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ABSTRACT In this research, a new technique is developed for reducing the order of high-order continuous
interval systems. The model denominator is derived using Anderson corollary and Routh table. Numerator
is derived by matching the formulated Markov parameters (MPs) and time moments (TMs). Distinctive
features of the proposed approach are: (i) New and simpler expressions for MPs and TMs; (ii) Retaining
not only TMs but also MPs while deriving the model; (iii) Minimizing computational complexity while
preserving the essential characteristics of system; (iv) Ensuring to produce a stable model for stable system;
(v) No need to invert the system transfer function denominator while obtaining the TMs and MPs; and (vi)
No need to solve a set of complex interval equations while deriving the model. Two single-input-single-
output test cases are considered to illustrate the proposed technique. Comparative analysis is also presented
based on the results obtained. The simplicity and effectiveness of the proposed technique are established
from the simulation outcomes achieved.

INDEX TERMS Interval systems, Kharitonov polynomials, Markov parameter,Time moments, Modelling,
Routh approximation.

I. INTRODUCTION

FOR real world applications, the description of physical
systems, in terms of mathematical models, produces

high-order transfer functions generally. These transfer func-
tions are relatively complex for in-depth analysis, computer
simulations, and controller design [1], [2]. Therefore, the
analysis and controller design of such systems become a chal-
lenging task. The simplification of such high-order transfer
functions into low-order models can be considered as a pos-
sible solution. The simplification should be processed so that
that the low-order models should retain the dominant char-
acteristics of high-order systems. The simplification offers
remarkable features , e.g., reduction in computational effort
during simulating the behavior of system, feasible controller
design, better understanding of the dynamic behavior of the
system, etc. [3].

In literature, a large number of order reduction techniques

are available for non-interval systems both in continuous and
discrete time domains [4]. These methods include aggrega-
tion matrix [5], power decomposition method [6], pole re-
tention technique [7], time moment matching technique [8],
Routh stability criterion [9], Pade approximation [10], Hur-
witz polynomial based approximation [11], stability preser-
vation method [12], etc. In spite of the availability of several
reduction techniques, only a few among these are extended
for order reduction of interval systems. The main reason
behind this are involvement of complex interval arithmetic
and difficulty in stability analysis of model. Kharitonov [13]
proposed, a breakthrough result to verify the robust stability
of interval system. This result, known as Kharitonov theorem,
attracted many researchers in the field of modelling and
system analysis of continuous and discrete interval systems.

Many practical systems in engineering industries possess
uncertainties in parameters during entire range of operat-
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ing conditions [14], [15]. These uncertainties in the system
parameters occur due to sensor noises, nonlinear effects,
actuator constraints, internal and external disturbances, aging
effect, manual errors, etc. The consideration of uncertainties
in model of the system itself turns out to a transfer function
having interval parameters [16]–[18]. The transfer function
having interval parameters is known as interval systems.
Some practical systems, mathematically modelled as interval
systems, are cold rolling mill, DC shunt motor, oblique wing
aircraft, and Riverol-Pilipovik water treatment [19], [20]. The
interval transfer functions of cold rolling mill, DC shunt
motor, oblique wing aircraft, and Riverol-Pilipovik water
treatment are given, respectively, in (1), (2), (3) and (4).

G(s) =
[0.5, 2.6] + [3, 16] s+ [4.2, 21] s2

[0.05, 0.15] + [1, 2.5] s+ [3, 8] s2 [1, 1] s3
(1)

G(s) =
[50000, 50000]

[2025, 2475]s+ [1200, 2800]s2 + [9.6, 33.6]s3
(2)

G(s) =
[900, 1660] + [54, 74]s

[−1, 1] + [301, 339]s+ [504, 808]s2 + [28, 46]s3 + 10s4
(3)

G(s) =

[
G11(s) G12(s)
G21(s) G22(s)

]
(4)

The interval transfer function ofG11(s),G12(s),G21(s), and
G22(s) are given as below

G11(s) =
0.0045(0.104s) + 1

(0.012s2)

G12(s) = 0

G21(s) =
[900, 1660] + [54, 74]s

[−1, 1] + [301, 339]s+ [504, 808]s2 + [28, 46]s3 + 10s4

G22(s) =
10(−3s+ 1)

s2 + 5s+ 1

In the transfer functions given in (1)-(4), the coefficients
of numerator and denominator polynomials are varying in
definite intervals.

The pioneering work for order reduction of continuous in-
terval system is proposed by Bandyopadhyay et al. [21] based
on Routh-Pade technique. Here, denominator of the model is
obtained by direct truncation of Routh table and numerator
is derived using matching of coefficients of power series
expansion of the system to model. But, in [22], it is shown
that this method generates unstable interval models for stable
high-order interval systems in few cases. To overcome this
limitation, the formula given in [21], is modified while con-
structing the elements of Routh table. The resulting reduced-
order interval models are assumed to be stable. Further, Yang
[23] proved that the method developed in [22] also does not
ensure stability of reduced model in all cases. Finally, Dolgin
[24] inserted two additional conditions while constructing the
elements of Routh table to overcome the problem of unstable
denominator polynomial.

