the boundary conditions. The range of natural frequencies is 

relatively wide and includes excitation frequency, so from the Fig. 5(b), there will only be 

one peak at excitation frequency, and the peaks at natural frequencies are not very obvious. 

 

Fig. 6 Time periods of the system vibration staying at different kL values with different 

levels of boundary spring nonlinearity 

 It is also interesting to see that when ranges of kL are 20000-60702 N/m, with the chosen 

base motion excitation constants,  =672 rad/s and Y=0.005 m, the beam experiences 

relatively larger vibration amplitude. But when the range of kL becomes 20000-31594 N/m 

or 20000-80511 N/m, the vibration amplitude decreases. This phenomenon is mainly due to 

the longer period of vibration close to resonance when the kL is between 20000 and 60702 

N/m. From Table 3, it is noted that the beam steady state vibration amplitude reaches to 

relatively higher value, when the spring support stiffness, kL, is between 41120-60702 N/m 

leading to the natural frequency of the beam close to the excitation frequency,  =672 

rad/s. Fig. 6 shows the times periods of the beam vibration staying at different spring 

support constants in different nonlinearity cases (in total 0.6 s). From Fig. 6, it can be seen 

that the beam experiences longer period of vibration at kL =60702 N/m closer to resonance, 

when kL is between 20000 and 60702 N/m compared with other two cases. Although the 

above values are just obtained from one specific case study, it can be concluded that if 

higher boundary of the hardening nonlinear spring stiffness leads to the resonance or close 

to resonance vibration, the vibration amplitude of the whole system can be larger, while the 

exact responses will differ with different system constants especially different nonlinear 

spring intervals.  
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3.4 Influence of excitation amplitudes on boundary nonlinearity  

It is noticed that different excitation amplitudes may introduce different level of 

linearity (different nonlinearity spring stiffness variation range) in the vibration of the 

structures with nonlinear boundary. In this section, the excitation angular frequency is fixed 

as  =672 rad/s. The kL values, the amplitudes of steady state deflections and their 

corresponding sectional intervals are shown in Table. 3. When the excitation amplitudes are 

0.0005 m, 0.0025 m, 0.005 m and 0.01 m, respectively, the times periods of the beam 

vibration staying at different kL values (in total 1 s) are shown in Fig. 7. 

 

Fig. 7 Time periods of the system vibration staying at different kL values under different 

excitation amplitudes 

It can be seen from Fig. 7 that when the excitation amplitude is 0.0005 m, the beam 

vibration at the spring boundary is with extremely low amplitude (<0.002 m), and the spring 

stiffness does not change during the vibration with the linear boundary. With the increment 

of excitation amplitude, the range of the spring stiffness variation and level of the 

nonlinearity increases. When the amplitude becomes 0.01 m, the level of the boundary 

nonlinearity is the strongest covering all the kL variation range. At the same time, with 

different amplitudes, the vibration period of the beam staying at each kL is also different. 

Following the given the deflection intervals in Table 3, with different excitation amplitudes, 

the beam deflections at the spring boundary falling into each interval are different, and the 

vibration period on each kL is naturally not the same. When the spring properties are known, 

the vibration period of the beam staying at a certain kL can be controlled by changing the 

excitation amplitude, and then the vibration state of the beam can be adjusted. On the other 

hand, while the excitation frequency and amplitude are known, by adjusting the nonlinearity 

spring property (spring stiffness variation intervals), the vibration status can be controlled 

as well.  
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4. CONCLUSIONS 

In this paper, an iterative method is proposed to accurately solve the force vibration 

response of non-uniform beam with nonlinear boundary. Taking time node as iteration step, 

considering the change of natural frequencies and mode shape functions in the iteration 

process, the vibration response of beam in each short time period/iteration step is calculated 

by ADM and Duhamel integral considering both the transient and steady response. The 

influences of different excitation amplitudes and frequencies on boundary nonlinearity of 

non-uniform beam are studied. The results of numerical examples reveal the following 

conclusions: 

(1) Comparing iteration numerical results and analysis solutions with linear boundary 

condition, ADM method is found to be accurately combined with iteration progress solving 

non-uniform beam structural vibration with the nonlinear boundary condition, although 

inevitable minor error can be noticed in the calculated vibration mode shape functions from 

ADM leading to imperfect vibration modes’ orthogonality. 

(2) Through sin-sweep simulations, clear nonlinear spectrum with the hardening 

nonlinear boundary support can be noticed. With the increase of excitation frequency, the 

maximum steady state of the deflection will continue to increase and then suddenly drop 

because of non-resonance. Checking spectrums with different excitation amplitudes, the 

maximum steady state beam deflection will be larger and the frequency range with high 

vibration amplitude in the spectrum will be wider with the increase of the excitation 

amplitude.  

(3) Under the same base motion excitation, the beam vibration amplitude and the 

vibration period staying at a certain boundary stiffness range varies with different level of 

boundary nonlinearity. While the excitation frequency and amplitude are known, by 

adjusting the nonlinear spring property, the vibration status can be controlled. 

(4) Under the fixed nonlinear supported spring properties, the degree of nonlinearity 

reflected in the vibration response varies with different base excitation amplitudes. For 

vibration under harmonic excitation, the time staying at a certain range of boundary 

stiffness can be controlled by changing the base excitation amplitude. 
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