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Abstract. The demand for energy is increasing tremendously with modernization of the 

technology and requires new sources of renewable energy. The triboelectric nanogenerators 

(TENG) are capable of harvesting ambient energy and converting it into electricity with the 

process of triboelectrification and electrostatic-induction. TENG can convert mechanical 

energy available in the form of vibrations, rotation, wind and human motions etc., into 

electrical energy there by developing a great scope for scavenging large scale energy. In this 

review paper, we have discussed various modes of operation of TENG along with the 

various factors contributing towards its efficiency and applications in wearable electronics. 

Key words: TENG (Triboelelctric nanogenerator), PTFE (Poly tetra fluoro ethylene), 

TET (triboelectric textile), STET (single layer triboelectric textile), PDMS 

(polydimethyl siloxane), PMMA (polymethyl methacrylate) 

1. INTRODUCTION 

With the increase in the energy requirement, various non-renewable resources of energy 

are depleting day by day causing serious environmental conditions. Solar and wind energies 

are the targeted renewable sources of energy to provide power in the gigawatt scales. High 

power density, high efficiency and low cost are the main requirements to harvest these energy 

sources. For the welfare of the society, it is necessary to find a new and high efficient energy 

technology that can be able to harvest the energy available in the environment which could be 

harvested easily to act as prominent source for energy harvesting system [1-4]. All these 

power sources should be easily available, sustainable, and maintenance-free as well as 

pollution free. Most of the present day electronic devices use batteries as external power 

sources with a short span of life time. Till date electromagnetic-induction, piezoelectric and 

electrostatic effects were the main mechanisms used for major energy harvesting techniques 

developed during the last few decades [5-11]. More recently, a new energy technology has 

been invented for harvesting environmental energy known as tribo-electric nanogenerators 

(TENG) which converts the ambient mechanical energy into electrical energy [12-16]. TENG 

 
Received February 24, 2021 

Corresponding author: Rakesh Vaid 
Department of Electronics, University of Jammu, Jammu 180006, (J&K), India 

E-mail: rakeshvaid@ieee.org 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/429329613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


158 D. ANAND, A. SINGH SAMBYAL, R, VAID 

 

works on the principle of triboelectrification in conjunction with electro-static induction. The 

concept of TENG was demonstrated by Wang et. al in the year 2012 and since then it has 

attracted the energy industry to meet the large scale energy demand. Various device structures 

based on triboelectric-effect and electro-static induction have been reported utilizing 

mechanical energies from vibrations [17-20], human-motions [21-22], rotation [23-24], 

wind [25-26], and walking [28]. In this review paper, we have described an overview of the 

progress in the TENG based devices. We have also discussed the various modes of 

operation, energy harvesting source along with different parameters affecting its efficiency 

and applications. 

2. FUNDAMENTAL MODES OF TENG 

Charge generation takes place between two different materials having distinct affinity to 

electrons when they are brought in contact with each other and then separated is known as 

triboelectric effect. When the materials are separated from each other it results in the 

generation of potential on the surface of two materials. On the other hand, electrostatic 

induction is the phenomenon of generating electricity when the electrons from one electrode 

flow to the other electrode through external load to bring equilibrium in the potential 

difference. In TENG both triboelectric effect and electrostatic induction are used to convert 

the mechanical energy into electrical energy. Figure 1 below demonstrates the various 

fundamental modes of TENG such as vertical- contact separation mode [37-40], sliding mode 

[41-42], single electron mode [43-46] and free- standing triboelectric-layer mode [47-52].  

 

Fig. 1 Fundamental modes of TENG a) The vertical contact separation mode b) The sliding 

mode c) the single electron mode d) The free- standing mode 

2.1. Vertical contact-separation mode 

The process of energy conversion by triboelectrification was first demonstrated by Zhu et. 

al., in January 2012 [13]. The operation of TENG can be explained on the basis of coupling 
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between electrostatic induction and contact electrification. Figure 2(a-b) clearly indicates the 

process of generation of electricity using contact-separation mode. The materials used for 

vertical contact-separation mode include PMMA (poly methyl methacrylate) and kapton. Both 

open-circuit voltage and short circuit current have been demonstrated in this mode of TENG. 