Recently, other methods have also been developed for
order reduction of interval systems. A reduction technique
based on Routh approximation (RA) using Kharitonov poly-
nomial is presented in [25]. In [26], a direct RA method
for reduction of interval systems is observed to generate

a stable reduced model. The article [27] proposed reduc-
tion employing optimization techniques like particle swarm
optimization. Also, mixed technique is suggested in [28],
where the numerator of the model is obtained using classical
reduction methods like Cauer second form, Pade approxi-
mation, differentiation and moment matching method, and
the denominator is calculated by differentiation method. A
variable substitution method is developed in [29], where
overshoot of the non-linear system is considered as an major
criteria for controller design. An linear matrix criteria was
developed for singular fractional order system with order
0 < α < 1 from non singular decomposition method
and stability theory [30]. Zhang and Yang [31] developed a
new control strategy that guarantees the prescribed tracking
performance for a class of uncertain nonlinear single system
with unknown control direction. Kumar et al. [32] developed
a technique to derive denominator and numerator of an
interval model from Routh approximation using Kharitonov
polynomials. In article [33], a class of control problems for
multi-input-multi-output (MIMO) unknown Euler-Lagrange
systems with output constrained are investigated, and also
fault- tolerant control technique is effective to compensate
for the actuator faults which ensure reliability of the dynamic
system like inverted pendulum. Hote et al. [34] proposed a
non-interval reduced model for a high-order interval system.
The denominator of the model is derived from Anderson
corollary and Routh approximation whereas the numerator
is calculated by matching steady-state value of system to that
of model. The reduced model obtained from this technique
does not contain interval values of steady-state of high-order
system. Recently, Singh et al. [35] formulated expressions
for calculation of MPs and TMs. Further, Routh-Pade ap-
proximation for simplification of high-order interval systems
employing the derived MPs and TMs is proposed in [35].

In this investigation, two simple generalized expressions
for calculating the Markov parameters (MPs) and time mo-
ments (TMs) of continuous interval systems are proposed.
Unlike the other methods, this method does not require to
invert the denominator of transfer functions of the system
and model nor an additional step of solving a set of interval
equations for calculating MPs and TMs. Firstly, denominator
of model is derived using Anderson corollary and direct trun-
cation of Routh table. Secondly, the coefficients of numerator
polynomial of the model are achieved by equating some MPs
and TMs of the system with those of the model. Considering
the matching of TMs, the steady-state response is improved,
while the matching of MPs improves transient response
matching. The key highlights of the proposed method are:

• Simpler expressions for MPs and TMs are developed.
• Both MPs and TMs are retained while deriving the

model.
• The method is simple and involves relatively lesser

computations.
• The proposed model preserves the essential characteris-

tics of system.
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• It generates stable model for stable system.
• There is no requirement of inversion of denominator of

transfer function of the system to calculate TMs.
• There is no need to solve a set of complex interval

equations for deriving the MPs and TMs.
The overview of article is as follows: problem formulation is
discussed in Section 2; the generalized expressions of MPs
and TMs of interval system are derived in Section 3; Section
4 discusses procedure to derive model; Section 5 includes the
demonstration of proposed technique with the help of two test
systems; and, finally Section 6 provides conclusions.

II. PROPOSED TECHNIQUE
The high-order continuous interval system (HOCIS) can be
expressed by equation (5)

Gn(s) =
Pn(s)

Qn(s)
=
P0 + P1s+ P2s

2 + · · ·+ Pn−1s
n−1

Q0 +Q1s+Q2s2 + · · ·+Qnsn
(5)

where
Pi = [P−i , P

+
i ] (6)

for i = 0, 1, 2, · · · , n− 1 and

Qi = [Q−i , Q
+
i ] (7)

for i = 0, 1, 2, · · · , n.
Pn(s) and Qn(s) are, respectively, the numerator and de-
nominator interval polynomials of HOCIS. The parameters
P−i and Q−i are the lower limits, and P+

i and Q+
i are the

upper limits of interval coefficients. Expansions of HOCIS,
(5), about s = 0 and s =∞, respectively, are expressed as

Gn(s) = α0 + α1s+ · · ·+ αks
k + · · · (8)

Gn(s) = β1s
−1 + β2s

−2 + · · ·+ βks
−k + · · · (9)

where, αi = [α−i , α
+
i ] for i = 0, 1, 2, · · · and βi = [β−i , β

+
i ]

for i = 1, 2, 3, · · · are TMs and MPs of interval system
respectively.
The adequate kth-order reduced order continuous interval
model (ROCIM) of the system given in (5) is represented by
(10)

Gk(s) =
pk(s)

qk(s)
=
u0 + u1s+ · · ·+ uk−1s

k−1

v0 + v1s+ · · ·+ vksk
(10)

Where k < n, being

ui = [u−i , u
+
i ] (11)

for i = 0, 1, 2, · · · , k − 1 and

vi = [v−i , v
+
i ] (12)

for i = 0, 1, 2, · · · , k.
pk(s) and qk(s) are, respectively, interval polynomials of
ROCIM. The model (10), is expressed in terms of TMs and
MPs by equations (13) and (14)

Gk(s) =
∧
α0 +

∧
α1 s+ · · ·+

∧
αk s

k + · · ·
(expansion about s = 0)

(13)

Gk(s) =
∧
β1 s

−1+
∧
β2 s

−2 + · · ·+
∧
βk s

−k + · · ·
(expansion about s =∞)

(14)

where
∧
αi= [

∧
α
−
i ,
∧
α
+

i ] (15)

for i = 0, 1, 2, · · · and

∧
βi= [

∧
β
−

i ,
∧
β
+

i ] (16)

for i = 1, 2, 3, · · ·

III. PROPOSED GENERALIZED EXPRESSIONS OF TMS
AND MPS
In order to simplify the problem of calculating TMs and MPs
of the interval system, the HOCIS, given in (5), is rewritten
as equation (17)

Gn(s) =
Pn(s)

