
Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 260–288

Parallel enumeration of degree sequences

of simple graphs

Antal IVÁNYI
Eötvös Loránd University,

Faculty of Informatics
email: ivanyi.antal2@upcmail.h

Loránd LUCZ
Eötvös Loránd University,

Faculty of Informatics
email: lorand.lucz@gmail.com

Tamás MATUSZKA
Eötvös Loránd University,

Faculty of Informatics
email: matuszka1987@gmail.com

Shariefuddin PIRZADA
Kashmir University,

Department of Mathematics
email: sdpirzada@yahoo.co.in

Abstract. The problem of testing, reconstruction and enumeration of
the degree sequences of simple graphs has rich bibliography. In this paper
we report on the parallel enumeration of the degree sequences of simple
graphs resulting the number of sequences for n = 24, . . . , 29 vertices.
We also present the linear test version of Havel-Hakimi algorithm and
compare it with the earlier linear testing algorithms.

1 Introduction

In the practice an often appearing problem is the ranking of different objects
(examples can be found e.g. in [13]), assignment of points to the objects and
ranking of the objects on the base of the sum of the received points.

Especially great bibliography has the case when the results are represented
by a simple graph and the problem is the test, reconstruction and enumeration
of the degree sequences. Havel in 1955 [8], Erdős and Gallai in 1960 [5], Hakimi

Computing Classification System 1998: G.2.2.
Mathematics Subject Classification 2010: 05C85, 68R10
Key words and phrases: simple directed graphs, approximate filtering algorithms, ap-
proximate reconstruction algorithms, linear Havel-Hakimi algorithm

260

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42932951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://compalg.inf.elte.hu/tanszek/index.php
http://www.elte.hu/en
mailto:ivanyi.antal2@upcmail.hu
http://people.inf.elte.hu/lulsaai
http://www.elte.hu/en
mailto:lorand.lucz@gmail.com
http://people.inf.elte.hu/tomintt/
http://www.elte.hu/en
mailto:matuszka1987@gmail.com
http://maths.uok.edu.in
http://maths.uok.edu.in/Faculty5.aspx
mailto:sdpirzada@yahoo.co.in

Parallel enumeration of degree sequences of simple graphs 261

in 1962 [7], Tripathi et al. in 2010 [36] proposed a method to decide, whether
a sequence of nonnegative integers can be the degree sequence of a simple
graph. The running time of their algorithms in worst case is Ω(n2). In 2007
Takahashi [32], in 2009 Hell and Kirkpatrick [9] and in 2011 Iványi et al. [13]
independently proposed an algorithm, whose worst running time is Θ(n).

There are several new proofs for the classical Havel-Hakimi and Erdős-Gallai
theorems [2, 18, 22, 34, 35, 36].

Extensions for (0, b)-graphs [3, 22] and (a, b)-graphs [10, 11, 12, 15, 24] are
also known.

There are earlier parallel results, e.g. in [23, 31, 28]. As an application of our
linear time algorithm we describe Erdős-Gallai-Enumerative algorithm and its
parallel version used to enumerate the different degree sequences of simple
graphs for 24, . . . , 29 vertices. We also present the linear test version of
Havel-Hakimi algorithm and compare it with the earlier linear algorithms.

Let n ≥ 1. We call a sequence s = (s1, . . . , sn) (l, u, n)-bounded, if 0 ≤ si ≤ n
for i = 1, . . . , n, n-bounded, if it is (0, n − 1, n)-bounded, n-regular, if the
conditions n − 1 ≥ s1 ≥ · · · ≥ sn ≥ 0 hold, and n-even, if the sum of the
elements of s is even. If there exists a graph with n vertices which has the
degree sequence s, then we say that s is n-graphical. If such graph does not
exist, then we say that s is nongraphical. If n is not necessary, then we omit it in
the terms n-bounded, n-regular, n-even and n-graphical. The first i elements
of an n-regular s are called the head, and the last n− i elements are called the
tail, belonging to the element i of s.

The main aim of this paper is to report on the parallel realization of the
linear Erdős-Gallai algorithm. Although this problem is interesting in itself,
for us the main motivation was our wish to answer the question formulated in
the recent monograph [6, Research problem 2.3.1] of András Frank: ”Decide
if a sequence of n integers can be the final score of a football tournament of n
teams.” During testing and reconstructing of potential football sequences im-
portant subproblem is the handling of sequences of draws. Since the questions
”Is this sequence graphical?” and ”Is this sequence a football draw sequence?”
are equivalent (see [12, 16, 17, 19, 27]), the quick answer is vital for us.

The structure of the paper is as follows. After the introductory Section 1
in Section 2 we describe the linear test version of the classical Havel-Hakimi
algorithm, then in Section 3 we present the enumerating version of the linear
Erdős-Gallai algorithm. In Section 4 the parallel version of the enumerating
Erdős-Gallai algorithm is analyzed, and finally in Section 5 we summarize the
results.

262 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

2 Linear Havel-Hakimi algorithm (HHL)

In a previous paper [13] we described the classical Havel-Hakimi [7, 8] and
Erdős-Gallai [5] algorithms and their some improvements as linear Erdős-
Gallai (EGL) and jumping Erdős-Gallai (EGLJ) algorithms.

Here we present the linear version of Havel-Hakimi algorithm (HHL) [12]
and compare it with the previous linear algorithms EGL and EGLJ [13]. It is
important to remark that this linear version of HH only tests the investigated
sequences without their reconstruction.

In the worst case the original Havel-Hakimi algorithm requires quadratic
time to test the (0, 1, n)-regular sequences. Using the new concepts weight
point and reserve we reduced the worst running time to O(n).

Let s = (s1, . . . , sn) be a potential graphical sequence. The definition of
the weight point wi belonging to si was introduced in [13] in connection with
Erdős-Gallai-Linear: if s1 ≥ i, then wi is the largest k (1 ≤ k ≤ n) having
the property sk ≥ i. But if s1 < i, then wi = 0. EGL exploits the property wi
ensuring that if i ≤ wi, then the key expression min j, sk in the Erdős-Gallai
theorem equals i, otherwise equals sk.

In HHL the weight point wi determines the increment of the tail capacity
when we switch to the investigation of the next element of s.

The reserve ri belonging to si is defined as the unused part of the actual
tail capacity and can be computed by the formulas

r1 = w1 − 1− s1 (1)

and

ri = wi + ri−1 − si for 2 ≤ i ≤ n− 1. (2)

The programs of this paper are written using the pseudocode described in
[4].

Input. n: number of vertices (n ≥ 4);
s = (s1, . . . , sn): the investigated regular sequence.

Output. 0 or 1.
Work variable. i: cycle variable;

r = (r1, . . . , rn): ri the reserve belonging to si;
w = (w1, . . . , wn): wi the weight point belonging to si;
H = (H1, . . . , Hn): Hi is the sum of the first i elements of s.

