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Antal Iványi, Loránd Lucz,

Tamás Matuszka and Gergő Gombos
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Abstract. Let a, b, m, and n be integers (0 ≤ a ≤ b, 1 ≤ m ≤ n).
An (a, b, n)-tournament [9] is a directed loopless multigraph T = (V,A),
where V = {V1, . . . , Vn} and if 1 ≤ i < j ≤ n, then Vi and Vj are connected
with at least a and at most b arcs. The score sequence of T is the non-
decreasing sequence of its outdegrees and the score set D = {d1, . . . , dm}
of T is the increasingly ordered set of its outdegrees. We propose four al-
gorithms generating score sequences corresponding to any D: Balancing

reconstructs the majority of the score sets; Shortening reconstructs all
score sets containing at most seven elements and so improves the theorem
of Hager [7]; Sequencing finds a shortest score sequence corresponding
to D, while Diophantine generates all score sequences corresponding to
D. The algorithms are based on a new, extended version of the Reid-Yao
theorem [25, 34].

1. Introduction

Let a, b, and n integers with 0 ≤ a ≤ b and 1 ≤ n. An (a, b, n)-tournament is
a loopless directed multigraph T = (V,A) on vertices V1 . . . , Vn in which if 1 ≤
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≤ i < j ≤ n, then Vi and Vj is connected with at least a and at most b
arcs. If n is not relevant or the context determines it then we use the sim-
pler notation (a, b)-tournament. We remark that a usual tournaments [33] is a
(1, 1)-tournament and simple directed graphs [32] are such (0, 2)-tournaments
in which parallel arcs are not allowed.

An (a, b)-tournament is called complete if in the case a ≤ c ≤ b all the
results 0 : c, 1 : c− 1, . . . , c : 0 are allowed and is incomplete otherwise. For
example the old football (where 2:0, 1:1 and 0:2 are the permitted results) is a
complete (2, 2)-tournament, while the modern football (where 3:0, 1:1 and 0:3
are permitted, but 2:0, 2:1, 1:2 and 0:2 not) is incomplete.

Let l, m and u be integers, further 1 ≤ m and l ≤ u. A sequence of integers
F = f1, . . . , fm and a set of integers D = {f1, . . . , fm} is called (l, u,m)-
bounded if l ≤ fi ≤ u for i = 1, . . . , m. If an (l, u,m)-bounded sequence or set
is monotone, then it is called (l, u,m)-regular. In this paper we deal first of all
with (a(m − 1), b(m − 1),m)-regular and (0,m − 1,m)-regular sequences and
sets.

The greatest common divisor is denoted by gcd, the binomial coefficient
(

n
2

)

by Bn, and a number x repeated y times by x<y>.

The structure of the paper is the following. In Section 2 the results on the
score sequences of (a, b)-tournaments are summarized, while in Section 3 four
construction algorithms of (1, 1)-tournaments having prescribed score sets are
presented.

2. Score sequences of complete (a, b)-tournaments

The following theorem of Landau allows the quick testing of the potential
score sequences of (1, 1)-tournaments.

Theorem 2.1. (Landau [17]) If n ≥ 1 then an F = f1, . . . , fn nondecreasing
(0, n − 1, n)-regular sequence is the score sequence of a (1, 1, n)-tournament if
and only if

(2.1)

k
∑

i=1

fi ≥

(

k

2

)

for 1 ≤ k < n with equality for k = n.

Proof. See [5, 8, 17, 22, 26]. �
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Beineke and Eggleton [26] noted in the 1970’s that not all of the Landau
inequalities need to be checked when testing a sequence F for realizability as
a score sequence of some tournament. One only need check

(2.2)

k
∑

i=1

fi ≥

(

k

2

)

for those values of k for which fk < fk+1.

In 1963 Moon generalized the theorem of Landau to (b, b)-tournaments.

Theorem 2.2. (Moon [21]) If b and n are positive integers, then an F =
= f1, . . . , fn nondecreasing (0, b(n−1), n)-regular sequence is the score sequence
of a (b, b)-tournament if and only if

(2.3)

k
∑

i=1

fi ≥ b

(

k

2

)

for all 1 ≤ k < n index, with equality for k = n.

Proof. See [2, 15, 21]. �

The following extension of the theorem of Moon appeared in 2009.

