FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 36, No 1 (2021), 179-189 https://doi.org/10.22190/FUMI200804015G

Original Scientific Paper

PROPERTIES OF A NEW SUBCLASS OF ANALYTIC FUNCTION ASSOCIATED TO RAFID - OPERATOR AND *q*-DERIVATIVE

Mohammad Hassn Golmohammadi and Shahram Najafzadeh

Faculty of Mathematical Sciences, Department of Pure Mathematics, Payame Noor University, P. O. Bax: 19395 - 3697, Tehran, Iran

Abstract. In this article, we introduce a new subclass of analytic functions, using the exponent operators of Rafid and *q*-derivative. The coefficient estimates, extreme points, convex linear combination, radii of starlikeness, convexity and finally integral have been investigated.

Keywords: Rafid - operator, q-derivative, q-integral, univalent function, coefficient bound, convex set, partial sum.

1. Introduction

The theory of univalent functions can be described by using the theory of the q-calculus. In recent years, such q-calculus as the q-integral and q-derivative have been used to construct several subclasses of analytic functions [1, 6, 11, 12]. The theory of q-analysis has motivated the researchers owing to many branches of mathematics and physics. For example, in the areas of special functions, q-difference, q-integral equations, optimal control problems, q-difference, q-integral equations, q-transform analysis and in quantum physics see for instance, [7, 8, 10, 14].

The main subject of the present paper is to introduce and investigate a new subclass of analytic functions in the open unit disk U by using the operators Rafid and q-derivative. Let \mathcal{A} denote the class of functions f(z) in the form of:

(1.1)
$$f(z) = z + \sum_{k=2}^{+\infty} a_k z^k,$$

Received August 4, 2020; accepted November 26, 2020.

Corresponding Author: Mohammad Hassan Golmohammadi, Faculty of Mathematical Sciences, Department of Pure Mathematics, Payame Noor University, P. O. Bax: 19395 - 3697, Tehran, Iran | E-mail: golmohamadi@pnu.ac.ir

 $^{2010\} Mathematics\ Subject\ Classification.\ Primary\ 20D15;\ Secondary\ 20F14$

^{© 2021} by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

which are analytic in the punctured unit disk

$$U = \{ z \in \mathbb{C} : |z| < 1 \}.$$

For $f(z) \in \mathcal{A}$, the q- derivative, 0 < q < 1, of f(z) is defined by Gasper and Rahman [5].

(1.2)
$$D_q f(z) = \begin{cases} \frac{f(qz) - f(z)}{(q-1)z} & (z \neq 0) \\ f'(0) & (z = 0). \end{cases}$$

where $z \in U$ and 0 < q < 1.

Let T(p) be the class of all p -valent functions of the form

(1.3)
$$f(z) = z^p - \sum_{n=p+1}^{+\infty} a_n z^n \quad a_n \ge 0,$$

which are analytic in the punctured unit disk

$$U = \{ z \in \mathbb{C} : |z| < 1 \}.$$

If $f \in T(p)$ is given by Equation (1.3) and $g \in T(p)$ is given by

(1.4)
$$g(z) = z^p - \sum_{n=p+1}^{+\infty} b_n z^n \quad b_n \ge 0,$$

then the Hadamard product f * g of f and g is defined by

(1.5)
$$(f * g)(z) = z^p - \sum_{n=p+1}^{+\infty} a_n b_n z^n = (g * f)(z).$$

From Equation (1.2) for a function f(z) given by Equation(1.3) we get

(1.6)
$$D_q f(z) = [p]_q z^{p-1} - \sum_{n=p+1}^{\infty} [n]_q a_n z^{p-1} \quad , \ z \in U,$$

where

$$[p]_q := \frac{1-q^p}{1-q} = 1 + q + q^2 + \dots + q^{p-1},$$

and

$$[n]_q := \frac{1-q^n}{1-q} = 1 + q + q^2 + \dots + q^{n-1}.$$

Also $[p]_q \to p$ and $[n]_q \to n$ as $q \to \overline{1}$. So we conclude that

$$\lim_{q \to \overline{1}} D_q f(z) = f'(z) \quad , \quad z \in U,$$

180

see also [13].