Qn(s)
=

[P−0 , P
+
0 ] + [P−1 , P

+
1 ]s+ [P−2 , P

+
2 ]s2

+ · · ·+ [P−n−1, P
+
n−1]s

n−1

Q0 +Q1s+Q2s
2 + · · ·+Qns

n

(17)
It is to be noted that the coefficients of the denominator poly-
nomial Qn(s) are fixed values instead of interval coefficients
of Qn(s). These fixed values are mid-points of the intervals,
which are calculated using equation (18)

Qi = (Q−i +Q+
i )/2 (18)

where i = 0, 1, 2, . . . , n.
Therefore, about s = 0 and s =∞, power series expansions
of (17), respectively, are given as

Gn(s) =
Pn(s)

Qn(s)

= α0 +
[P−1 , P

+
1 ]− α0Q1

Q0

s+

[P−2 , P
+
2 ]− α0Q2 − α1Q1

Q0

s2 + · · ·

(19)

Gn(s) =
Pn(s)

Qn(s)

= β1s
−1 +

[P−n−2, P
+
n−2]− β1Qn−1

Qn

s−2+

[P−n−3, P
+
n−3]− β1Qn−2 − β2Qn−1

Qn

s−2 + · · ·

(20)

where, α0 =
[P−0 , P

+
0 ]

Q0

and β1 =
[P−n−1, P

+
n−1]

Qn
Using (8) and (19), the generalized expression for TMs of
continuous interval system (5) can be written by equation
(21)

αm =

Pm −
m−1∑
i=0

αiQm−i

Q0

, m = 0, 1, 2, 3, · · · (21)
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By comparing (9) and (20), the generalized expression for
MPs of continuous interval system, given in (5), are ex-
pressed by equation (22)

βm =

Pn−m −
m−1∑
i=1

βiQn−m+i

Qn

, m = 1, 2, 3, · · · (22)

In a similar manner, TMs and MPs (Appendix A) of ROCIM
(10) turn out to be given by equations (23) and (24)

∧
αm=

um −
m−1∑
i=0

∧
αi vm−i

v0
, m = 0, 1, 2, 3, · · · (23)

∧
βm=

Pk−m −
m−1∑
i=1

∧
βi vk−m+i

vk
, m = 1, 2, 3, · · · (24)

IV. PRINCIPAL RESULTS
To illustrate the effectiveness and applicability of proposed
TMs and MPs, Anderson corollary based improved Routh-
Pade approximation is proposed in this section.

A. PROPOSED LEMMA FOR APPROXIMATION OF
THIRD-ORDER INTERVAL SYSTEM
The desired first-order and second-order continuous interval
models of a third-order continuous interval system is given
by equation (25)

G3(s) =
P3(s)

Q3(s)
=

[P−0 , P
+
0 ] + [P−1 , P

+
1 ]s+ [P−2 , P

+
2 ]s2

[Q−0 , Q
+
0 ] + [Q−1 , Q

+
1 ]s+ [Q−2 , Q

+
2 ]s

2 + [Q−3 , Q
+
3 ]s

3
(25)

where equation can (25) be represented by equation (26)

G1(s) =
p1(s)

q1(s)
=

u0
v1s+ v0

(26)

G2(s) =
p2(s)

q2(s)
=

u1s+ u0
v2s2 + v1s+ v0

(27)

The procedure to obtain the desired and reduced models are
discussed below.

1) Procedure to calculate the denominator
The coefficients of denominator polynomial are obtained em-
ploying Anderson corollary [34]. The procedure is described
as follows:
Step 1: Apply Anderson corollary [34] on HOCIS. After
application, (25) can be expressed by equation (28)

G(s) =
P−0 + P+

1 s+ P+
2 s

2

Q+
0 +Q−1 s+Q−2 s

2 +Q+
3 s

3
(28)

Step 2: Construct Routh table for denominator polynomial of
(28) as presented in Table 1.
Step 3: Obtain denominator polynomial from (n+1−k) and
(n+ 2− k) rows of the Routh table (Table 1).

TABLE 1. Routh table

s3 Q+
3 Q−1

s2 Q−2 Q+
0

s1
Q−2 Q

−
1 −Q+

3 Q
+
0

Q−2
= X

s0 Q+
0

The denominator polynomials q1(s) and q2(s) of the first-
order and second-order models, G1(s) and G2(s), respec-
tively, become equations (29) and (30)

q1(s) = v1s+ v0

= Xs+Q+
0

=
Q−2 Q

−
1 −Q

+
3 Q

+
0

Q−2
s+Q+

0

(29)

q2(s) = v2s
2 + v1s+ v0

= Q−2 s
2 +Xs+Q+

0

= Q−2 s
2 +

Q−2 Q
−
1 −Q

+
3 Q

+
0

Q−2
s+Q+

0

(30)

2) Procedure to calculate the numerator
The coefficients of unknown numerator polynomial are
achieved by equating some initial TMs and MPs of HOCIS
and ROCIM as

αi =
∧
αi for i = 0, 1, 2, 3, . . . , (µ− 1) (31)

and

βi =
∧
βi for i = 1, 2, 3, . . . , λ (32)

where, µ + λ = k and µ ≥ 1. At least one time moment
of HOCIS and ROCIM is matched by considering µ ≥ 1,
which guarantees a better matching of steady-state response
between original system and model, and also matching of
Markov parameters improve the transient-state response.
The new and simple expressions for calculating time mo-

ments (αi,
∧
αi) and Markov parameters (βi,

∧
βi) of HOCIS

and ROCIM are proposed in Section III.