Theorem 2.3. (Iványi [9]) If a, b and n are integers with 0 ≤ a ≤ b and
1 ≤ n, then an F = (f1, . . . , fn) nondecreasing (a(n− 1), b(n− 1), n)-regular
sequence is the score sequence of an (a, b, n)-tournament if and only if

(2.4) aBk ≤

k
∑

i=1

fi ≤ bBn − Lk − (n− k)fk

for all 1 ≤ k ≤ n index, where L0 = 0 and if 1 ≤ k ≤ n, then

(2.5) Lk = max

(

Lk−1,

(

k

2

)

−

k
∑

i=1

fi

)

.

Proof. See [9]. �

There are algorithms which reconstruct the score sequences of (1, 1, n)-
tournaments as the algorithm of Guiduli et al. [6], of Gervacio [4], of Kleitman
and Wang [16], and of Ryser [28]. Also there are algorithms which construct
all score sequences of (1, 1, n)-tournaments as the algorithm of Hemasinha [8]
or of Ruskey et al. [27].

In [11] we presented algorithm Score-Sequences. This algorithm is based
on Theorem 2.3 and generates all score sequences of (a, b, n)-tournaments.
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3. Score sets of (1, 1)-tournaments

Algorithm Score-Set [11] produces the score set D corresponding to a
given score sequence S in linear time.

Figure 1 shows a (1, 1, 4)-tournament with score sequence S = 0, 2, 2, 2
and score set D = {0, 2}.

Figure 1. A tournament with score sequence 0, 2, 2, 2 and score set {0, 2}

Constructing a tournament with a prescribed score set is more difficult
than determining the score set. Quite surprisingly, if sufficiently many players
participate in a tournament then any finite set of nonnegative integers is a score
set. This was conjectured by K. B. Reid in 1978. In his paper Reid proved several
special cases of the conjecture: for sets consisting of one, two or three elements,
and also for the case when the set contains the elements of an arithmetic or
geometric progression.

Theorem 3.1. (Reid [25]) If m ≥ 1 and D = {d1, . . . , dm} is a set of
nonnegative integers, further

1. either m = 1, 2 or 3,

2. or D = {a, a+ d, . . . , a+ pd}, where a and p are nonnegative integers
and d is a positive integer,

3. or D = {a, ad, . . . , adp}, where a, d and p are positive integers and
d > 1,

then there exists at least one (1, 1)-tournament whose score set is D.

Proof. See [25]. �

In 1986 Hager settled the cases |D| = 4 and |D| = 5.

Theorem 3.2. (Hager [7]) If 4 ≤ m ≤ 5 and D = {d1, . . . , dm} is a set
of nonnegative integers, then there exists at least one (1, 1)-tournament whose
score set is D.

Proof. See [7]. �
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In 2006 Pirzada and Naikoo gave a constructive proof of a new special case
of Theorem 3.4.

Theorem 3.3. (Pirzada and Naikoo [24]) If a1, . . . , am are nonnegative in-
tegers with a1 < · · · < am, then there exists at least one (1, 1)-tournament T
with score set

(3.1) D =

{

d1 = a1, d2 =

2
∑

i=1

ai, . . . , dm =

m
∑

i=1

ai

}

.

Proof. See [24]. �

Finally in 1989 Yao gave an existence proof based on arithmetic analysis.

Theorem 3.4. (Yao [34]) Every finite nonempty set of nonnegative integers is
the score set of at least one (1, 1)-tournament.

Proof. See [34]. �

Taking into account the remark of Beineke and Eggleton [26, page 180] we
can formulate Reid’s conjecture as an arithmetical statement without the terms
of the graph theory. Let D = {d1, . . . , dm} be an increasingly ordered set of
nonnegative integers. According to the conjecture there exist positive integer
exponents x1, . . . , xm such that

(3.2) S = d<x1>
1 , . . . , d<xm>

m

is the score sequence of some (1, 1,
∑m

i=1 xi)-tournament. Using Landau’s the-
orem it can be easily seen that Reid’s conjecture is equivalent to the following
statement [13, 22, 23, 34].

For every (0, dm,m)-regular set D = {d1, . . . , dm} there exist positive inte-
gers x1, . . . , xm, such that

(3.3)
k
∑

i=1

xidi ≥

(

∑k
i=1 xi

2

)

for k = 1, . . . , m− 1,

and

(3.4)

m
∑

i=1

xidi =

(∑m
i=1 xi

2

)

.

Commenting Yao’s proof Qiao Li wrote in 1989 [18]: Yao’s proof is the first
proof of the conjecture, but I do not think it is the last one. I hope a shorter
and simpler new proof will be coming in the near future.
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However, the constructive proof has not been discovered yet.