In the open circuit condition, when no force is applied between these two materials, no electric 

potential difference is produced as shown in figure 2(a). But when an external force is applied, 

transfer of charge takes place from one surface to another as soon as these two materials come 

in contact with each other. Because of triboelectric-effect, electrons will be transferred from 

PMMA to the kapton surface thereby making PMMA as positive electrode and kapton as 

negative electrode (refer Figure 2(a)). Further, when these two materials are separated with the 

release of force, a potential difference is created between these two electrodes. The open-

circuit voltage (Voc) so produced can be expressed as: - 

 Voc = σ d/ ϵₒ (1) 

Where, σ is the triboelectric charge density; ϵₒ is the permittivity and d is the distance between 

the two surfaces. 

Voc can reach its maximum value when the force is released of the free space. Now, when the 

force is applied again, the potential difference decreases and reaches its minimum value when 

the two materials come in contact/closer to each other. This depicts the whole cycle of 

generating electricity in vertical contact-separation mode. Under the short circuit condition, 

the electrons flows from top electrode to the bottom electrode, so as to balance the electric 

potential difference so generated resulting in the flow of instantaneous current in the process 

of releasing. Thus, the positive charge will accumulate on the top electrode and negative 

charge will accumulate on the bottom electrode. The charge density during full released 

process can be expressed as: 

  σ′ = σ d′ ϵrk ϵrp/d1 ϵrp+d′ϵrk ϵrp+d2 ϵrk  (2) 

Where, 

ϵrp = relative permittivity of PMMA;      ϵrk = relative permittivity of kapton  

d1 = thickness of the kapton layer;                 d2 = thickness of the PMMA layer  

Now, when the force is applied again, the electrons will move from bottom electrode 

to the top electrode reducing the induced charge due to which a negative instantaneous 

current appears. The whole induced charge gets neutralized when these layers come in 

contact with each other. 

2.2. Sliding mode 

Siding mode of operation was demonstrated by Wang et al in the year 2013 [42] in 

which two surfaces slide over one another in the lateral direction. The mechanism of 

generation of electricity has been demonstrated in Figure 3 (I-IV). In this case one layer 

is of PTFE (Poly tetra fluoro ethylene) and the other layer consists of Nylon plate. In the 

initial position, when the two plates are placed over one another having full contact with 

each other, no transfer of electron takes place from Nylon to PTFE, thus no potential 

difference is generated between the two electrodes as shown in figure 3(I). When the 

positively charged top surface starts sliding in the outward direction, relative displacement in 

the lateral direction takes place. Thus, PTFE electrode will be having a higher potential as 

compared with the Nylon electrode, hence the electrons from the PTFE film will move 
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towards the Nylon film through the external load, until full mismatch, as shown in Figure 3(II-

III), the potential difference and charge transfer will reach the maximum value. Now, the 

Nylon plate is moved in the inward direction and the whole process will get reserved and the 

electrons moved from Nylon film to PTFE film through external load which produces a 

negative current when the equilibrium is achieved, no transfer of charge take place and the 

two plates reaches its original position. Several advantages of sliding mode have been 

observed as compared to vertical contact separation mode such as higher energy conversion 

efficiency and increased power enhancement.  

 
Fig. 2 (a-b) Process of generation of electricity using contact-separation mode of TENG 

Fig. 3 (I-IV) The basic mechanism of generation of electricity 
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2.3. Single electron mode 

Figure 4(a) show the single electron mode operation [45] consisting of PDMS layer 

having micro pyramids over its surface serving the purpose of providing friction and the other 

contact surface  consists of human skin. The layer of PDMS is deposited on the ITO coated 

PET substrate and with change in the distance between the two surfaces, transfer of charge 

take place in between ITO and the ground and hence flow of electrons take place. 