B. PROPOSED LEMMA FOR APPROXIMATION OF
SECOND-ORDER INTERVAL SYSTEM:
Let the desired first-order continuous interval model of a
second-order continuous interval system to be given by equa-
tion (33)

G2(s) =
P2(s)

Q2(s)
=

[P−0 , P
+
0 ] + [P−1 , P

+
1 ]s

[Q−0 , Q
+
0 ] + [Q−1 , Q

+
1 ]s+ [Q−2 , Q

+
2 ]s

2
(33)

be represented by equation (34)

G1(s) =
p1(s)

q1(s)
=

u0
v1s+ v0

(34)

The procedure to obtain the desired first-order model is
discussed below.
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1) Procedure to calculate the denominator
The coefficients of denominator polynomial are obtained
using Anderson corollary [34]. The procedure is illustrated
below.
Step 1: Apply Anderson corollary [34] on HOCIS. Hence,
(33) becomes as equation (35)

G(s) =
P−0 + P+

1 s

Q+
0 +Q−1 s+Q−2 s

2
(35)

Step 2: Construct the Routh table for (35). The Routh table
for (35) is provided in Table 2.

TABLE 2. Routh table

s2 Q+
2 Q−0

s1 Q−1
s0 Q−0

Step 3: Obtain the denominator polynomial from Routh table
(Table 2).
The denominator q1(s) of the first-order model can be
achieved from Routh table (Table 2) as given by equation
(36)

q1(s) = v1s+ v0 = Q−1 s+Q−0 (36)

2) Procedure to calculate the numerator
The coefficient of numerator, u0(s), is derived by equating
initial TM of HOCIS and ROCIM such that

α0 =
∧
α0 (37)

By using equations (21) and (23) from Section III, equation
(37) becomes as

P0

Q0

=
u0
v0

(38)

the matching of initial time moment will improves the steady-
state responses between HOCIS and ROCIM. The formulas
for calculating the time moments (α,

∧
α0) of HOCIS and

ROCIM are given Section III.

V. TEST CASES
Two test systems are taken into consideration to demonstrate
procedure and performance of the proposed technique.

A. TEST CASE 1:
Consider a single-input-single-output (SISO) third-order in-
terval system given by equation (39)

G3(s) =
[2, 3]s2 + [17.5, 18.5]s+ [15, 16]

[2, 3]s3 + [17, 18]s2 + [35, 36]s+ [20.5, 21.5]
(39)

The desired first-order and second-order interval models of
(39) are given by equations (40) and (41)

G1(s) =
p1(s)

q1(s)
=

u0
v1s+ v0

(40)

and
G2(s) =

p2(s)

q2(s)
=

u1s+ u0
v2s2 + v1s+ v0

(41)

1) Calculation of denominator polynomial
The coefficients of denominator polynomial are calculated as
follows
Step 1: Utilizing (28), the high-order interval system (39)
modifies to equation (42)

G(s) =
15 + 18.5s+ 3s2

21.5 + 35s+ 17s2 + 3s3
(42)

Step 2: The Routh table for (42) is provided in Table 3.

TABLE 3. Routh table

s3 3 35
s2 17 21.5
s1 31.2
s0 21.5

Step 3: The denominator of the first-order interval model,
(40), obtained using (29), is given by equation (43)

q1(s) = 31.2s+ 21.5 (43)

The denominator of the second-order interval model, (41),
calculated using (30), is written as equation (44)

q2(s) = 17s2 + 31.2s+ 21.5 (44)

2) Calculation of numerator polynomial
The initial TMs and MPs of the HOCIS, (39), calculated from
(21) and (22), are given by equations (45-47)

α0 = [0.714, 0.762] (45)

α1 = [−0.455,−0.326] (46)

β1 = [0.8, 1.2] (47)

The numerator polynomial of first-order model, (40), can be
obtained by equating first TM of HOCIS and ROCIM by
equation (48)

∧
α0= α0 (48)

Using (23) and (45), the numerator polynomial obtained is
given by equation (49)

[u−0 , u
+
0 ] = [14.99, 16.002] (49)

Therefore, the desired first-order interval model, G1(s), ob-
tained using (43) and (49), becomes equation (50)

G1(s) =
[14.99, 16.002]

31.2s+ 21.5
(50)

Similarly, the numerator polynomial of desired second-order
model, (41), can be calculated by matching initial TMs and

MPs, such that
∧
α0= α0 and

∧
β1= β1. Using (23), (45), (24)

and (47), the numerator coefficients of (41) turn out to be
given by equation (51-52)

[u−0 , u
+
0 ] = [14.99, 16.002] (51)

[u−1 , u
+
1 ] = [13.6, 20.4] (52)
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FIGURE 1. Step responses of models and original system.
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FIGURE 2. Impulse responses of models and original system.

Therefore, the desired second-order interval model, G2(s),
obtained using (51), (52) and (44) takes the form given by
equation (53)

G2(s) =
[12.5, 16.8]s+ [15.35, 16.38]

17s2 + 31.2s+ 21.5
(53)

To prove the efficacy of proposed technique, the obtained
proposed model of (39) is compared with the other approx-

imants obtained using existing methods. The second-order
approximants of (39) obtained using methods from Kumar
et al. [32], Hote et al. [34], Singh et al. [35], Bandyopadhyay
et al. [36], Sastry et al. [37], and Kumar et al. [38] are given
in equations (54)-(59), respectively.

GMK(s) =
[1.172, 1.36]s+ [1.0269, 1.11]

[1, 1]s2 + [2.35, 2.62]s+ [1.41, 1.52]
(54)

6 VOLUME xx, 2020



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3062873, IEEE Access

Bokam et al.: Anderson corollary based on new approximation method for continuous interval systems

 

(39)

(53)
(55)
(54)

(56)
(57)

(58)
(59)

(39)

(55)

(59)
(53)

(54)
(58)

(55)(54)

(56)

FIGURE 3. Bode responses of models and original system.