Waggas and Rafid defined the Rafid -operator of a function $f(z) = z - \sum_{n=2}^{+\infty} a_n z^n$ by

(1.7)
$$R^{\theta}_{\mu}(f(z)) = z - \sum_{n=2}^{+\infty} \frac{(1-\mu)^{n-1} \Gamma(\theta, n)}{\Gamma(\theta+1)} a_n z^n.$$

See for instance, [2, 3, 4]).

By using Rafid and q-derivative operators, we define the $R^{\theta}_{\mu}D_q(f(z))$ for a function $f \in T(p)$ as follows:

Definition 1.1. The Rafid -operator of $f \in T(p)$, is denoted by $R^{\theta}_{\mu}D_q$ and defined as following:

$$R^{\theta}_{\mu}D_{q}(f(z)) = \frac{z}{[p]_{q}(1-\mu)^{p+\theta+1}\Gamma(p+\theta+1)} \int_{0}^{+\infty} t^{\theta-1} e^{-(\frac{t}{1-\mu})} D_{q}(f(zt)) dt$$
(1.8)

Then it is easy to deduce the series representation of the function $R^{\theta}_{\mu}(f(z))$ as following:

(1.9)
$$R^{\theta}_{\mu}D_{q}(f(z)) = z^{p} - \sum_{n=p+1}^{+\infty} \frac{[n]_{q}(1-\mu)^{n-p}\Gamma(n+\theta+1)}{[p]_{q}\Gamma(p+\theta+1)} a_{n}z^{n}$$
$$= z^{p} - \sum_{n=p+1}^{+\infty} M(n,p,q,\mu,\theta)a_{n}z^{n}$$

where

(1.10)
$$M(n, p, q, \mu, \theta) = \frac{[n]_q (1-\mu)^{n-p} \Gamma(n+\theta+1)}{[p]_q \Gamma(p+\theta+1)}.$$

We now define a new subclass $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$ of analytic functions of T(p) by using the operators Rafid and q-derivative. Let $f(z) \in T(p)$ is said to be in the class $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$ if and only if it satisfies the inequality:

(1.11)
$$\left| \frac{\lambda z^2 (R^{\theta}_{\mu}(D_q(f * g)(z)))'' + z (R^{\theta}_{\mu}(D_q(f * g)(z)))'}{z (R^{\theta}_{\mu}(D_q(f * g)(z)))' + (1 - \lambda) (R^{\theta}_{\mu}(D_q(f * g)(z)))} - (1 - \beta) \right| \leq \alpha.$$

Here, $0 < q < 1, 0 \le \lambda < 1, 0 \le \alpha \le 1, 0 \le \mu < 1, 0 \le \theta \le 1$ and $\beta < 1$.

2. Main Results

Unless otherwise mentioned, we suppose throughout this paper that $0 < q < 1, 0 \leq \lambda < 1, 0 \leq \alpha \leq 1, 0 \leq \mu < 1, 0 \leq \theta \leq 1$ and $\beta < 1$. First we state coefficient estimates on the class $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$.

Theorem 2.1. Let $f(z) \in T(p)$, then $f(z) \in T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$ if and only if

(2.1)
$$\sum_{n=p+1}^{+\infty} \left[(n(n-1) - (\alpha+\beta) + 1)\lambda + (n+1)(\alpha+\beta) - 1 \right] M(n, p, q, \mu, \theta) a_n b_n \le 1 - 2\lambda.$$

Proof. Suppose f(z) difined by Equation(1.3) and $f(z) \in T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$, then Equation (1.11) holds true, we have

$$-\frac{\left|\frac{[(2-\beta)\lambda+2\beta-1]z^{p}}{(2-\lambda)z^{p}-(n-\lambda+1)\sum_{n=p+1}^{+\infty}M(n,p,q,\mu,\theta)a_{n}b_{n}z^{n}}{[n(1-n)+\beta-1]\lambda+1-(1+n)\beta]\sum_{n=p+1}^{+\infty}n(n-1)M(n,p,q,\mu,\theta)a_{n}b_{n}z^{n}}\right|<\alpha.$$