Havel-Hakimi-Linear(n, s)

01 if ss1+1 == 0 // lines 01–02: test of s1 in constant time

Parallel enumeration of degree sequences of simple graphs 263

02 return 0
03 if s1 == 0 // lines 03–04: test of the sequence consisting of only zeros
04 return 1
05 H1 = s1 // line 05: initialization of H
06 for i = 2 to n // lines 06–07: further Hi’s
07 Hi = Hi−1 + si
08 if Hn is odd // lines 08–09: test of the parity
09 return L
10 w1 = n // lines 10–13: computation of the first weight point and reserve
11 while sw1

< 1

12 w1 = w1 − 1
13 r1 = w1 − 1− s1
14 for i = 2 to n− 1 // lines 14–21: testing of s
15 if si ≤ i or si+1 = 0
16 return 1
17 wi = wi−1
18 while swi

< i and wi > 0
19 wi = wi − 1
20 if si > wi − 1+ ri−1 // line 20: Is s graphical?
21 return 0 // line 21: s is not graphical
22 ri = wi + ri−1 − si // line 22: update of the reserve
23 return 1 // line 23: s is graphical

Theorem 1 The running time of Havel-Hakimi-Linear is in best case
Θ(1), and in worst case it is Θ(n).

Proof. If the condition in line 1 or 3 holds, then the running time is Θ(1).
If not, then we decrease the actual w at most n times and the remaining
operations require O(1) operations for all reductions. �

The C++ code of HHL is as follows (in the original code [20] every & is
substituted by \&, every by \ , every < by $<$, every > by $>$.

//Linear Havel-Hakimi algorithm (HHL)
bool HHL(const int& n, const int s[], vector<vector<int> >& ops) {

if (F[1] < 0) { return false; }
vector<int>& v = ops.at(n);
v.push back(0);

int w[n], r[n], H[n];
++v.back();

264 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

if (s[0] == 0) { // line 1 of the pseudocode
return true; // line 2 of the pseudocode
}
++v.back(); // if (s[s[0]+1] == 0)
if (s[s[0]] == 0) { // line 3 of the pseudocode

return false; // line 4 of the pseudocode
}
H[0] = s[0]; // line 5 of the pseudocode
++v.back(); // since H[0] = s[0]; miatt
++v.back(); // int i=1 miatt
for (int i=1; i¡n; ++i) { // line 6 of the pseudocode

H[i] = H[i-1] + s[i]; // line 7 of the pseudocode
v.back() += 4; // i¡n, ++i, H[i] = H[i-1] + s[i] (2 operations)
}

v.back() += 2;
if (H[n-1] %2 == 1) { // line 8 of the pseudocode

return false; // line 9 of the pseudocode

w[0] = n-1; // line 10 of the pseudocode
++v.back();
while (s[w[0]] ¡ 1) { // line11 of the pseudocode

—w[0]; // line 12 of the pseudocode
v.back() += 2;
}
r[0] = w[0] - s[0]; // line 13 of the pseudocode
v.back() += 2;

++v.back(); // i=1 miatt
for (int i=1; i¡n-2; ++i) { // line 14 of the pseudocode

v.back() += 2;
v.back() += 3;
if (s[i]¡=i+1 —— s[i+1] == 0) { // line 15 of the pseudocode

return true; // line 16 of the pseudocode
}
w[i] = w[i-1]; // line 17 of the pseudocode
++v.back();
while (s[w[i]]¡i+1 && w[i]¿0) { // line 18 of the pseudocode
–w[i]; // line 19 of the pseudocode

Parallel enumeration of degree sequences of simple graphs 265

v.back() += 4;
}
if (s[i]¿w[i]+r[i-1]) { // line 20 of the pseudocode

v.back() += 2;
return false; // line 21 of the pseudocode

}
r[i] = w[i] + r[i-1] - s[i]; // line 22 of the pseudocode
v.back() += 3;

}
return true; // line 23 of the pseudocode
}

An even sequence s = (s1, . . . , sn) is called zerofree, if sn > 0. Table 1 shows
the number (Ez(n)) of the tested zerofree sequences, further the average test-
ing time of one zerofree sequence in microseconds for EGL (TEGL(n)/Ez(n)),
EGLJ (TEGLJ(n)/Ez(n)), and HHL (THHL(n)/Ez(n)), when n = 10, . . . , 19.

The values n = 1, . . . , 9 are omitted from the table since our program rounds
the running time to zero.

n Ez(n)
TEGL(n)
Ez(n)

TEGLJ(n)
Ez(n)

THHL(n)
Ez(n)

10 21 942 0.683620 0.000000 0.000000
11 83 980 0.369136 0.190521 0.381083
12 323 554 0.336883 0.194712 0.287433
13 1 248 072 0.299662 0.213128 0.237967
14 4 829 708 0.319895 0.226101 0.222788
15 18 721 080 0.338281 0.241371 0.226643
16 72 714 555 0.348197 0.251665 0.233406
17 282 861 360 0.379355 0.255846 0.240789
18 1 101 992 870 0.377512 0.267014 0.249460
19 4 298 748 300 0.394319 0.281491 0.261416

Table 1: Number of zerofree sequences, further the average running time for a
zerofree sequence in the case of EGL, EGLJ and HHL algorithms in microsec-
onds.

Figure 1 shows the running times of EGL, EGLJ and HHL as the function
of the number of vertices. On the figure (green) triangles show the (n, T(n))
pairs for the linear Erdős-Gallai algorithm (EGL), (red) squares for the linear
jumping Erdős-Gallai algorithm (EGLJ) and (blue) diamonds for the linear
Havel-Hakimi algorithm (HHL).

266 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

Figure 1: Average running time of EGL, EGLJ, and HHL.

Table 2 shows the average number of operations used to test one zerofree se-
quence in microseconds for EGL (OEGL(n)/Ez(n)), EGLJ (OEGLJ(n)/Ez(n)),
and HHL (OHHL(n)/Ez(n)), when n = 10, . . . , 19. The values n = 1, . . . , 9 are
omitted from the table since our program rounds the corresponding running
time to zero.

Figure 2 shows the running times of EGL, EGLJ and HHL as the function
of the number of vertices. On the figure (green) triangles show the (n, T(n))
pairs for the linear Erdős-Gallai algorithm (EGL), (red) squares for the lin-
ear jumping Erdős-Gallai algorithm (EG) and (blue) diamonds for the linear
Havel-Hakimi algorithm (HHL). The lines are drawn using the method of least
squares.

As operations we counted comparisons, additions, subtractions, multiplica-
tions, divisions, residual divisions and assignments. The operations with in-
dices are exceptions. For example the command H[i] − i · (i− 1) > R requires
three operations: the subtraction H[i] − i · (i− 1), the multiplication i · (i− 1),
and the comparison H[i] − i · (i − 1) > R. The subtractions of type i − 1 are
not counted when i is a cycle variable in the body of a cycle.

As an example we consider in details the testing of the zerofree input se-

Parallel enumeration of degree sequences of simple graphs 267

n
OEGL(n)
Ez(n)

OEGLJ(n)
Ez(n)

OHHL(n)
Ez(n)

2 35.000 13.000 14.000
3 55.000 26.500 18.000
4 73.000 37.667 29.889
5 91.000 51.429 39.357
6 101.609 61.473 48.591
7 123.495 72.480 57.553
8 139.162 82.042 66.123
9 154.944 91.751 74.552

10 170.421 100.929 82.749
11 185.885 110.047 90.824
12 201.209 118.930 98.758
13 212.177 124.720 106.591
14 231.659 136.373 114.739
15 246.785 144.939 121.976
16 261.846 153.411 129.552

Table 2: The average number of operations for a zerofree sequence in the case
of EGL, EGLJ and HHL algorithms.

quence (1, 1). This example is based on the C++ codes of the algorithms [20].
HHL (its pseudocode and C++ code see in this paper too) requires 14

operations: 1 comparison in line 1, 1 comparison in line 3, 1 assignment in line
5, 5 operations in lines 6 and 7 (1 assignment i = 1, 1 addition increasing i, 2
comparison i < n, 1 assignment H1 = s1), 1 residual division and 1 comparison
in line 8, 1 assignment in line 10, 2 subtractions and 1 assignment in line 13
and 1 comparison in lines 14–22.