GH(s) =
15

17s2 + 31.2s+ 21.5
(55)

GSD(s) =
[8.27, 24.05]s+ [14.35, 16.77]

[17, 18]s2 + [29.47, 35.7]s+ [20.5, 21.5]
(56)

GB(s) =
[1.01, 1.26]s+ [0.841, 1.12]

[1.0, 1.0]s2 + [2.02, 2.45]s+ [1.15, 1.51]
(57)

GSa(s) =
[0.94, 1.35]s+ [0.891, 1.167]

[1, 1]s2 + [2.02, 2.45]s+ [1.15, 1.51]
(58)

GK(s) =
[11.12, 20.38]s+ [14.17, 16.94]

[17.01, 18.04]s2 + [31.38, 33.61]s+ [20.31, 21.71]
(59)

Therefore, the initial TMs and MPs for system, proposed
model, and models obtained due to various existing tech-
niques are calculated and provided in Table 4. From the data
tabulated in Table 4, the TMs of system are [0.714,0.762],
and [-0.455,-0.326], whereas those of the proposed model
are [0.714,0.762] and [-0.525,-0.255]. Therefore, it is clear
that TMs of system and proposed model are matching very
closely. However, the TMs of models obtained using other
existing methods Kumar et al. [32], Hote et al. [34], Singh
et al. [35], Bandyopadhyay et al. [36], Sastry et al. [37], and
Kumar et al. [38] are, respectively, ([0.703,0.761], [-0.491,-
0.259]), (0.697, -1.012), ([0.683,0.799], [-0.851,0.085]),
([0.635,0.843], [-0.658,-0.121]), ([0.672,0.881], [-0.774,-
0.113]), and ([0.675,0.807], [-0.715,-0.074]). From these val-
ues, it is evident that TMs due to the techniques proposed
by Kumar et al. [32], Hote et al. [34], Singh et al. [35],
Bandyopadhyay et al. [36], Sastry et al. [37], and Kumar et
al. [38] are having larger deviation from those of the system.
Also, it can be noted here that the TMs of the model proposed

by Hote et al. [34] is having non-interval values. Therefore,
from this analysis, it is clearly proven that the proposed
method is able to produce interval TMs, which are closer to
those of the system when compared to the TMs obtained for
other techniques.

The Markov parameter of HOCIS and ROCIMs obtained
by different techniques from literature are provided in Table
4. It is clearly observed that Markov parameter of proposed
model is [0.74,1.001], which is closer to the Markov parame-
ter of system, i.e., [0.8,1.2]. However, the Markov parameter
of models due to the techniques proposed by Kumar et al.
[32], Hote et al. [34], Singh et al. [35], Bandyopadhyay
et al. [36], Sastry et al. [37], and Kumar et al. [38] are,
respectively, given as [1.172,1.368], [0.8823], [0.473,1.374],
[1.009,1.255], [0.941,1.349], and [0.639,1.169]. This data
clearly shows that the MP of other techniques due to Kumar
et al. [32], Hote et al. [34], Singh et al. [35], Bandyopadhyay
et al. [36], Sastry et al. [37], and Kumar et al. [38] are having
more deviation. Moreover, in case of model proposed by
Hote et al. [34], it is clear that it is producing non-interval
MP. Hence, it is clearly seen that the proposed method is
generating interval MP, which are closer to that of the system
as compared to other techniques considered. Figure 1 shows
the step responses of system (39), model (53) obtained by
proposed method, and models (54)-(59) derived by methods
existing in literature due to Kumar et al. [32], Hote et al. [34],
Singh et al. [35], Bandyopadhyay et al. [36], Sastry et al. [37]
and Kumar et al. [38]. From Figure 1, it is clearly observable
that the step response of proposed model (53) is matching
closely to that of the original system (39) than step responses
of the other models (54)-(59). The same holds true for both
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TABLE 4. Time moments and Markov parameter of system and models.

System/
models Authors First two TMs First MP

(39) System α0=[0.714, 0.762]
α1=[−0.455,−0.326]

β1=[0.8, 1.2]

(53) Proposed method
∧
α0=[0.714, 0.762]
∧
α1=[−0.525,−0.255]

∧
β1=[0.74, 1.001]

(54) Kumar et al. [32]
∧
α0=[0.703, 0.761]
∧
α1=[−0.491,−0.259]

∧
β1=[1.172, 1.368]

(55) Hote et al. [34]
∧
α0=0.697
∧
α1=−1.012

∧
β1=0.8823

(56) Singh et al. [35]
∧
α0=[0.683, 0.799]
∧
α1=[−0.851, 0.085]

∧
β1=[0.473, 1.374]

(57) Bandyopadhyay et al. [36]
∧
α0=[0.635, 0.843]
∧
α1=[−0.658,−0.121]

∧
β1=[1.009, 1.255]

(58) Sastry et al. [37]
∧
α0=[0.672, 0.881]
∧
α1=[−0.774,−0.113]

∧
β1=[0.941, 1.349]

(59) Kumar et al. [38]
∧
α0=[0.675, 0.807]
∧
α1=[−0.715,−0.074]

∧
β1=[0.639, 1.169]
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FIGURE 4. Step responses of models and original system.

impulse and frequency responses as given in Figures 2 and
3. From the above discussion, it can be concluded that the
proposed approximant is more efficient in performance than
the other approximants in terms of transient and steady state
response matching.