Since $Re(z) \leq |z|$ for all z,

$$Re\left\{\frac{[(2-\beta)\lambda+2\beta-1]z^{p}}{(2-\lambda)z^{p}-(n-\lambda+1)\sum_{n=p+1}^{+\infty}M(n,p,q,\mu,\theta)a_{n}b_{n}z^{n}}-\frac{[n(1-n)+\beta-1]\lambda+1-(1+n)\beta]\sum_{n=p+1}^{+\infty}n(n-1)M(n,p,q,\mu,\theta)a_{n}b_{n}z^{n}}{(2-\lambda)z^{p}-(n-\lambda+1)\sum_{n=p+1}^{+\infty}M(n,p,q,\mu,\theta)a_{n}b_{n}z^{n}}\right\}<\alpha.$$

By letting $z \to \overline{1}$ through real values, we have

$$\sum_{n=p+1}^{+\infty} \left[(n(n-1) - (\alpha + \beta) + 1)\lambda + (n+1)(\alpha + \beta) - 1 \right] M(n, p, q, \mu, \theta) a_n b_n \le 1 - 2\lambda.$$

 $\begin{array}{l} Conversely, \ let \ Equation \ (2.1) \ holds \ true, \ it \ is \ enough \ to \ show \ that \\ X(f) = \left| \lambda z^2 (R^{\theta}_{\mu}(D_q(f \ast g)(z)))^{''} + z (R^{\theta}_{\mu}(D_q(f \ast g)(z)))^{'} \\ - (1 - \beta) [z (R^{\theta}_{\mu}(D_q(f \ast g)(z)))^{'} + (1 - \lambda) (R^{\theta}_{\mu}(D_q(f \ast g)(z)))] \right| \\ - \alpha \left| z (R^{\theta}_{\mu}(D_q(f \ast g)(z)))^{'} + (1 - \lambda) (R^{\theta}_{\mu}(D_q(f \ast g)(z))) \right| \leq 0 \end{array}$

But for 0 < |z| = r < 1 we have

$$\begin{split} X(f) &= \left| \left[(2 - \beta \lambda [z^p - \sum_{n=p+1}^{+\infty} n(n-1)M(n,p,q,\mu,\theta)a_n b_n z^n] \right. \\ &+ z^p - \sum_{n=p+1}^{+\infty} nM(n,p,q,\mu,\theta)a_n b_n z^n \\ &- (1 - \beta)([z^p - \sum_{n=p+1}^{+\infty} nM(n,p,q,\mu,\theta)a_n b_n z^n] \\ &+ (1 - \lambda)[z^p - \sum_{n=p+1}^{+\infty} nM(n,p,q,\mu,\theta)a_n b_n z^n] \right| \\ &- \alpha([z^p - \sum_{n=p+1}^{+\infty} nM(n,p,q,\mu,\theta)a_n b_n z^n] \\ &+ (1 - \lambda)[z^p - \sum_{n=p+1}^{+\infty} nM(n,p,q,\mu,\theta)a_n b_n z^n]) \right| \\ &\leq \sum_{n=p+1}^{+\infty} \left[(n(n-1) - (\alpha + \beta) + 1)\lambda + (n+1)(\alpha + \beta) - 1 \right] M(n,p,q,\mu,\theta) |a_n| |b_n| r^n \\ &- (1 - 2\lambda). \end{split}$$

182

Since the above inequality holds for all $r \ (0 < r < 1)$, by letting $r \to \overline{1}$ and using Equation(2.1) we obtain $X(f) \leq 0$. This completes the proof. \Box

Corollary 2.1. If function f(z) of the form Equation (1.3) belongs to $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$ then

$$a_n \leq \frac{1 - 2\lambda}{\left[(n(n-1) - (\alpha + \beta) + 1)\lambda + (n+1)(\alpha + \beta) - 1 \right] M(n, p, q, \mu, \theta) b_n}$$

where

$$M(n, p, q, \mu, \theta) = \frac{[n]_q (1 - \mu)^{n - p} \Gamma(n + \theta + 1)}{[p]_q \Gamma(p + \theta + 1)}, \quad n \ge p + 1.$$

With the equality for the function

$$f(z) = z^{p} - \frac{1 - 2\lambda}{\left[(n(n-1) - (\alpha + \beta) + 1)\lambda + (n+1)(\alpha + \beta) - 1 \right] M(n, p, q, \mu, \theta) b_{n}} z^{p}$$

Next we obtain extreme points and convex linear combination property for f(z) belongs to $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$.