We propose four algorithms Balancing, Shortening, Sequencing, and
Diophantine to reconstruct score sets. These algorithms are based on Theo-
rem 3.5. The proof of Theorem 3.5 is based on the following three lemmas.

Since there are quick (quadratic) algorithms constructing (1, 1, n)-tourna-
ments corresponding to a given score sequence, our algorithms construct a
suitable score sequence.

If the score sequence of a tournament is S and the score set is D, then we
say, that S generates D, or D corresponds to S.

We formulate a stronger assertion, than the theorem of Yao and analyze
four construction methods based on this assertion. The proof is based on the
following three lemmas.

Lemma 3.1. (Iványi et al. [11, 13], Iványi and Phong [12]) If b ≥ 1, d1 ≥ 0
and D = {d1}, then there exists a (b, b)-tournament T with score set D if and
only if b is a divisor of 2d1. If there exists a corresponding T , then it has the

unique score sequence S = d
<1+2d1/b>
1 .

Proof. If |S| = n and S generates D then the sum of the elements of S equals
to nd1 and also to bn(n− 1)/2 implying n = 2<1+2d1/b>. Such tournament is
realizable for example so, that any player Pi gathers b points against players
Pi+1, . . . , Pi+(n−1)/2 b and zero points against the remaining players (the
indices are taken mod n). �

Lemma 3.2. (Iványi et al. [11, 13], Iványi and Phong [12]) If the score sequence
S = s1, . . . , sn of a T tournament generates the score set D = {d1, . . . , dm},
then n ≥ ⌈dm/b⌉+ 1.

Proof. dm points require at least ⌈dm/b⌉ opponents, therefore T contains at
least ⌈dm/b⌉+ 1 players. �

Lemma 3.3. (Iványi et al. [11, 13], Iványi and Phong [12]) If b ≥ 1, m ≥ 2
and the score sequence S = s1, . . . , sn of a (b, b, n)-tournament generates the
score set D = {d1, . . . , dm}, then

(3.5)
2d1
b

+ 1 < n <
2dm
b

+ 1,

and both bounds are sharp.

Proof. All elements of D appear in S at least once. Therefore the average of
the elements of S is between d1 and dm. Since a (b, b, n)-tournament consists
of Bn matches, the average of the scores is bBn/n = b(n− 1)/2. So

(3.6) d1 <
b(n− 1)

2
< dm,

implying (3.5).
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If k ≥ 0 and D = {k, k + 1}, then according to (3.6) n = 2k + 2 shows the
sharpness of the lower bound.

And if k > 1, then the score set D = {0, k} can be generated only by the
score sequence S = {0, k<2k>} since S can contain only one zero therefore the
upper bound is also sharp. �

This lemma has a simple, but useful consequence.

Corollary 3.1. If b ≥ 1, m ≥ 2 and the score sequence S = s1, . . . , sn of a
(b, b, n)-tournament generates the score set D = {d1, . . . , dm}, further 2d1/b
and 2dm/b are integers, then

(3.7)
2d1
b

+ 2 ≤ n ≤
2dm
b

,

and both bounds are sharp.

Proof. The fact that the fractions are integers implies (3.7). The proof of the
sharpness is similar as it was in the proof of Lemma 3.3. �

The following assertion gives a stronger version of the theorem of Yao.

Theorem 3.5. If m ≥ 1 and D = {d1, . . . , dm} is an increasing (0,m− 1,m)-
regular sequence, then

1. there exist a (1, 1, n)-tournament with score set D and score sequence
S = s1, . . . , sn such that

2. if m = 1, then S = d<1+2d1>
1 ;

3. if m ≥ 2, then

(3.8) max(dm + 1, 2d1 + 2) ≤ n ≤ 2dm,

4. and the bounds in (3.8) are sharp.

Proof. This theorem is the consequence of Theorem 3.4, and Lemmas 3.1, 3.2,
3.3.

Part 1 of the theorem is equivalent with the Theorem of Yao.

Part 2 of the theorem is equivalent with Lemma 3.1.

Part 3 of the theorem is equivalent with Lemma 3.2.

Part 4 of the theorem is equivalent with Lemma 3.3. �

We remark that in 1977 Kapoor, Polimeni and Wall proved the following
characterization for simple graphs. Let the set of the distinct degrees of a simple
graph G denoted by DG, and if D = {d1, . . . , dm} (m ≥ 1) is an increasingly
ordered set of positive integers, then denote by µ(D) and µ(d1, . . . , dm) the
number of vertices of a smallest (considering the number of vertices) simple
graph whose score set is D.
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Theorem 3.6. (Kapoor, Polimeni, Wall [14]) If m ≥ 1 and D = {d1, . . . , dm}
is a (d1, dm,m)-regular set then µ(D) = dm + 1.