EGLJ requires 13 operations: 1 assignment in line 1, 5 operations in lines
2–3 (1 initialization of the cycle variable, 1 increasing of the cycle variable,
1 comparison, 2 assignment for Hi), 1 residual division and 1 comparison in
lines 5–8, 1 assignment in line 9, 4 operations in lines 10–28 (1 initialization
of the cycle variable, 1 increasing of the cycle variable, 1 comparison in line
11 and 1 comparison in line 17).

EGL requires 35 operations: 1 assignment in line 1, 9 operations in lines
2–3 (1 initialization of the cycle variable, 2 increasings of the cycle variable, 2
testing of the cycle variable, 2 additions for Hi, 2 assignments for Hi, 1 residual
division and 1 comparison in line 4, 1 assignment in line 7, 7 operations in

268 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

Figure 2: Amortized number of operations for EGL, EGLJ, and HHL.

lines 8–12 (1 initialization of the cycle variable, 2 increasings of the cycle
variable, 2 comparisons, 2 tests of the branching), 4 operations in lines 13–
14 (1 initialization of the cycle variable, 1 decreasing of the cycle variable, 1
comparison, 1 assignment), 11 operations in lines 15–23 (1 initialization of the
cycle variable, 9 comparisons,1 increasing of the cycle variable).

Table 3 shows the number of the tested zerofree sequences (Ez(n)), fur-
ther the average testing time of one tested sequence in microseconds for EGL
(oEGL(n)/Ez(n)), EGLJ (oEGLJ(n)/Ez(n)), and HHL (oHHL(n)/Ez(n)), when
n = 10, . . . , 19. The values n = 1, . . . , 9 are omitted from the table since our
computer rounds the running times to zero.

Figure 3 shows the running times of EGL, EGLJ and HHL as the function
of the number of vertices. On the figure (green) triangles show the (n, T(n))
pairs for the linear Erdős-Gallai algorithm (EGL), (red) squares for the lin-
ear jumping Erdős-Gallai algorithm (EG) and (blue) diamonds for the linear
Havel-Hakimi algorithm (HHL).

The most interesting data of Figure 3 are in the last three columns: they
show that our algorithm is a CAT (Constant Time Amortized) algorithm (see
[26]). In this columns the data show slowly decreasing character. The bases of

Parallel enumeration of degree sequences of simple graphs 269

n Gz(n)
OEGL(n)
Ez(n)

OEGLJ(n)
Ez(n)

OHHL(n)
Ez(n)

2 1 17.500 6.500 7.000
3 2 18.333 8.833 6.000
4 7 18.250 9.417 7.472
5 20 18.200 10.286 7.781
6 71 16.935 10.246 8.099
7 240 17.642 10.154 8.222
8 871 17.395 10.255 8.265
9 3 148 17.216 10.195 8.284

10 11 655 17.042 10.093 8.275
11 43 332 16.899 10.004 8.257
12 162 769 16.767 9.911 8.230
13 614 718 16.321 9.593 8.199
14 2 330 537 16.547 9.741 8.196
15 8 875 768 16.452 9.663 8.132
16 33 924 858 16.365 9.588 8.097

Table 3: Number of zerofree graphical sequences (Gz(n)), further average num-
ber of operations for an element of a zerofree sequence in the case of EGL,
EGLJ and HHL algorithms.

this decreasing tendency are Lemma 13 and Theorem 22 in [13]. According to
these assertions E(n) = Θ(4n/

√
n) and G(n) = O(4n/((logn)C

√
n)), where C

is a positive constant. These assertions imply that G(n)/E(n) tends to zero,
when n tends to infinity, and so the limits of the sequences in the last three
columns are determined by the average numbers of operations necessary to
exclude the nongraphical sequences.

3 Enumerating Erdős-Gallai algorithm (EGE)

A classical problem of the graph theory is the enumeration of the degree se-
quences of different graphs—among others of simple graphs. For example The
On-Line Encyclopedia of Integer Sequences [29] contains for n = 1, . . . , 29

vertices the number of degree sequences of simple graphs (the values for
n = 20, . . . , 23 were set in July of 2011 by Nathann Cohen, and in November
15, 2011 for 24, . . . , 29 by us [13]).

We applied the new quick EGL to get these numbers for larger values of n.

270 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

Figure 3: Average number of operations used for one element of zerofree se-
quences by EGL, EGLJ, and HHL.

Our starting point was to test all regular sequences and so enumerate the
graphical ones. It is easy to see that there are

R(n) =

(
2n− 1

n

)
(3)

regular sequences. In 1987 Ascher derived the following explicit formula for
the number of even sequences E(n).

Lemma 2 (Ascher [1], Sloane, Pfoffe [30]) If n ≥ 1, then the number of even
sequences E(n) is

E(n) =
1

2

((
2n− 1

n

)
+

(
n− 1

bn/2c

))
. (4)

Proof. See [1]). �

Using (3) and (4) we computed R(n) and E(n) for i = 1, . . . , 100. The results
for n = 1, . . . , 38 were published in [13], for n = 39, . . . , 60 are presented in

Parallel enumeration of degree sequences of simple graphs 271

n R(n) E(n)

39 13608507434599516007800 6804253717317430635800
40 53753604366668088230810 26876802183368505747610
41 212392290424395860814420 106196145212266853671620
42 839455243105945545123660 419727621553107337030440
43 3318776542511877736535400 1659388271256207997204920
44 13124252690842425594480900 6562126345421738821981380
45 51913710643776705684835560 25956855321889404891899640
46 205397724721029574666088520 102698862360516845690726160
47 812850570172585125274307760 406425285086296679352517680
48 3217533506933149454210801550 1608766753466582789006321550
49 12738806129490428451365214300 6369403064745230349484448700
50 50445672272782096667406248628 25222836136391079936354733752
51 199804427433372226016001220056 99902213716686176213303828904
52 791532924062974587678774064068 395766462031487417819020269060
53 3136262529306125724764953838760 1568131264653063110341743393432
54 12428892245768720464809261509160 6214446122884360719139487166608
55 49263609265046928387789436527216 24631804632523465167364431087664
56 195295022443578894680165266232892 97647511221789449252255283306556
57 774327632846470705223111406467256 387163816423235356435901003613848
58 3070609578529107968988200404956360 1535304789264553992010916827363440
59 12178349853827309571919303301013360 6089174926913654800993284900277200
60 48307454420181661301946569760686328 24153727210090830680539430271558520

Table 4: Number of regular and even sequences for n = 39, . . . , 60.