B. TEST SYSTEM 2:
A second-order interval system is given by equation (60)

G(s) =
[2.0, 3.0] s+ [15.0, 16.0]

[2.0, 3.0] s2 + [12.0, 13.0] s+ [10.0, 11.0]
(60)

and its desired first-order transfer function be of the form
according to equation (61)

G1(s) =
u0

v1s+ v0
(61)
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FIGURE 5. impulse responses of models and original system.
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FIGURE 6. Bode responses of models and original system.
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The first-order interval model for (60) using (37) and (38)
turns out to be given equation (62)

G1(s) =
[13.64, 16]

12s+ 10
(62)

While the first-order models obtained due to the techniques
proposed by Hote et al. [34], Sastry et al. [37], Bandyopad-
hyay et al. [21] and Singh and Chandra [39] are given by
equation (63-66)

G1(s) =
15

12s+ 11
(63)

GSa(s) =
[1.05, 1.467]

[1, 1] s+ [0.77, 0.917]
(64)

GB(s) =
[12.58, 19.072]

[12, 13] s+ [9.23, 11.92]
(65)

GSC(s) =
[12.58, 19.072]

[12, 13] s+ [9.23, 11.92]
(66)

The first TM of system (60) and models (62)-(66) are
calculated and tabulated in Table 5. Table 5 shows that the
first TM of the original system (60) and model (62) obtained
by the proposed method are exactly the same. However, the
first TM of other models (63)-(66) obtained using existing
methods are deviating from the TM of original system (60).

TABLE 5. Time moments of system and models.

System/
models Authors Time moment

(60) System α0=[1.36, 1.6]

(62) Proposed method
∧
α0=[1.36, 1.6]

(63) Hote et al. [34]
∧
α0=0.697

(64) Sastry et al. [37]
∧
α0=[1.15, 1.91]

(65) Bandyopadhyay et al. [21]
∧
α0=[1.06, 2.07]

(66) Singh and Chandra [39]
∧
α0=[1.06, 2.07]

Figures 4-6 represent comparison of the step, impulse and
frequency responses of the original system (60) with the
proposed model (62) and other models (63)-(66). It is clear
that response of proposed model (62) is very close to original
system (60) than other models (63)-(66). The steady-state
response of proposed model is same as of original system.
This shows that proposed method is efficient in producing
better approximant for interval systems.

VI. CONCLUSIONS
This research work shows a computationally efficient and
simpler algorithm for reducing high-order interval systems.
In addition to proposing the new efficient algorithm for
reducing continuous interval systems, simpler generalized
expressions for calculating MPs and TMs are also proposed
in such a manner so that there is no requirement of inversion
of transfer function. Also, a solution of a set of interval

equations can successfully be evaded while obtaining these
parameters. The denominator of proposed model is derived
using Anderson corollary and Routh approximation while
numerator is obtained by equating initial TMs and MPs of
system and model. The steady-state and transient-state re-
sponses of proposed model match closely to those of system.
Two SISO test systems are considered to demonstrate the
proposed technique. The simulation results prove that the
proposed technique offers an excellent alternative approach
for reducing the order of continuous interval systems. The
future research directions of this technique lies in design of
control using reduced order modeling.

.

APPENDIX A
Rewriting ROCIM (10) as equation (67)

Gk(s) =
pk(s)

qk(s)

=

[u−0 , u
+
0 ] + [u−1 , u

+
1 ]s+ [u−2 , u

+
2 ]s

2

+ · · ·+ [u−k−1, u
+
k−1]s

k−1

v0 + v1s+ v2s2 + · · ·+ vksk

(67)

The power series expansions of (67) about s = 0 is given by
equation (68)

Gk(s) =
∧
α0 +

[u−1 , u
+
1 ]−

∧
α0 v1

v0
s+

[u−2 , u
+
2 ]−

∧
α0 v2−

∧
α1 v1

v0
s2 + · · ·

(68)

By matching (68) and (13), the TMs of interval model (10)
can be written by equation (69)

∧
αm=

um −
m−1∑
i=0

∧
αi vm−i

v0
, m = 1, 2, 3, . . . (69)

The same procedure is used to obtain MPs of interval model
by expanding (10) around s =∞ and comparing it with (14).

ACKNOWLEDGMENT
This work is supported by SERB, DST, Government of India
(ECR/2017/000212) and the ENDURUNS project, European
Research Council (ERC) under the European Union’s Hori-
zon 2020 Research and Innovation Programme (Research
Grant Agreement H2020-MG-2018-2019-2020 n.824348).
The authors like to thankful for the assistance received from
the TEQIP CRS project ID 1-5766329561 program for the
research work.

REFERENCES
[1] S. Singh, V. Singh, and V. Singh, “Analytic hierarchy process based

approximation of high-order continuous systems using tlbo algorithm,”
International Journal of Dynamics and Control, vol. 7, no. 1, pp. 53–60,
2019.

[2] C. Germoso, J. L. Duval, and F. Chinesta, “Harmonic-modal hybrid
reduced order model for the efficient integration of non-linear soil dynam-
ics,” Applied Sciences, vol. 10, no. 19, p. 6778, 2020.

10 VOLUME xx, 2020



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3062873, IEEE Access

Bokam et al.: Anderson corollary based on new approximation method for continuous interval systems

[3] V. Singh, “Sine cosine algorithm based reduction of higher order continu-
ous systems,” in 2017 International Conference on Intelligent Sustainable
Systems (ICISS). IEEE, 2017, pp. 649–653.

[4] U. Zulfiqar, V. Sreeram, and X. Du, “Time-limited pseudo-optimal h 2-
model order reduction,” IET Control Theory & Applications, vol. 14,
no. 14, pp. 1995–2007, 2020.

[5] S. Lamba and S. Rao, “Aggregation matrix for the reduced-order continued
fraction expansion model of chen and shieh,” IEEE Transactions on
Automatic control, vol. 23, no. 1, pp. 81–83, 1978.