 

 

Fig. 4 (a) Schematic illustration showing the single electron mode TENG [45], (b) The 

electricity generation cycle 

Figure 4(b) indicates the mechanism of generation of electricity in the single electron 

mode. With the bringing of a finger near the PDMS surface, a negative charge appears on 

its surface as PDMS is more negatively charged as compared to human skin and thus 

more electrons will be transferred from the human skin to the PDMS surface. This 

negative charge can be preserved on the PDMS surface due to its insulating nature. Now, 
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when the finger is separated from the PDMS surface, a potential difference between the 

ITO and the reference electrode gets generated. This results in the flow of free electrons 

from the ITO electrode to the ground/reference electrode to maintain the equilibrium as 

shown in Figure 4(b). Again, when the finger is made to approach the PDMS, the 

movement of free electron takes place from the reference electrode to the ITO resulting in 

the production of negative current/voltage. This is how the cycle gets completed for the 

single-electron mode operation. 

2.4. Freestanding triboelectric layer mode 

The free standing triboelectric layer mode have distinct advantages over the other modes 

of operations as far as its versatility and applicability in the process of energy harvesting from 

a moving object or from the motion of human walking without an attached electrode. This 

mode also has very high energy conversion efficiency and high robustness. In this mode, the 

generation of electricity depends upon the change in position of the tribo charged surface 

between two electrodes resulting in change of induced potential difference as depicted in 

Figure 5(a). The main structure consists of two metal films and a free-standing dielectric layer. 

When the FEP (Fluorinated ethylene propylene) layer is aligned with the left-electrode of 

aluminum (Al) a negative charge will be developed on the inner surface of the FEP layer and 

a positive charge on the left-electrode surface as shown in Figure 5(b).  

 

Fig. 5 (a) Two electrodes resulting in change of induced potential difference in the free-

standing triboelectric layer mode 

 

When the FEP layer slides towards the right-electrode, the potential difference 

between the left and the right electrodes will be reduced causing the flow of current from 

left electrode towards the right electrode as shown in Figure 5(b). When the FEP layer 

reaches on the top of right electrode, no electric potential difference appears and hence no 

current flows. Finally, when the FEP layer slides towards the left electrode, an electric 

potential difference will appear between the two electrodes, causing flow of current 

between them, thus completing the whole cycle of generating electricity in free-standing 

triboelectric layer mode. 
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Fig. 5 (b) Working principle of a free-standing triboelectric layer mode 

 

3. ENERGY HARVESTING SOURCES USING TENG 

3.1. Energy harvesting through waste water flow 

The energy from the waste water flow can be harvested using a rotatory TENG as shown 

in Figure 6. It consists of PTFE (Poly tetra fluoro ethylene) and Nylon being the tribo-electric 

materials. With the use of triboelectric effect and electrostatic induction, energy can be 

harvested by contact and sliding modes of the TENG operation. The devices so far 

demonstrated has the ability to light up 50 LEDs connected in series [46]. When the water is 

allowed to flow through the tube, the fan connected to the shaft starts rotating. As shown in 

Figure 6, different triboelectric materials are placed on the eight different poles. With the 

rotation of the shaft, the triboelectric materials come in contact with each other thereby 

causing the flow of current [46]. Energy from the water waves can be harvested as 

demonstrated by Jiang et al., [47] where they designed a spring based TENG to store the 

potential energy present in the water waves. Actually, the energy is produced by translating 

the low frequency wave motion energy of water into high frequency kinetic energy by the use 

of a spring. In order to achieve higher efficiency, the various parameters like spring rigidity 

and spring length must be taken into account. Water driven TENG based on water 

electrification has been demonstrated and developed by Kim et al., [48] which are capable of 

producing energy even under adverse environmental conditions and rarely affected by 

humidity and friction.   
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Fig. 6 Schematic diagram of a Rotatory TENG [46] 