Table 4, and all values and the corresponding program can be found in [20].
The values of R(n) for n = 1, . . . , 100 are also contained in OEIS as sequence
A001700 [21].

Due to the following lemma it is enough to test only the zerofree sequences.

Lemma 3 (Iványi, Lucz, Móri, Sótér [13]) If n ≥ 2, then the number of n-
graphical sequences G(n) can be computed from the number of (n−1)-graphical
sequences G(n− 1) and the number of n-graphical zerofree sequences Gz(n):

G(n) = G(n− 1) +Gz(n),

and if n ≥ 1 then

G(n) = 1+

n∑
i=2

Gz(i).

Proof. See [13]. �

Taking into account these results we have to test only about one fourth of
the regular sequences. Table 5 shows the number of the zerofree sequences,

272 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

n Gz(n) Ez(n)/R(n) Gz(n)/R(n) G(n)/R(n)

1 0 0.000000 0.000000 1.000000

2 1 0.333333 0.333333 0.666667

3 2 0.200000 0.200000 0.400000

4 7 0.257143 0.200000 0.314286

5 20 0.222222 0.158730 0.246032

6 71 0.238095 0.153680 0.220779

7 240 0.230769 0.139860 0.199301

8 871 0.236053 0.135454 0.188500

9 3 148 0.235294 0.129494 0.179391

10 11 655 0.237524 0.126166 0.173375

11 43 332 0.238095 0.122852 0.168260

12 162 769 0.239188 0.120384 0.164278

13 614 198 0.245769 0.118108 0.160821

14 2 330 537 0.240783 0.116188 0.157882

15 8 875 768 0.241379 0.114439 0.155271

16 33 924 859 0.241946 0.112880 0.152950

17 130 038 230 0.242424 0.111448 0.150844

18 499 753 855 0.242860 0.101137 0.148926

19 1 924 912 894 0.243243 0.108920 0.147158

20 7 429 160 296 0.243590 0.107789 0.145521

21 28 723 877 732 0.106729 0.143997

22 111 236 423 288 0.105733 0.142569

23 431 403 470 222 0.104793 0.141228

24 1 675 316 535 350 0.103903 0.139961

25 6 513 837, 679 610 0.103058 0.138762

26 25 354 842 100 894 0.102254 0.137625

27 98 794 053 269 694 0.101486 0.136542

28 385 312 558 571 890 0.100752 0.135509

29 1 504 105 116 253 904 0.100049 0.134521

Table 5: The number of zerofree graphical sequences, further the number of ze-
rofree, of zerofree graphical and of graphical sequences, divided by the number
of regular sequences.

further the number of the zerofree, zerofree graphical and graphical sequences
divided with the number of regular sequences.

Using the parallel version EGP (see the next section) of EGE we computed
Gn till n = 29. These numbers can be found in Table 2 of [13].

We remark that Gz(n) gives the number of degree sequences of simple

Parallel enumeration of degree sequences of simple graphs 273

graphs, not containing isolated vertex. In 2006 Gordon Royle [25] posed the
following problem: is it true that Gz(n+ 1)/Gz(n) tends to 4?

Using the results of Tripathi and Vijay [13, Lemma 6 and Theorem 7] we can
substantially decrease the average testing time of the zerofree even sequences.
It is known that the expected number of checking points proposed by Tripathi
and Vijay is about n/2 [13].

Using the following Lemma 4 later we will further fasten EGE. If b =
(b1, . . . , bn) is a regular sequence, then c = (c1, . . . , cn) is called lexicographi-
cally i-smaller, than b if

cj = bj for j = 1, . . . , i,

and
n∑

j=i+1

cj <

n∑
j=i+1

bj.

Lemma 4 If b = (b1, . . . , bn) is a nongraphical sequence and c = (c1, . . . , cn)
is lexicographically i-smaller than b, then c is also nongraphical.

The following algorithm Erdős-Gallai-Enumerating (EGE) is an enu-
merative version of EGL. This algorithm investigates the zerofree even se-
quences in lexicographical order, allowing to execute the majority of the basic
operations in O(1) average time.

• Hi (cumulated degrees): most of the time the only thing that is changing
is the last element of the sequence b, so it is enough to update the last
H value, according to the change of the value of b.

• Ci (checkpoints): if we modify the ith element of a sequence then the
values before that point remain the same so all of the checkpoints before
that remain the same, so we update only the first one before the ith
index and all of them after it.

• Wi (weight points): every time the checking algorithm got a sequence to
check we update the weight points, but we never start from 1 or n. We
use the last value we used when we checked the sequence in that index.
We have a distinct weight point for every i index and we just shift the
value to left or right.

We suppose that n, b, H, c, C, and W are global variables, therefore their
return does not require additional time.

Important property of EGE is that it solves in Θ(1) average time

274 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

• the generation of one zerofree even sequence;

• the updating of the sequence of the cumulated degrees H;

• the updating of the sequence of the checking points C;

• the updating of the sequence of the weight points W.

Although EGE solves the majority of the subproblems in Θ(1)/sequence
time, the work in the checking points requires more time, therefore the total
running time Θ(E(n)).

The following program is based on Theorem 9 of [13] and the properties just
listed.

Input. n: number of vertices (n ≥ 4);
b = (b1, . . . , bn): n-regular sequence.

Output. Gz: the number of n-length zerofree graphical sequences.
Work variables. i and j: cycle variables;

H = (H1, . . . , Hn): Hi is the cumulated degree of the first i elements of the
tested b;
W = (W1, . . . ,Wn): Wi the weight point of the actual bi, that is the maximum
of the indices of such elements of b, which are not smaller than i;
y: the cutting point of the actual bi that is the maximum of i and w.

Erdős-Gallai-Enumerating(n,Gz)

01 for i = 1 to n // lines 01–09: initialization
02 bi = n− 1
03 Hi = i(n− 1)
04 Wi = n
06 Ci = 0
07 Gz = 1
08 c = 0
09 bn+1 = −1
10 while b2 ≥ 2 or b1 ≥ 3 // line 10: last sequence was?
11 if bn ≥ 3 // lines 11–15: generating the next sequence
12 New3(n, b,H, c, C,W)
13 else if bn = 2
14 New2(n, b,H, c, C,W)
15 else New1(n, b,H, c, C,W)
16 Check(n, b,H, c,W, L) // line 16: checks and updates the parameters

17 Gz = Gz + L // line 17: increasing of Gz

Parallel enumeration of degree sequences of simple graphs 275

18 print Gz // line 18: final result

This algorithm uses four procedures. New1, New2, and New3 generate a
new sequences (when bn is 1, 2, resp. 3) and update the key parameters, while
Check decides whether the actually investigated sequence is graphical or not.

In Check we use Theorem 8 of [13].