Proof. See [14]. �

In 2006 Ahuja and Tripathi [1] determined the possible orders (number
of vertices) of simple graphs having prescribed score sets. In the same year
Tripathi and Vijay [29] characterized the possible sizes (number of edges) of
simple graphs having prescribed degree set.

3.1. Construction of score sets of (1, 1)-tournaments by balancing

The basic idea of Balancing is that every match increases the number of
wins and also the number of losses by one in a tournament.

At a fixed number of players Balancing divides the players (and their
scores) of a tournament into 3 classes: winners are the players having more wins
than losses, losers are the players having more losses than wins, and balanced
are the players having the same number of wins and losses. In the case of the
winners the difference of the number of wins and losses di − (n − 1 − di) is
called their plus, while in the case of the losers the difference (n− 1− di)− di
is called their minus.

AlgorithmBalancing works as follows. Its input is a positive integerm ≤ 7
and the set of the prescribed scoresD = {d1, . . . , dm}, which is an increasingly
ordered (0,m−1,m)-regular set. The output is a score sequence S = s1, . . . , sn
corresponding to D.

If m > 1 then there is at least one loser and at least one winner. We denote
the number of winners by w and the number of losers by l.

The algorithm is described in details and analyzed by simulation in [11].

Table 1 contains the constructed score sequences for the zerofree score sets
containing seven elements. The base of considering only the zerofree sets is the
following assertion.

Lemma 3.4. Let m ≥ 2. A sequence S = s<y1>
1 , . . . , s<yn>

n is the score
sequence corresponding to the score set D = {0, d2, . . . , dm} if and only if the
sequence S′ = s<y2−1>

2 , . . . , s<yn−1>
n is the score sequence corresponding to

D′ = {d2 − 1, . . . , dm − 1}.

Proof. If S is the score sequence corresponding to D then s1 = 0 and y1 = 0
that is all other players won against the player having the score s1 = 0 so S′

corresponds to D′.

If S′ does not correspond to D′ then we add a new score d1 = 0 to D′, in-
crease the multiplicity of other scores by 1 and get D which does not correspond
to D′. �
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n D Balancing Shortening Sequencing |S| − |Smin|