Theorem 2.2. The function f(z) of the form Equation (1.3) belongs to $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$ if and only if it can be expressed by

$$f(z) = \sigma_1 f_1(z) + \sum_{n=p+1}^{\infty} \sigma_n f_n(z) , \qquad \sigma_n \ge 1 , \qquad \sigma_1 + \sum_{n=p+1}^{\infty} \sigma_n = 1$$

where

$$f_1(z) = z^p,$$

$$f_n(z) = \frac{1 - 2\lambda}{\left[(n(n-1) - (\alpha + \beta) + 1)\lambda + (n+1)(\alpha + \beta) - 1 \right] M(n, p, q, \mu, \theta) b_n} z^k,$$

$$(n \ge p+1).$$

Proof. Let

$$\begin{split} f(z) &= \sigma_1 f_1(z) + \sum_{n=p+1}^{\infty} \sigma_n f_n(z) \\ &= \sigma_1 f_1(z) + \sum_{n=p+1}^{\infty} \sigma_n \Big[z^n - \frac{1-2\lambda}{\Big[(n(n-1) - (\alpha+\beta) + 1)\lambda + (n+1)(\alpha+\beta) - 1 \Big] M(n,p,q,\mu,\theta) b_n} \Big] z^n \\ &= z^p - \sum_{n=p+1}^{\infty} \frac{1-2\lambda}{\Big[(n(n-1) - (\alpha+\beta) + 1)\lambda + (n+1)(\alpha+\beta) - 1 \Big] M(n,p,q,\mu,\theta) b_n} \sigma_n z^n. \end{split}$$

Now apply Theorem 2.1 to conclude that $f(z) \in T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$. Conversely, if f(z) given by Equation (1.3) belongs to $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$, by letting

$$\sigma_1 = 1 - \sum_{n=p+1}^{+\infty} \sigma_n,$$

where

$$\sigma_k = \frac{\left[(n(n-1) - (\alpha + \beta) + 1)\lambda + (n+1)(\alpha + \beta) - 1 \right] M(n, p, q, \mu, \theta) b_n}{1 - 2\lambda} a_n$$
$$(n \ge p+1).$$

we conclude the required result. $\hfill\square$

Theorem 2.3. Let for $t = 1, 2, \dots, k$, $f_t(z) = z^p - \sum_{n=p+1}^{+\infty} a_{n,t} z^n$ belongs to $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$, then $F(z) = \sum_{t=1}^k \sigma_t f_t(z)$ is also in the same class, where $\sum_{t=1}^k \sigma_t = 1$. Hence $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$ is a convex set.

Proof. According to Theorem 2.1 for every $t = 1, 2, \dots, k$ we have

$$\sum_{n=p+1}^{+\infty} \left[(n(n-1) - (\alpha + \beta) + 1)\lambda + (n+1)(\alpha + \beta) - 1 \right] M(n, p, q, \mu, \theta) a_{n,t} b_n \le 1 - 2\lambda.$$

But

$$F(z) = \sum_{t=1}^{k} \sigma_t f_t(z)$$

= $\sum_{t=1}^{k} \sigma_t \left(z^p - \sum_{n=p+1}^{\infty} a_{n,t} z^n \right)$
= $z^p \sum_{t=1}^{k} \sigma_t - \sum_{n=p+1}^{\infty} \left(\sum_{t=1}^{k} \sigma_t a_{n,t} \right) z^n$
= $z^p - \sum_{n=p+1}^{\infty} \left(\sum_{t=1}^{k} \sigma_t a_{n,t} \right) z^n.$