Check(n, b,H, c, C,W)

01 for i = 1 to c // lines 01–07: checking in checkpoints
02 y = max(WCi

, i) // line 02: computation of the actual cutting point
03 if Hi > i(y− 1) +Hn −Hy // line 03–05: EG checking
04 L = 0
05 return L
06 L = 1 // line 06–07: b is graphical
07 return L

New3(n, b,H, c, C,W)

01 bn = bn − 2 // line 01–10: generation if bn = 3
02 Hn = Hn − 2
03 if bn == bn−1 − 2
04 c = c+ 1
05 Cc = n− 1
06 Wbn =Wbn − 1
07 if bn ≤ bn−1
08 Wbn+1 = n+ 1
09 Wbn = n+ 1
10 return H, c,C,W

New2(n, b,H, c, C,W)

01 if bn−1 == 2 // line 01–53: generation if bn = 2
02 bn = 1 // line 01–09: generation if bn−1 = 2
03 bn−1 = 1
04 Hn−1 = Hn−1 − 1
05 Hn = Hn − 2
06 W2 = n− 2
07 if bn−2 == 2 // line 07–09: generation if bn−2 = 2
08 c = c+ 1

276 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

09 Cc = n− 1
10 else if bn−1 == 3 // line 10–16: generation if bn−1 = 3
11 bn−1 = 2
12 bn = 1
13 Hn−1 = Hn−1
14 Hn = Hn − 2
15 W3 = n− 2
16 W2 = n− 1
17 else Hn−1 = Hn−1 − 1
18 if bn−2 == bn−1 and bn−1 is odd
19 bn−1 = bn−1 − 1
20 bn = bn−1
21 Hn = Hn + bn−1 − bn − 1
22 Cc = Cc − 1
23 Wbn−2

= n− 2
24 for i = 1 to bn−2
25 Wi = n
26 if bn−2 == bn−1 and bn − 1 is even
27 bn−1 = bn−1 − 1
28 bn = bn−1 − 1
29 Hn = Hn + bn−1 − bn − 1
30 Cc = Cc − 1
31 c = c+ 1
32 Cc = n− 1
33 Wbn−2

= n− 2
34 Wbn−1

= n− 1
35 for i = 1 to bn−2 − 2
36 Wi = n
37 if bn−2 > bn−1 and bn−1 is odd
38 bn−1 = bn−1 − 1
39 bn = bn−1
40 Hn = Hn + bn−1 − bn − 1
41 c = c− 1
42 Wbn−2−1 = n− 2
43 Wbn−2−1 = n− 1
44 for i = 1 to bn−1 − 1
45 Wi = n
46 if bn−2 > bn−1 and bn − 1 is even
47 bn−1 = bn−1 − 1

Parallel enumeration of degree sequences of simple graphs 277

48 bn = bn−1 − 1
49 Hn = Hn + bn−1 − bn − 1
50 Wbn−1+1 = n− 1
51 for i = 1 to bn−1 − 1
52 Wi = n
53 return H, c,C,W

New1 is similar to New2 (although more complicated, see Generate-
New-Sequence in the following section), therefore it is omitted.

4 Parallel Erdős-Gallai algorithm (EGP)

The computing of G(n) values lasts for a long time if we use a sequential
program, so we used an accelerateded parallel version of EGE. The number
of the used processors and the time we need to compute Gz(n) are in inverse
proportionality, therefore if we use more processors then we need less time.

In order to be able to use our new linear time algorithm on a bunch of
sequences, we need an algorithm that can work on a part of all series we need
to check.

Using our Erdős-Gallai-Parallel algorithm we computed this number
till n = 29. These numbers can be found in Table 2 of [13].

Our application consists of two parts: server and client. The server has all the
information to distribute jobs between client machines and to collect results
from them. The client has the IP address and the PORT of the server too to
ask for a job.

One of the most critical parts of the parallel algorithm is dividing the prob-
lem into jobs having almost the same sizes. The next equation helps us to give
an approximation about the number of sequences starting with a fixed head.
By knowing these numbers we can generate jobs with limited size, in other
words, no job is largler than the given maximum.

It is easy to show that the number Q(l, u,m) of the (l, u,m)-regular se-
quences is

Q(l, u,m) =

(
u− l+m

m

)
. (5)

Based on (5) we get the next algorithm to generate jobs.

Input. n: the length of the sequences;
ms: maximal size of a job.

Output. M: the matrix containing the parameters of the jobs.

278 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

Working variables. i, j cycle variables;

Generate-Matrix(n,ms,M)

01 for i = n downto 2 // lines 01–03: filling up the matrix
02 for j = 1 to n− 1

03 Mi,j =
(
i+j−2
i−1

)
04 for j = n− 1 downto 1 // lines 04–05: filling up the first line in matrix
05 M1,j = 1
06 Generate-New-Sequences(M,n,n, 1, n− 1,ms, 0) // line 06: new job

This algorithm gives us a matrix filled up with values computed by using the
equation. Now, we can generate the sequences by reading out the last row from
the matrix from left to right. In case of a value is too big and does not fit into
a job, then we move one line above and read that line from the first column
until the one that was too big we jumped here from and we can continue this
technique until we get the size of parts we need. The next (recursive) algorithm
reads out the last row with this method.

Input. n: the length of the sequences;
ms: maximal size of a job.

Output. M: the matrix containing the parameters of the jobs.
Working variables. i, j: cycle variables.

Generate-New-Sequence(M,n, i, j, jm,ms, J)

01 S = 0 // line 01: setting the size of actual job
02 while j < jm + 1
03 if S+Mi,j ≤ ms // line 03: if we can add more sequences
04 S = S+Mi,j // line 04: add more sequences
05 if j ≤ jm // lines 05–06: line: move to next column in matrix
06 j = j+ 1
07 else if S 6= 0 // line 07: job is not empty
08 for k = 2 to size(J, 2) // lines 08–13: print result
09 print(Jk)
10 for k = 1 to n− size(J, 2) + 1
11 print(j− 1)
12 print newline // line 13: new line
13 S = 0
14 if Mi,j > ms and j ≤ jm // line 14: if decomposable
15 Generate-New-Sequence(M,n, i− 1, 1, j,ms, [J, j])

Parallel enumeration of degree sequences of simple graphs 279

16 j = j+ 1
17 if S 6= 0 // line 18: last job is non empty
18 for k = 2 to size(J, 2) // lines 18–22: print last job
19 print (Jk)
20 for k = 1 to n− size(J, 2) + 1
21 print (J(size(J, 2)))
22 print newline

Now we have divided the problem into smaller parts. So we can distribute
them between multiple computers using our server program. In our next al-
gorithm called Distributing-Jobs we show how the server sends the jobs to
the clients. In the algorithm we concentrate only on distributing the jobs so it
does not contain code dealing with network communication, except for some
very important network primitives (more on computer networks can be found
in [33]).

Input. n: the length of the sequence;
N: estimated number of jobs;
M: matrix containing the parameters of jobs.

Output. Gz: number of n-regular zerofree graphical sequences.
Working variables. S = (S0, . . . , Sn): vector containing the status of jobs;

fj: number of finished jobs;
aj: number of last job we sent to a client;
ji: index of job from incoming result;
cl: client identifier (used in network communication);
msg : message coming from client (important from network communication
only);
S: the size of the actual job;
time: running time of the actual job in seconds;
al : lower bound;
upper bound : upper bound.