[6] C. Liaw, C.-T. Pan, and M. Ouyang, “Model reduction of discrete systems
using the power decomposition method and the system identification
method,” in IEE Proceedings D (Control Theory and Applications), vol.
133, no. 1. IET, 1986, pp. 30–34.

[7] Y. Shamash, “Linear system reduction using pade approximation to allow
retention of dominant modes,” International Journal of Control, vol. 21,
no. 2, pp. 257–272, 1975.

[8] S. Biradar, Y. V. Hote, and S. Saxena, “Reduced-order modeling of linear
time invariant systems using big bang big crunch optimization and time
moment matching method,” Applied Mathematical Modelling, vol. 40, no.
15-16, pp. 7225–7244, 2016.

[9] V. Krishnamurthy and V. Seshadri, “Model reduction using the routh
stability criterion,” IEEE Transactions on Automatic control, vol. 23, no. 4,
pp. 729–731, 1978.

[10] Y. Shamash, “Model reduction using the routh stability criterion and the
padé approximation technique,” International Journal of Control, vol. 21,
no. 3, pp. 475–484, 1975.

[11] R. Appiah, “Linear model reduction using hurwitz polynomial approxima-
tion,” International Journal of Control, vol. 28, no. 3, pp. 477–488, 1978.

[12] R. C. Selga, B. Lohmann, and R. Eid, “Stability preservation in projection-
based model order reduction of large scale systems,” European journal of
control, vol. 18, no. 2, pp. 122–132, 2012.

[13] V. L. Kharitonov, “The asymptotic stability of the equilibrium state of
a family of systems of linear differential equations,” Differentsial’nye
Uravneniya, vol. 14, no. 11, pp. 2086–2088, 1978.

[14] B. Pariyar and R. Wagle, “Mathematical modeling of isolated wind-diesel-
solar photo voltaic hybrid power system for load frequency control,” arXiv
preprint arXiv:2004.05616, 2020.

[15] N. Karkar, K. Benmhammed, and A. Bartil, “Parameter estimation of
planar robot manipulator using interval arithmetic approach,” Arabian
Journal for Science and Engineering, vol. 39, no. 6, pp. 5289–5295, 2014.

[16] F. P. G. Márquez, “A new method for maintenance management employing
principal component analysis,” Structural Durability & Health Monitoring,
vol. 6, no. 2, p. 89, 2010.

[17] F. G. Marquez, “An approach to remote condition monitoring systems
management,” 2006.

[18] D. Li, S. Zhang, and Y. Xiao, “Interval optimization-based optimal design
of distributed energy resource systems under uncertainties,” Energies,
vol. 13, no. 13, p. 3465, 2020.

[19] A. K. Choudhary and S. K. Nagar, “Order reduction in z-domain for
interval system using an arithmetic operator,” Circuits, Systems, and
Signal Processing, vol. 38, no. 3, pp. 1023–1038, 2019.

[20] ——, “Model order reduction of discrete-time interval systems by differ-
entiation calculus,” Automatic Control and Computer Sciences, vol. 52,
no. 5, pp. 402–411, 2018.

[21] B. Bandyopadhyay, O. Ismail, and R. Gorez, “Routh-pade approximation
for interval systems,” IEEE transactions on automatic control, vol. 39,
no. 12, pp. 2454–2456, 1994.

[22] Y. Dolgin and E. Zeheb, “On routh-pade model reduction of interval
systems,” IEEE transactions on automatic control, vol. 48, no. 9, pp. 1610–
1612, 2003.

[23] S.-F. Yang, “Comments on" on routh-pade model reduction of interval
systems",” IEEE Transactions on Automatic Control, vol. 50, no. 2, pp.
273–274, 2005.

[24] Y. Dolgin, “Author’s reply [to comments on’on routh-pade model re-
duction of interval systems’],” IEEE Transactions on Automatic Control,
vol. 50, no. 2, pp. 274–275, 2005.

[25] N. Selvaganesan, “Mixed method of model reduction for uncertain sys-
tems,” Serbian Journal of Electrical Engineering, vol. 4, no. 1, pp. 1–12,
2007.

[26] G. Sastry and M. Sivakumar, “Direct routh approximation method for
linear siso uncertain systems reduction,” International Journal of Applied
Engineering Reasearch, vol. 5, no. 1, pp. 91–98, 2010.

[27] D. K. Saini and R. Prasad, “Order reduction of linear interval systems us-
ing particle swarm optimization,” MIT International Journal of Electrical
and instrumentation Engineering, vol. 1, no. 1, pp. 16–19, 2011.

[28] D. K. Kumar, S. Nagar, and J. Tiwari, “A new algorithm for model order
reduction of interval systems,” Bonfring International Journal of Data
Mining, vol. 3, no. 1, pp. 06–11, 2013.

[29] J.-X. Zhang and G.-H. Yang, “Low-complexity tracking control of strict-
feedback systems with unknown control directions,” IEEE Transactions on
Automatic Control, vol. 64, no. 12, pp. 5175–5182, 2019.

[30] X. Zhang and Y. Chen, “Admissibility and robust stabilization of contin-
uous linear singular fractional order systems with the fractional order α:
the 0< α< 1 case,” ISA transactions, vol. 82, pp. 42–50, 2018.

[31] J.-X. Zhang and G.-H. Yang, “Prescribed performance fault-tolerant con-
trol of uncertain nonlinear systems with unknown control directions,”
IEEE Transactions on Automatic Control, vol. 62, no. 12, pp. 6529–6535,
2017.

[32] M. S. Kumar, N. V. Anand, and R. S. Rao, “Impulse energy approximation
of higher-order interval systems using kharitonov’s polynomials,” Trans-
actions of the Institute of Measurement and Control, vol. 38, no. 10, pp.
1225–1235, 2016.