Since

$$\begin{split} &\sum_{n=p+1}^{+\infty} \left[(n(n-1) - (\alpha + \beta) + 1)\lambda + (n+1)(\alpha + \beta) - 1 \right] \\ &\times M(n, p, q, \mu, \theta) a_{n,t} b_n \left(\sum_{n=1}^m \sigma_n a_{k,n} \right) \\ &= &\sum_{n=1}^m \sigma_n \left(\sum_{n=p+1}^{+\infty} \left[(n(n-1) - (\alpha + \beta) + 1)\lambda + (n+1)(\alpha + \beta) - 1 \right] \right. \\ &\times M(n, p, q, \mu, \theta) a_{n,t} b_n \\ &\leq &\sum_{t=1}^k \sigma_t (1 - 2\lambda) = (1 - 2\lambda) \sum_{t=1}^k \sigma_t = 1 - 2\lambda, \end{split}$$

by Theorem 2.1 the proof is complete. \Box

3. Radii of close-to-convexity, starlikeness and convexity

In this section we obtain radii of close—to—convexity, starlikeness , convexity and investigate about partial sum property.

In the proof of next theorem, we need the Alexander's Theorem. This theorem states that if f is an analytic function in the unit disk and normalized by f(0) = f'(0) - 1 = 0, then f(z) is convex if and only if zf'(z) is starlike.

Theorem 3.1. Let f(z) of the form Equation (1.3) belongs to $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$ then

(i)
$$f(z)$$
 is p-valently close-to-convex of order γ in $|z| < R_1$, where $0 \le \gamma < p$
and

$$R_{1} = \inf_{n} \left\{ \frac{(p-\gamma) \Big[(n(n-1) - (\alpha+\beta) + 1)\lambda + (n+1)(\alpha+\beta) - 1 \Big] M(n,p,q,\mu,\theta) a_{n} b_{n}}{n(1-2\lambda)} \right\}^{\frac{1}{n-p}},$$

(ii)
$$f(z)$$
 is p -valently starlike of order γ in $|z| < R_2$, where $0 \le \gamma < p$ and

$$R_2 = \inf_n \left\{ \frac{(p-\gamma) \left[(n(n-1) - (\alpha+\beta) + 1)\lambda + (n+1)(\alpha+\beta) - 1 \right] M(n,p,q,\mu,\theta) a_n b_n}{(n-\gamma)(1-2\lambda)} \right\}^{\frac{1}{n-p}},$$

(iii)
$$f(z)$$
 is p-valently convex of order γ in $|z| < R_3$, where $0 \le \gamma < p$ and
 $p(p-\gamma)[(n(p-1)-(\alpha+\beta)+1)\lambda+(p+1)(\alpha+\beta)-1]M(p,p,q,\mu,\theta)a_pb_p]$

$$R_{3} = \inf_{n} \left\{ \frac{p(p-\gamma) \left[(n(n-1) - (\alpha+\beta) + 1)\lambda + (n+1)(\alpha+\beta) - 1 \right] M(n, p, q, \mu, b) a_{n} b_{n}}{n(n-\gamma)(1-2\lambda)} \right\}^{\frac{1}{n-p}}$$

Proof. (i) For close-to-convexity it is enough to show that

$$\left|\frac{zf'}{z^{p-1}} - p\right|$$

but

$$\left|\frac{zf'}{z^{p-1}} - p\right| = \left|\frac{pz^{p-1} - \sum_{n=p+1}^{+\infty} na_n |z|^n - pz^{p-1}}{z^{p-1}}\right| \le \sum_{n=p+1}^{+\infty} na_n |z|^{n-p} \le p - \gamma,$$

or $\sum_{n=p+1}^{+\infty} \frac{n}{p-\gamma} a_n |z|^{n-p} \le 1$. By using Equation (2.1) we obtain $+\infty$

$$\sum_{n=p+1}^{\infty} \frac{n}{p-\gamma} a_n |z|^{n-p}$$

$$\leq \sum_{k=1}^{+\infty} \frac{n(1-2\lambda)|z|^{n-p}}{(p-\gamma) \left[(n(n-1) - (\alpha+\beta) + 1)\lambda + (n+1)(\alpha+\beta) - 1 \right]}$$

$$\times \frac{1}{M(n,p,q,\mu,\theta) a_n b_n} \leq 1.$$

So, it is enough to suppose

$$|z|^{n-p} \le \frac{(p-\gamma)\Big[(n(n-1)-(\alpha+\beta)+1)\lambda+(n+1)(\alpha+\beta)-1\Big]M(n,p,q,\mu,\theta)a_nb_n}{n(1-2\lambda)},$$

which completes the case (i).