Distributing-Jobs(n,N,M,Gz)

01 S0 = true // lines 01–04: initializing job status vector
02 SN+1 = true
03 for j = 1 to N+ 1
04 Sj = false
05 Gz = 0 // lines 05: initializing Gz
06 while fj < N // line 06: until all jobs are finished

280 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

07 accept(cl) // line 07: accept client connection
08 recv(cl,msg) // line 08: receive message from client
09 if msg == 0 // line 09: client asks for a job
10 aj = aj+ 1 // line 10: increase index of last sent job
11 for i =Maj−1,0 to n // lines 11–12: update initial sequences
12 bi = n+Maj−1,1

13 while Saj == true or aj > N // lines 13–22: unfinished job?
14 aj = aj+ 1
15 if aj > N // line 14: we are over the maximal index
16 aj = 1 // line 15: set index to 1
17 for i =Maj−1,0 to n // line 19–21: update initial sequence
18 bi = n+Maj−1,1

19 if aj < N // line 19–30: set parameters identifying last sequence
20 al =Maj,0

21 b = n+Maj,1

22 else al = 1
23 bu = 1
24 send(c, b, al, bu) // line 24: send job to client
25 else recv(c, ji, Finit, Flast, Zn,m, time) // line 25: receiving results
26 if Sji == false // line 26: new result
27 Sj = true // line 27: set jobs status to finished
28 fj = fj+ 1 // line 28: increase number of finished jobs
29 Gz = Gz + Zn,m // line 29: update Gz
30 close(cl) // line 30: close network connection
31 return Gz // line 31: return result

Our objective during implementing the client program was simplicity. We
wanted to create a program the does not need any interaction from users.
It is enough if the user starts it once and from that moment the program
can work independently in the background. This is important because we
wanted to distribute the program into as many parts as we can and use it in
computer labs, where we do not have enough time and people to operate with
the programs.

Another important idea was that we did not want to restart the programs
when we change from computing Gz(n) to Gz(n+ 1). When the clients finish
their jobs and the server cannot give them more, clients start to wait in the
background—until they get new jobs—without using any significant resources.

A client program work as a thread. The reason for this is simple: we uploaded
our program to a public homepage and anybody could join our computations.

Parallel enumeration of degree sequences of simple graphs 281

By this our aim was to avoid loosing users only because our program use all
the resources making the PC unable to respond their commands.

Our third objective was that we wanted to create a real fast program, be-
cause the running time can be really huge depending on the value of n. Because
of this reason we used ANSI C language to implement our program. According
to our experiments the ANSI C version of our program was one hundred times
quicker, than our program written in MATLAB. For the network communica-
tion we used the Berkeley Sockets.

The client works as follows:

• After we create the network socket, we try to connect to the server. If
it is not possible then we wait for an amount of time, and we double
this amount every time we cannot connect and set to a default value
when our attempt succeed. It is easy to see that the time we wait grows
exponentially.

• After we connected to the server we ask for a job and disconnect after
we got it.

• We compute a partial result of Gz(n) and we send it back to the server
using the same connection method as in the first step.

The program runs in clients called Parallel-Erdős-Gallai algorithm
consisting of two parts: Check and Enumerating. The first one does the
check of the sequences, but nothing else. The second generates sequences, H
values and check points.

In Check we use a modified version of the linear Erdős-Gallai algorithm.

Input. b: input sequence;
H = (H1, . . . , Hn): sums of the elements of b;
c: number of check points;
C = (C1, . . . , Cn−1): check points.

Output. L: Logical value. If the investigated sequence is graphical, then L =
1, otherwise L = 0.

Working values. p: actual checking point.

282 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

Check(b,H, c, C)

01 i = 1 // line 01: initialization of i
02 while i ≤ c and HCi

> Ci(Ci − 1) // lines 02–11: check sequences
03 p = Ci // line 03: initial p value
04 while Jp < n and bJp+1

> p // lines 04–08: actualize p

05 Jp = Jp + 1
07 while Jp > p and bJp ≤ p
08 Jp = Jp−1
09 if Hp > Hn −HJp + p(Jp − 1) // line 09: check
10 L = 0 // line 10: nongraphical sequence
11 return L
12 i = i+ 1
13 L = 1 // lines 13–14: b is graphical
14 return L

In our checking algorithm we do not use the cases we proposed in the original
algorithm. The reason is the following: if we don’t let the weight points run
under the current i index, then the second case will work fine and we do not
need an additional condition to check if the weight point is smaller than the
current index.

Input. n: length of sequences;
b: first sequence;
last index: index of element we’ll check if we reached the last sequence we
need to check;
last value: value of element we’ll check if we reached the last sequence we
need to check.

Output. Gpz : number of n-regular zerofree graphical sequences between the
first and the last checked sequences.

Enumerating(n, b, last index, last value)

01 H1 = b1 // line 01: set H1
02 for i = 2 to n // lines 02–03: calculation of H
03 Hi = Hi−1 + bi
04 if bn 6= n− 1 // line 04: if it is not the full graph
05 if Hn odd // lines 05–10: actualize series
06 bn = bn − 3
07 Hn = Hn − 3

Parallel enumeration of degree sequences of simple graphs 283

08 else bn = bn − 2
09 Hn = Hn − 2
10 for i = 1 to n // lines 10–11: initialize weight points
11 Ji = n− 1
12 for i = 1 to n− 2 // lines 12–15: calculate check points
13 if bi 6= bi+1 and bi 6= bn
14 c = c+ 1
15 Cc = i
16 L = Check(b,H, c, C) // line 16: check first sequence
17 Gpz = G

p
z + L

18 while blast index > last value // line 18: till the last sequence in job
19 k = n // line 19: initialize working variable
20 if bk == 1 // line 20: if the last element of series is 1
21 j = n− 1
22 while bj ≤ 1
23 j = j− 1
24 if bj == 2 // line 24: if the 1 free part’s last value is 2
25 bj−1 = bj−1 − 1 // line 25: update sequence
26 Hj−1 = Hj−1 − 1 // line 26: update H
27 if j > 2 // line 27–36: update check points
28 if (c ≤ 2 or (c > 2 and Cc−2 6= j− 2)) and

(c > 1 and Cc−1 6= j− 2)
29 if c > 1 and Cc−1 > j− 2
30 Cc+1 = Cc
31 Cc = Cc−1
32 Cc−1 = j− 2
33 c = c+ 1
34 else Cc+1 = Cc
35 Cc = j− 2
36 c = c+ 1
37 for k = j to n
38 bk = bj−1 // line 39: update the last part of b
39 Hk = Hk−1 + bk // line 40: update H
40 while c > 1 and Cc > j− 1 // lines 42–43: update check points
41 c = c− 1
42 if Hn odd // line 42: if parity is odd
43 bn = bn−1 − 1 // line 43: update b
44 Hn = Hn−1 + bn // line 44: update H
45 c = c+ 1 // lines 45–46: update check points

284 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

46 Cc = n− 1
47 else bj = bj − 1 // line 47: update b
48 Hj = Hj − 1 // line 48: update H
49 if j > 1 // line 49–50: update check points
50 if (c == 1 and Cc 6= j− 1) or (c > 1 and Cc−1 6= j− 1)
51 if c > 0 and Cc > j− 1
52 Cc+1 = Cc
53 Cc = j− 1
54 c = c+ 1
55 for k = j+ 1 to n
56 bk = bj // line 56: update b
57 Hk = Hk−1 + bk // line 57: update H
58 while c > 1 and Cc > j− 1