3.2. Energy harvesting from triboelectric textile 

One of the unique sources of energy harvesting takes place through human motion 

using TET (triboelectric textile). Because of triboelectric effect, the transfer of charge 

takes place between the skin and the triboelectric textile. In order to obtain a voltage ~ 

500 V and a short circuit current of 600 mA, silicon and NI-coated polyester had been 

used as triboelectric materials as single layer triboelectric textile (STET). On the other 

hand, for a voltage of ~ 540V  and a short circuit current of 140 mA was obtained for a 

5x5cm square sized double layer triboelectric textile which is capable of illuminating 100 

LEDs connected in series [49] with stretching, rubbing and pressing using folded TET. 

On stretching, the layer of materials comes in contact with each other and they retain the 

original shape by removing the external forces. Silk and Si-rubber, when comes in 

contact with each other on stretching results in the generation  of electricity due to the 

transfer of charge  between  the two layers as depicted in Figure 7. This type of TET is 

capable of producing electricity that can light 54 LED bulbs [50]. 
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Fig. 7 Working principle of TET 

3.3. Energy harvesting from human walking 

The energy harvesting from a foot-fall was analyzed and demonstrated by Te-Chien Hou 

and others experimentally [51] in the year 2013. The fabrication of shoes soles using 

triboelectric materials with proper use of spacers has been done by using elastic sponge as a 

spacer. The variations in the size and thickness of the spacer varied the output so generated. 

The energy converted from human walking into electricity has generated an electrical output 

which is capable of illuminating 30 LEDs connected in series. It has also been observed that 

an increase in the number of spacer reduces the output voltage because of a decrease in the 

effective area of contact.  

3.4. Magnetic force and finger tip pressure driven TENG 

The TENG driven by magnetic force and finger tip pressure was designed by Taghavi 

et al [52] as shown in the Figure 8. With the application of pressure on the upper part, the 

upper pair of materials comes in contact with each other, whereas when the pressure is 

removed the lower part is pushed in upward causing the lower pair of materials to come 

in contact with each other due to magnetic force. This contact and separation causes the 

transfer of charge between the materials resulting in the flow of electric-current. 
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Fig. 8 Mechanism of contact keys driven by finger tips and then by magnetic-force [52] 

3.5. Pendulum and comb shaped electrodes based TENG 

Another triboelectric nanogenerator that can be fabricated using contact electrification and 

electrostatic induction is using by a comb-shaped electrode for harvesting energy. More the 

number of comb electrode arms, the more will be the production of energy. Even the rougher 

surface shows higher output as compared to the flat surface [53]. The working of this TENG 

is basically based on the oscillations of a pendulum. With the application of force to the 

pendulum, a to and fro motion is generated which produces multiple output for a single input. 

Many setups were created based on the surface roughness and nanowires showing maximum 

efficiency. The efficiency of TENG increases with an increase in the surface roughness 

because the surface roughness ultimately increases the area of contact [54]. As shown in 

figure 9, when one material is placed on the top of pendulum and the other material is placed 

 
Fig. 9 TENG consisting of two parts I and II (I is movable and II is fixed) 
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on the frame, with the starting of oscillations,  the contact and separation take place between 

the two materials resulting in charge unbalancing thereby producing the flow of electric-

current [54]. 

4. EFFECT OF VARIOUS FACTORS ON THE EFFICIENCY OF TENG 

4.1. Effect of humidity 

The generation of charge is greatly influenced by humidity as well as temperature. It has 

been noticed that the generation of charge between various triboelectric materials increased up 

to 20% with the decrease in the relative humidity whereas increase in the humidity has 

adverse effect on the efficiency of triboelectric materials and on the triboelectric effect [55]. A 

triboelectric nanogenerator can also be fabricated which works on a wide range of humidity 

without causing change in its electrical output. Such a TENG is consists of triboelectric 

materials which are water reluctant and hence can be utilized for low and high humidity 

pendulum conditions [56]. 