[33] J.-X. Zhang and G.-H. Yang, “Fault-tolerant output-constrained control
of unknown euler–lagrange systems with prescribed tracking accuracy,”
Automatica, vol. 111, p. 108606, 2020.

[34] Y. V. Hote, A. N. Jha, and J. R. Gupta, “Reduced order modelling for
some class of interval systems,” International Journal of Modelling and
Simulation, vol. 34, no. 2, pp. 63–69, 2014.

[35] V. Singh, D. P. S. Chauhan, S. P. Singh, and T. Prakash, “On time
moments and markov parameters of continuous interval systems,” Journal
of Circuits, Systems and Computers, vol. 26, no. 03, p. 1750038, 2017.

[36] B. Bandyopadhyay, A. Upadhye, and O. Ismail, “/spl gamma/-/spl
delta/routh approximation for interval systems,” IEEE Transactions on
Automatic Control, vol. 42, no. 8, pp. 1127–1130, 1997.

[37] G. Sastry, G. R. Rao, and P. M. Rao, “Large scale interval system
modelling using routh approximants,” Electronics Letters, vol. 36, no. 8,
pp. 768–769, 2000.

[38] D. K. Kumar, S. Nagar, and J. Tiwari, “Model order reduction of interval
systems using mihailov criterion and cauer second form,” International
Journal of Computer Applications, vol. 32, no. 6, pp. 17–21, 2011.

[39] V. P. Singh and D. Chandra, “Routh-approximation based model reduction
using series expansion of interval systems,” in 2010 International Confer-
ence on Power, Control and Embedded Systems. IEEE, 2010, pp. 1–4.

BOKAM J.K. graduated from JNTUH, Visakhap-
atnam, India in 2008 with B.Tech degree in Elec-
trical and Electronics Engineering. He received
M.Tech degree in control and Instrumentation in
Electrical Engineering in 2011 from National in-
stitute of technology Calicut (NITC), India. Cur-
rently, he is working as Assistant professor in
GITAM college of Engineering, Visakhapatnam,
India. His research interests include Interval sys-
tems, order reduction techniques, controller design

and applications of optimization.

SINGH V.P. graduated from UPTU, Lucknow,
India in 2007 with B.Tech degree in Electrical En-
gineering. He received M.Tech degree in control
and Instrumentation and Ph.D. degree in Electrical
Engineering in 2009 and 2013, respectively, from
MNIT, Allahabad, India. Currently, he is working
as assistant professor in MNIT, Jaipur, India. His
research interests include Interval systems, model
order reduction and applications of optimization.

VOLUME xx, 2020 11



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3062873, IEEE Access

Bokam et al.: Anderson corollary based on new approximation method for continuous interval systems

RAW S. N. received his Bachelor of Science and
Master of Science from Banaras Hindu University
(BHU) and he received his Ph.D. degree from ISM
DhanbDr. S. N. Rawad. He is currently working
as Assistant Professor in Department of mathe-
matics, NIT, Raipur. He is a life time members
of International Association of Engineers, Hong
Kong, Indian Mathematical Society, India and In-
dian Science Congress Association, India. He has
published more than 20 research papers in reputed

international journals including Thomson Reuters (SCI Web of Science)
and conferences it’s also available online. His main research work focuses
on Disease Dynamics, Real World Problems, Chaos Theory and Dynamical
Systems. He has 7 years of teaching experience and 4 years of Research
Experience.

RAMESH DEVARAPALLI currently working as
Assistant professor in the department of electri-
cal engineering, BIT Sindri, Dhanbad. He did his
M.Tech from IIT (BHU), Varanasi in 2012 and
pursuing PhD from IIT (ISM), Dhanbad, India.
His research interest includes power system sta-
bility, renewable source integration into the grid,
and power system operation and control.

FAUSTO PEDRO GARCÍA MÁRQUEZ works
at UCLM as Full Professor (Accredited as Full
Professor from 2013), Spain, Honorary Senior
Research Fellow at Birmingham University, UK,
Lecturer at the Postgraduate European Institute,
and he has been Senior Manager in Accenture
(2013-2014). He obtained his European PhD with
a maximum distinction. He has been distinguished
with the prices: Runner Prize for Management
Science and Engineering Management Nominated

Prize (2020), and Advancement Prize (2018), First International Business
Ideas Competition 2017 Award (2017); Runner (2015), Advancement (2013)
and Silver (2012) by the International Society of Management Science and
Engineering Management (ICMSEM); Best Paper Award in the international
journal of Renewable Energy (Impact Factor 3.5) (2015). He has published
more than 150 papers , some recognized as: “Applied Energy” (Q1, as
“Best Paper 2020”), “Renewable Energy” (Q1, as “Best Paper 2014”);
“ICMSEM” (as “excellent”), “Int. J. of Automation and Computing” and
“IMechE Part F: J. of Rail and Rapid Transit” (most downloaded), etc. He
is author and editor of 25 books (Elsevier, Springer, Pearson, Mc-GrawHill,
Intech, IGI, Marcombo, AlfaOmega,. . . ), and 5 patents. He is Editor of 5
Int. Journals, Committee Member more than 40 Int. Conferences. He has
been Principal Investigator in 4 European Projects, 6 National Projects,
and more than 150 projects for Universities, Companies, etc. His main
interest are: Artificial Intelligence, Maintenance, Management, Renewable
Energy, Transport, Advanced Analytics, Data Science. He is being expert
in the European Union in AI4People (EISMD), and ESF. He is Director of
www.ingeniumgroup.eu

12 VOLUME xx, 2020