1 {6} 613 same same 13− 13 = 0

2 {5, 6} 56, 66 same same 12− 12 = 0

3 {4, 6} 43, 69 same same 12− 12 = 0

4 {4, 5, 6} 45, 5, 65 same 47, 5, 62 11− 10 = 1

5 {3, 6} 36, 63 same same 9− 9 = 0

6 {3, 5, 6} 33, 52, 66 same same 11− 11 = 0

7 {3, 4, 6} 36, 4, 6 same same 8− 8 = 0

8 {3, 4, 5, 6} 33, 44, 5, 6 same 35, 4, 5, 62 9− 9 = 0

9 {2, 6} 25, 63 same same 8− 8 = 0

10 {2, 5, 6} 25, 5, 6 same same 7− 7 = 0

11 {2, 4, 6} 24, 42, 62 same same 8− 8 = 0

12 {2, 4, 5, 6} 23, 42, 52, 62 same 24, 41, 52, 61 9− 8 = 1

13 {2, 3, 6} 23, 33, 61 same same 7− 7 = 1

14 {2, 3, 5, 6} 2, 3, 54, 65 same 2, 35, 5, 6 11− 8 = 3

15 {2, 3, 4, 6} 24, 3, 4, 6 same same 7− 7 = 0

16 {2, 3, 4, 5, 6} 22, 32, 4, 52, 62 same same 9− 9 = 0

17 {1, 6} 13, 67 same 14, 64 10− 8 = 2

18 {1, 5, 6} 13, 53, 63 same same 9− 9 = 0

19 {1, 4, 6} 12, 44, 63 same same 9− 9 = 0

20 {1, 4, 5, 6 12, 43, 52, 62 same same 9− 9 = 0

21 {1, 3, 6} no solution 13, 3, 65 13, 32, 62 9− 7 = 2

22 {1, 3, 5, 6} 1, 3, 53, 66 same 12, 3, 55, 6 11− 9 = 2

23 {1, 3, 4, 6} 12, 33, 4, 6 same same 7− 7 = 0

24 {1, 3, 4, 5, 6} 13, 3, 4, 5, 6 same same 7− 7 = 0

25 {1, 2, 6} 12, 22, 65 same same 9− 9 = 0

26 {1, 2, 5, 6} 12, 22, 52, 62 same 13, 2, 52, 6 8− 7 = 1

27 {1, 2, 4, 6} 1, 2, 4, 68 same 13, 2, 4, 62 11− 7 = 4

28 {1, 2, 4, 5, 6} 12, 22, 4, 5, 6 same same 7− 7 = 0

29 {1, 2, 3, 6} 12, 22, 3, 62 same same 7− 7 = 0

30 {1, 2, 3, 5, 6} no solution 12, 2, 32, 5, 6 same 7− 7 = 0

31 {1, 2, 3, 4, 6} 1, 2, 3, 43, 63 same 12, 2, 3, 42, 6 9− 7 = 2

32 {1, 2, 3, 4, 5, 6} 1, 2, 3, 42, 52, 62 same 12, 2, 3, 4, 5, 62 9− 8 = 1

Table 1. Indices, prescribed score sets, reconstructed score sequences produced
by Balancing, Shortening, Sequencing, and the difference between the
lengths of the score sequences produced by Shortening and Sequencing for
7 players and score sets beginning with d1 > 0. To save space in the exponents
we omit the symbols < and >.
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3.2. Construction of score sets of (1, 1)-tournaments by shortening

Shortening works in three rounds:

1. in the first round Shortening repeatedly deletes the leading zero element
of D and decrease the remaining elements by one, then try to reconstruct
the shortened set using Balanced and if the reconstruction is successful
then adds the deleted zeros at the same time increasing the remaining
elements by one and tests the so received sequences using by Landau
theorem;

2. if the first round does not result a score sequence corresponding toD then
while dm = n− 1, Shortening provisionally deletes the last element of
D and decrease m and n by 1, then tries to reconstruct the shortened se-
quence, adds the deleted elements, and finally tests the received sequence
using algorithm by Landau.

3. if the first and second rounds are unsuccessful then Shortening deletes
the last element of D and tries to reconstruct it, then tests if addition
of 1, . . . , n − m copies of the deleted element results a score sequence
corresponding to D.

According to the computer experiments Balanced reconstructed all score
sets containing at most six element. There are two score sets with m = 7 not
reconstructed by Balancing: D1 = {1, 3, 6} and D2 = {1, 2, 3, 5, 6}.

In the case ofD2 in the second round the permitted values of n are 7, . . . , 12.
Shortening deletes 6 and 5, reconstructs the shortened set, {1, 2, 3} receiv-
ing the sequence 1<2>, 2, 3<2>. Adding 5 and 6 the algorithm gets the score
sequence S2 = 1<2>, 2, 3<2>, 5, 6 corresponding to the prescribed D2. Delet-
ing 5 and 6 Balancing reconstructs the shortened set resulting the sequence
12, 2, 32, then adding one 5 and one 6 resulting is S2 = 1<2>, 2, 3<2>, 5, 6.

The reconstruction of D1 requires the third round of Shortening: after
the deletion of 6 Balancing results 1<3>, 3 and adding five times 6 we get the
score sequence S1 = 1<3>, 3, 6<5> corresponding to D1.

3.3. Construction of score sets of (1, 1)-tournaments by sequencing

The basic idea of Sequencing is that we gradually generate and store
the score sets belonging to the score sequences of (1, 1, n)-tournaments for
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n = 1, . . . , N and using Theorem 3.5 and we can find all score sequences
corresponding to the prescribed score sets with dm ≤ N/2.

The program and simulation results (enumeration results and running time)
of Sequencing can be found in [11].

Here we present only the results of the investigated algorithms for zerofree
score sets containing at most seven elements.

3.4. Construction of score sets of (1, 1)-tournaments using Diophan-
tine equations

The base of algorithm Diophantine is the reformulated version of Yao’s
theorem described in (3.3) and (3.4). If n is fixed, then we consider all partitions
of n into positive integers and test the corresponding sequences, if they are score
sequences.

The program and simulation results (enumeration results and running time)
of Diophantine can be found in [11].

For example Balancing could not reconstruct the score set {1, 2, 3, 5, 6}.
Diophantine finds eleven solutions.

Acknowledgement. The authors thank Zoltán Kása (Sapientia Hungarian
University of Transylvania), Mihály Szalay (Eötvös Loránd University), and the
unknown referee for the proposed useful corrections.
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[10] Iványi, A., Degree sequences of multigraphs, Annales Univ. Sci. Bu-
dapest., Comput., 37 (2012), 195–214.
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Pázmány P. sétány 1/C
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