4.2. Effect of temperature 

Temperature also has an impact on the output of triboelectric nanogenerator as observed 

by various researchers. It has been observed that with an increase in temperature, the ductility 

of triboelectric material increases while the stiffness decreases whereas on decreasing 

temperature reverse process is observed. From the graph shown below in Figure 10, it is 

observed that the output voltage decreases beyond a temperature of 300⁰K and the output also 

varies over a wide range of temperature. U+ denotes average positive peak voltage and U‾ 

denotes the average negative peak voltage respectively [57]. 

 

Fig. 10 Variations of peak voltage with temperature [57] 

4.3. Effect of surface structure patterning 

Various triboelectric materials like PDMS (polydimethyl siloxane) and PMMA 

(polymethyl methacrylate) can be used for the fabrication of TENG with nanopatterns 

fabricated on their surface using photolithography. Different types of patterns like 
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hexagonal, pillar, and line can be printed and it has been observed that hexagonal patterns 

show maximum output voltage as compared to the other patterns. Triboelectric materials 

with smaller width pillars show higher output as compared with the large width pillar 

shaped patterns [58]. Seol et al [59] has demonstrated that the effect of pressure on the surface 

of triboelectric materials result in deformation which has an impact on the output of the 

TENG devices. It has been observed that high pressure applications result in increased output 

because of the increase in contact surface thereby causing an increase in the maximum charge 

density.  

5. APPLICATIONS OF TENG 

5.1. TENG as a micro-scale power source 

The main and most important purpose for developing TENG is to act as a power 

source for small scale electronic devices and sensors applications. Energy harvesting by 

using its various modes of operation has been demonstrated for body motion [60] 

vibrations produced by human walking [61], pressing of hand [62-63], insole of shoes 

[64-65], sound waves present in air [66] and in water [67]. In its sliding mode of 

operation, approximately a conversion efficiency of 50% has been observed [68] whereas 

it is about 24% in the case of rotation based TENG [69]. It has been demonstrated that the 

output power reaches to a maximum value of 1200 W/m square which is quite sufficient 

for powering the small device applications in wearable electronics. Energy harvesting has 

also been demonstrated from flowing river water [70], rain drops [71] by using contact-

electrification between solid surface and liquid as applicable in parallel TENG [72]. The 

energy can be harvested using the fluctuations in the water surface [73], water wave, and 

water stream [74]. Energy harvesting can be easily done without constructing huge dams. 

It has been predicted that in the near future a 1MW of power can be generated from 1km 

square of surface in ocean if the output of each unit will be 1mw on an average by 

constructing a 3-D network of TENG [75-76]. This will be a big source of blue energy 

for fulfilling large scale applications/requirements of the world’s energy needs. 

5.2. TENG as self –powered sensor 

Triboelectric nanogenerators can also be used as self-powered sensors without 

applying any external power source just by sensing dynamic mechanical action. A large 

number of sensing applications are available which includes finger touching [77-79], 

detection of vibration [80], rotation and chemical sensor [81-82]. 

6. CONCLUSION 

In this review paper, a study of triboelectric nanogenerator (TENG) has been made on the 

basis of its fundamental modes of operation, harvesting energy from various sources, along 

with various factors affecting its efficiency and applications in the real world. Its simple 

mechanism of working, compact size, light weight and innovative design makes this device 

applicable in small and large power generating fields. The output of theTENG depends upon 

various factors like effective area of contact, amount of force/pressure applied, and 

morphology of the surface in contact, temperature and humidity. Triboelectric nanogenerators 
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are capable of working over a wide range of temperatures and variable humidity conditions. 

All the energy which otherwise goes waste in the environment can be utilized by such 

devices. For achieving sustainable and self-powered systems, TENG devices will soon be 

available in the form of various products in the wearable electronics, mobile and healthcare 

monitory systems along with many other relevant applications. 
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