// lines 58–59: update check points
59 c = c− 1
60 if Hn odd // line 60: parity check
61 bn = bn − 1 // line 61: update b
62 Hn = Hn − 1 // line 62: update H
63 c = c+ 1 // line 63: update check points
64 Cc = n− 1 // line 64: add new check point
65 else if bk == 2
66 bk−1 = bk−1 − 1 // line 66: update b
67 Hk−1 = Hk−1 − 1 // line 67: update H
68 if (c == 1 and Cc 6= n− 2)

or (c > 1 and Cc−1 6= n− 2 and Cc 6= n− 2)
// lines 68–73: update check points

69 if c > 0 and Cc > n− 2
70 Cc+1 = Cc
71 Cc = n− 2
72 else c = c+ 1
73 Cc = n− 2
74 if bk−1 odd // line 74: parity check
75 bk = bk−1 // line 75: update b
76 if c > 0 and Cc == n− 1
77 c = c− 1 // line 77: update checkpoints
78 else bk = bk−1 − 1 // line 78: update b
79 Hk = Hk−1 + bk // line 79: compute H
80 else bk = bk − 2 // line 80: update b
81 Hk = Hk − 2 // line 81: compute H

Parallel enumeration of degree sequences of simple graphs 285

82 if c < 1 or Cc 6= n− 1
// lines 82–84: update check points

83 c = c+ 1
84 Cc = n− 1
85 G

p
z = G

p
z + Check(b,H, c, C) // line 85: update Gpz

In The On-Line Encyclopedia of Integer Sequences [29] you can find numbers
of degree sequences for simple graphs consisting of n vertices, that we uploaded
G(n) values from n = 24 to 29 on 16th of November.

To carry out the calculations we used more than two hundred computers
and our theoretical maximal performance was over 6 TFLOPS based on the
processors information we found on the home pages of the manufacturers.

The running time of computing the number of graphical series can be seen
in Table 6. It is easy to see that the growing of the running time does not have
the same ratio between the different n values. The reason for this is the type
of processors we used. In our earlier computations (eg. when we considered
n = 25 vertices) we had a few powerful machines, but as the complexity was
larger in every time we increased n we had to use some less powerful machines.
The total time of the calculations would be less if we used the more powerful
machines, but the real running time would be more, because in total we had
more than two hundred machines when we was working on G29, so the real
running time was under two weeks.

5 Summary

The paper reports on a linear version of the Erdős-Gallai testing algorithm
[13], on its enumerative and parallel versions, further on enumerative results
received using the new algorithms.

n Running time (day) Number of jobs

25 26 435
26 70 435
27 316 435
28 1130 2 001
29 6733 15 119

Table 6: Sum of running times measured during our calculations and number
of jobs.

286 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

The number of different degree sequences of simple graphs on n vertices for
n = 24, . . . , 29 were accepted as new records by The On-Line Encyclopedia
of Integer Sequences in November 15, 2011 [14].

The paper contains also the description and analysis of the linear test version
of Havel-Hakimi algorithm which is about 10 percent quicker than the best
version of the Erdős-Gallai algorithm.

The log files and source codes of our programs can be found at

http://people.inf.elte.hu/lulsaai/Holzhacker

and

http://people.inf.elte.hu/tomintt/DegreeSeq

Acknowledgements. The authors are indebted to Antal Sándor and his
colleagues (Eötvös Loránd University, Faculty of Informatics), Ádám Mányoki
(TFM World Kereskedelmi és Szolgáltató Kft.) and Zoltán Kása (Sapientia
Hungarian University of Transylvania) for their help in running of our time-
consuming programs.

References

[1] M. Ascher (1987) Mu torere: an analysis of a Maori game, Math. Mag. 60, 2 1987
90–100. ⇒270

[2] S. A. Choudum, A simple proof of the Erdős-Gallai theorem on graph sequences,
Bull. Austral. Math. Soc. 33 (1986) 67–70. ⇒261

[3] V. Chungphaisan, Conditions for sequences to be r-graphic, Discrete Math. 7
(1974) 31–39. ⇒261

[4] T. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms
Third edition, The MIT Press/McGraw Hill, Cambridge/New York, 2009. ⇒262

[5] P. Erdős, T. Gallai, Graphs with vertices having prescribed degrees (Hungarian),
Mat. Lapok 11 (1960) 264–274. ⇒260, 262

[6] A. Frank, Connections in Combinatorial Optimization, Oxford University Press,
Oxford, 2011. ⇒261

[7] S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices of
a simple graph, J. SIAM Appl. Math. 10 (1962) 496–506. ⇒261, 262

[8] V. Havel, A remark on the existence of finite graphs (Czech), C̆asopis Pĕst. Mat.
80 (1955), 477–480. ⇒260, 262

[9] P. Hell, D. Kirkpatrick, Linear-time certifying algorithms for near-graphical se-
quences, Discrete Math. 309, 18 (2009) 5703–5713. ⇒261

[10] A. Iványi, Reconstruction of complete interval tournaments, Acta Univ. Sapien-
tiae, Inform. 1, 1 (2009) 71–88. ⇒261

http://people.inf.elte.hu/lulsaai/Holzhacker
http://people.inf.elte.hu/tomintt/DegreeSeq/
http://journals.cambridge.org/action/displayJournal?jid=BAZ
http://www.cs.dartmouth.edu/~thc/
http://people.csail.mit.edu/cel/
http://people.csail.mit.edu/rivest/
http://www.columbia.edu/~cs2035/
http://mitpress.mit.edu/main/home/default.asp
http://www.mhprofessional.com/category/?cat=1012
http://www-history.mcs.st-and.ac.uk/Mathematicians/Erdos.html
http://hu.wikipedia.org/wiki/Gallai_Tibor
http://www.renyi.hu/~p_erdos/1961-05.pdf
http://www.cs.elte.hu/~frank/
http://oup.com/
http://en.wikipedia.org/wiki/S._L._Hakimi
http://www.jstor.org/action/showPublication?journalCode=jsociinduapplmat
http://www.cs.sfu.ca/~pavol/
https://www.cs.ubc.ca/people/david-kirkpatrick
http://www.sciencedirect.com/science/journal/0012365X
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.acta.sapientia.ro/acta-info/informatica-main.htm

Parallel enumeration of degree sequences of simple graphs 287

[11] A. Iványi, Reconstruction of complete interval tournaments. II, Acta Univ. Sapi-
entiae, Math. 2, 1 (2010) 47–71. ⇒261

[12] A. Iványi, Degree sequences of multigraphs, Annales Univ. Sci. Budapest., Sect.
Comp. 37 (2012) 195–214. ⇒261, 262

[13] A. Iványi, L. Lucz, T. F. Móri, P. Sótér, On the Erdős-Gallai and Havel-Hakimi
algorithms, Acta Univ. Sapientiae, Inform. 3, 2 (2011) 230–268. ⇒260, 261, 262,
269, 270, 271, 272, 273, 274, 275, 277, 285

[14] A. Iványi, L. Lucz, T. F. Móri, P. Sótér, The number of degree-vectors for simple
graphs, in: ed. by N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences,
2011. http://oeis.org/A004251 ⇒286

[15] A. Iványi, S. Pirzada, Comparison based ranking, in: Algorithms of Informatics,
Vol. 3 (ed. A. Iványi), AnTonCom, Budapest 2011, 1209–1258. ⇒261