(ii) For starlikeness it is enough to show that $\left|\frac{zf'}{f} - p\right| . But$

$$\left|\frac{zf'}{f} - p\right| = \left|\frac{\sum_{n=p+1}^{+\infty}(n-p)a_n z^n}{z^p - \sum_{n=p+1}^{+\infty}a_n z^n}\right| \le \frac{\sum_{n=p+1}^{+\infty}(n-p)a_n |z|^{n-p}}{1 - \sum_{n=p+1}^{+\infty}a_n |z|^{n-p}} \le p - \gamma.$$

Therefore,

$$\sum_{n=p+1}^{+\infty} (n-p)a_n |z|^{n-p} \le (p-\gamma)(1-\sum_{n=p+1}^{+\infty} a_n |z|^{n-p}),$$

or

$$\sum_{n=p+1}^{+\infty} \frac{n-\gamma}{p-\gamma} a_n |z|^{n-p} \le 1.$$

Now by Equation (2.1), we obtain

$$\sum_{n=p+1}^{+\infty} \frac{n-\gamma}{p-\gamma} a_n |z|^{n-p}$$

$$\leq \sum_{n=p+1}^{+\infty} \frac{(n-\gamma)(1-2\lambda)|z|^{n-p}}{(p-\gamma) \left[(n(n-1)-(\alpha+\beta)+1)\lambda + (n+1)(\alpha+\beta) - 1 \right]}$$

$$\times \frac{1}{M(n,p,q,\mu,\theta) a_n b_n} \leq 1.$$

186

So, it is enough to suppose

$$|z|^{n-p} \leq \frac{(p-\gamma)\Big[(n(n-1)-(\alpha+\beta)+1)\lambda+(n+1)(\alpha+\beta)-1\Big]M(n,p,q,\mu,\theta)a_nb_n}{(n-\gamma)(1-2\lambda)}$$

Hence we get the required result.

(iii) For convexity, by Alexander's Theorem and by applying an easy calculation, we reach the required result. Hence the result. \Box

Theorem 3.2. The class $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$ is a convex set.

Proof. Let $f(z) = z^p - \sum_{n=p+1}^{+\infty} a_n z^n$ and $g(z) = z^p - \sum_{n=p+1}^{+\infty} b_n z^n$, be in the class $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$. For $t \in (0, 1)$, it is enough to show that the function h(z) = (1-t)f(z) + tg(z) is in the class $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$. Since $h(z) = z^p - \sum_{n=p+1}^{+\infty} ((1-t)a_n + tb_n)z^n$,

$$\sum_{n=p+1}^{+\infty} \left[(n(n-1) - (\alpha + \beta) + 1)\lambda + (n+1)(\alpha + \beta) - 1 \right] M(n, p, q, \mu, \theta) ((1-t)a_n + tb_n)b_n \le (1 - 2\lambda)$$

and so $h(z) \in T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$. \Box

Corollary 3.1. Let $f_k(z)$, $1 \le k \le m$, defined by $f_k(z) = z^p - \sum_{n=p+1}^{+\infty} a_{n,k} z^n$ be in the class $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$, then the function $F(z) = \sum_{k=1}^{m} c_k f_k(z)$ is also in $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$, where $\sum_{k=1}^{m} c_k = 1$.

4. Integral operators on $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$

In this section we investigate properties of functions in the class $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$, involving the familiar operator $F_c(z)$.

Theorem 4.1. If $f(z) = z^p - \sum_{n=p+1}^{+\infty} a_n z^n$ belongs to $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$, then the function $F_c(z)$ defined by $F_c(z) = \frac{c+p}{z^c} \int_0^1 t^c f(tz) dt$, $c \ge 1$, is also in $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$.