[16] A. Iványi, J. E. Schoenfield, Deciding football sequences. Acta Univ. Sapientiae,
Inform. 4, 1 (2012) 130–183. ⇒261

[17] G. Zs. Kovács, N. Pataki, Analysis of Ranking Sequences (in Hungarian), Sci-
entific student paper, Eötvös Loránd University, Faculty of Sciences, Budapest
2002. ⇒261

[18] M. D. LaMar, Algorithms for realizing degree sequences of directed graphs, arXiv,
2010. http://arxiv.org/abs/0906.0343. ⇒261

[19] L. Lucz, Analysis of degree sequences of graphs (Hungarian), MSc Thesis, Eötvös
Loránd University, Faculty of Informatics, Budapest, 2012.
http://people.inf.elte.hu/lulsaai/diploma. ⇒261

[20] T. Matuszka, Programs and Results Connected with Degree Sequences,
http://people.inf.elte.hu/tomintt/DegreeSeq. ⇒263, 267, 271

[21] Noe, T. D., Table of n a(n) for n = 1, . . . , 100, in (ed. N. J. A. Sloane): The
On-Line Encyclopedia of the Integer Sequences, 2010. http://oeis.org/A001700.⇒271

[22] S. Özkan, Generalization of the Erdős-Gallai inequality, Ars Combin. 98 (2011)
295-302. ⇒261

[23] G. Pécsy, L. Szűcs, Parallel verification and enumeration of tournaments, Stud.
Univ. Babeş-Bolyai, Inform. 45, 2 (2000) 11–26. ⇒261

[24] S. Pirzada, An Introduction to Graph Theory , Orient BlackSwan, Hyderabad,
2012. ⇒261

[25] G. Royle, Is it true that a(n+ 1)/a(n) tends to 4? in (ed. N. J. A.) Sloane): The
On-Line Encyclopedia of the Integer Sequences, 2012. http://oeis.org/A095268⇒273

[26] F. Ruskey, F. R. Cohen, P. Eades, A. Scott, Alley CATs in search of good homes,
Congr. Numer. 102 (1994) 97–110. ⇒268

[27] J. E. Schoenfield, The number of football score sequences, in: ed. by N. J. A.
Sloane, The On-Line Encyclopedia of Integer Sequences, 2012.
http://oeis.org/A064626. ⇒261

[28] B. Siklósi, Comparison of Sequential and Parallel Algorithms Solving Sport Prob-
lems (in Hungarian). Master thesis. Eötvös Loránd University, Faculty of Sciences,
Budapest, 2001. ⇒261

http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.acta.sapientia.ro/acta-math/matematica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://ac.inf.elte.hu/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
mailto:moritamas@ludens.elte.hu
http://people.inf.elte.hu/sopsaai
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://people.inf.elte.hu/lulsaai
mailto:moritamas@ludens.elte.hu
http://people.inf.elte.hu/sopsaai
http://www2.research.att.com/~njas/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://maths.uok.edu.in/Faculty5.aspx
http://www.tankonyvtar.hu/
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://www.antoncom.hu/books.htm
http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony
mailto:jonscho@hiwaay.net
http://www.elte.hu/en
http://science.elte.hu/
http://arxiv.org/abs/0906.0343
http://people.inf.elte.hu/lulsaai
http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
http://people.inf.elte.hu/lulsaai/diploma
http://people.inf.elte.hu/tomintt/
http://people.inf.elte.hu/tomintt/DegreeSeq
http://www2.research.att.com/~njas/
http://oeis.org/A004251
http://bkocay.cs.umanitoba.ca/arscombinatoria/
http://www.cs.ubbcluj.ro/~studia-i/2000-2/2-Pecsy.pdf
http://www.cs.ubbcluj.ro/~studia-i/contents.php
http://maths.uok.edu.in/Faculty5.aspx
http://www.orientblackswan.com/display.asp?categoryID=0&isbn=978-81-7371-760-4
http://www.orientblackswan.com/
http://school.maths.uwa.edu.au/~gordon/
http://www2.research.att.com/~njas/
http://oeis.org/A095268
http://webhome.cs.uvic.ca/~ruskey/
mailto:jscho@hiwaay.net
http://www2.research.att.com/~njas/
http://oeis.org/A064626
http://www.elte.hu/en
http://science.elte.hu/

288 A. Iványi, L. Lucz, T. Matuszka, S. Pirzada

[29] N. J. A. Sloane, Number of graphical partitions (degree-vectors for simple graphs
with n vertices, or possible ordered row-sum vectors for a symmetric 0-1 matrix
with diagonal values 0), in: The On-Line Encyclopedia of the Integer Sequences
(ed. by N. J. A. Sloane). http://oeis.org/A004251. ⇒269, 285

[30] N. J. A. Sloane, S. Plouffe, The Encyclopedia of Integer Sequences, Academic
Press, 1995. ⇒270

[31] D. Soroker, Optimal parallel construction of prescribed tournaments, Discrete
Appl. Math. 29, 1 (1990) 113–125. ⇒261

[32] M. Takahashi, Optimization Methods for Graphical Degree Sequence Problems
and their Extensions, PhD thesis, Graduate School of Information, Production
and systems, Waseda University, Tokyo, 2007. http://hdl.handle.net/2065/28387.⇒261

[33] A. S. Tanenbaum, D. J. Wetherall, Computer Networks (5th edition), Prentice
Hall, 2010. ⇒279

[34] A. Tripathi, H. Tyagy, A simple criterion on degree sequences of graphs, Discrete
Appl. Math. 156, 18 (2008) 3513–3517. ⇒261

[35] A. Tripathi, S. Vijay, A note on a theorem of Erdős & Gallai, Discrete Math.
265, 1-3 (2003) 417–420. ⇒261

[36] A. Tripathi, S. Venugopalan, D. B. West, A short constructive proof of the Erdős-
Gallai characterization of graphic lists, Discrete Math. 310, 4 (2010) 833–834. ⇒
261

Received: October 2, 2012 • Revised: Decembet 30, 2012

http://www2.research.att.com/~njas/
http://www2.research.att.com/~njas/
http://oeis.org/A004251
http://www2.research.att.com/~njas/
http://www.sciencedirect.com/science/journal/0166218X
http://www.waseda.jp/top/index-e.html
http://hdl.handle.net/2065/28387
http://www.cs.vu.nl/~ast/
http://djw.cs.washington.edu/
http://prenticehall.com/
http://prenticehall.com/
http://maths.iitd.ac.in/people/faculty/amitabh_tripathi.php
http://www.sciencedirect.com/science/journal/0166218X
http://maths.iitd.ac.in/people/faculty/amitabh_tripathi.php
http://www.math.illinois.edu/~sujith/
http://www.sciencedirect.com/science/journal/0012365X
http://maths.iitd.ac.in/people/faculty/amitabh_tripathi.php
http://www.math.uiuc.edu/~west/
http://www.sciencedirect.com/science/journal/0012365X

	1 Introduction
	2 Linear Havel-Hakimi algorithm (HHL)
	3 Enumerating Erdos-Gallai algorithm (EGE)
	4 Parallel Erdos-Gallai algorithm (EGP)
	5 Summary