Proof. Since f(z) belong to $T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$,

$$F_{c}(z) = \frac{p+c}{z^{c}} \int_{0}^{z} t^{c-1} [z^{p} - \sum_{n=p+1}^{+\infty} a_{n}t^{n}] dt , \quad c > 1,$$

$$= \frac{p+c}{z^{c}} \int_{0}^{z} [t^{p+c-1} - \sum_{n=p+1}^{+\infty} a_{n}t^{n+c-1}] dt$$

$$= \frac{p+c}{z^{c}} [\frac{1}{p+c}t^{p+c} - \sum_{n=p+1}^{+\infty} a_{n}\frac{1}{n+c}t^{n+c}]_{0}^{z}$$

$$= \frac{p+c}{z^{c}} [\frac{1}{p+c}z^{p+c} - \sum_{n=p+1}^{+\infty} a_{n}\frac{1}{n+c}z^{n+c}]$$

$$= z^{p} - \sum_{n=p+1}^{+\infty} \frac{p+c}{n+c}a_{n}z^{n}$$

Since $\frac{p+c}{n+c} < 1$,

$$\sum_{n=p+1}^{+\infty} \frac{p+c}{n+c} \Big[(n(n-1) - (\alpha+\beta) + 1)\lambda + (n+1)(\alpha+\beta) - 1 \Big] M(n,p,q,\mu,\theta) a_n b_n \\ \leq \sum_{n=p+1}^{+\infty} \Big[(n(n-1) - (\alpha+\beta) + 1)\lambda + (n+1)(\alpha+\beta) - 1 \Big] M(n,p,q,\mu,\theta) a_n b_n \\ \leq (1-2\lambda).$$

Hence the result. $\hfill\square$

Corollary 4.1. If $f(z) \in T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$ and $F_c(z)$ is defined as $F_c(z) = c \int_0^1 v^c f(vz) dv, c \ge 1$. Then $F_c(z) \in T_{p,q}R(\lambda, \alpha, \beta, \mu, \theta)$.

REFERENCES

- 1. E. S. AQLAN: Some problems connected with geometric function theory, Ph.D. Thesis, Pune University, 2004.
- W. G. ATSHAN and R. H. BUTI: Fractional calculus of a class of univalent functions with negative coefficients defined by Hadamard product with Rafid-operator, European J. Pure Appl. Math. 4(2) (2011), 162-173.
- 3. A. H. EL-QADEEM and S. K. AL-GHAZAL: On subclasse of p-valent functions with negative coefficients defined by using Rafid operator, Comput. Math. Appl. (2019).

Properties of a New Subclass of Analytic Functions

- 4. A. H. EL-QADEEM and S. K. AL-GHAZAL: Some aspect of certain two subclass of analytic functions with negative coefficients defined by using Rafid operator, arXiv:1904.07913v1.
- 5. G. GASPER and M. RAHMAN: *Basic Hypergeometric series*, Cambridge University Press, Cambridge, 1990.
- F. H. JACKSON: On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (2) (1909), 253-281.
- F. H. JACKSON: On q-definite integrals, Q. J. Pure Appl. Math., 41 (1910), 193-203.
- 8. F. H. JACKSON: q-Difference equations, Am. J. Math., 32 (1910), 305-314.
- 9. A. E. LIVINGSTON: On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1966), 99-107.
- J. L. LIU: The Noor integral and strongly starlike functions, J. Math. Anal. Appl. 261 (2001), 441-447.
- R. J. LIBERA: Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1969), 755-758.
- Z. S. I. GASPER: Linear sequential q-difference equations of fractional order, Fract. Calc. Appl. Anal., 12 (2) (2009), 159–178.
- A. O. MOSTAFA, H. M. AOUF and T. BULBOACA: Convolution conditions for subelasse of mermorphic functions of complex order associated with basic Bessel functions, J. Egyptian Math. Soc 25 (2017), 286-290.
- T. M. SEOUDY and M. K. AOUF: Convolution properties for certain classes of analytic functions defined by q-derivative operator, Abstr. Appl. Anal., 2014 (2014), Art. ID 846719, 1-7.