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Introduction

This paper is devoted to study processing of independent homogeneous
Markov-chains with priority.

In § 1. we formulate the way of processing.

In § 2. we prove the following assertion: if the given sequences form
Markov-chains, then the sequence of the processed blocks can be considered
as a homogeneous, ergodic Markov-chain.

We deal with characterizing the performance of the processing algorithm
(§ 3.). We determine the stationary initial distribution for the sequences de-
fined in § 2. in some special cases (§ 4.).

In § 5. the speed of processing is defined and computed for the previous
special cases.

Our work has some practical importance e.g. in computer performance
analysis, more precisely in modelling of multiprogrammed computers with
one processor and interleaved memory [1, 2, 3]. In this case the programs
are modelled by sequences (the program with the greatest priority by the
first sequence etc.), the chosen performance measure corresponds to the
average number of executed operations in a time unit, and the number of
states of the Markov-chains is equal to the number of interleaved memory
moduls. The processing algorithm characterizes sonie features of processing
of programs with fixed priority-list.

§ 1. Processing algorithm

We consider some sequences consisting of positive integers and process
these sequences. The sequences have priority: the first sequence the highest
one etc.

The processing proceeds in discrete points of time. The processing
algorithm in every point of time processes the maximal possible number of
the first elements from the first sequence, and also so many of the first ele-
ments of the second, ..., last sequence, as possible.

3 ANNALES Sectio Computatorica — Tomus 111.



34 IVANYI, A. AND KATAI, I.

The processing is controlled by the so called stopping sequences. If
the algorithm finds a stopping sequence at the beginning of the first sequence,
then it stops the processing for the given point of time: the elements of the
stopping sequence without its last element will be processed from the first
sequence. After finding a stopping sequence its completion is permitted
to an other stopping sequence using the beginning elements of the further
sequences. At the completion the order-preserving is requested for every
sequence separately.

Now we give the definition of the set of stopping sequences, the
definition of the order-preserving completion of a sequence by an other
sequence and the one of the pmcesqmg algorithm.

Let 7 denote the set {1, ..., N} (N=2) and let

‘/‘gl)’f‘()l)’ .
(1.1) :
fO 0,

be r (r=1) infinite sequences consisting of the elements of /(.

Definition 1. Definition of the stopping set

Let S be a set of sequences consisting of the elements of 7. If the follo-
wing conditions hold, then S is called stopping set:

a) there exists such a positive integer k=3 that every sequence belon-
ging to S contains at least two and at most k elements;

b) letS; be an ordered subset of S containing all the e]ements with length

jofS- S,is nonempty (S; may be empty forj = 2, —1);
c) if (e, €, .. e,)eS,, then (e, ¢, ..., €,)¢S, forh =12 ...,I-1;
d) for every sequence (g;, gy, - - -, gk) of elements of @ there exists a

J(=k) for which (g;, ..., g,)€S;;

e) for every pair of different elements i, j of #C holds: if (i, ..., i)€S,,
then (j, i, ..., )€S,41- X

Definition 2. Definition of the order-pleserving union of two sequences

Let « = (a;. ..., a,) and f = (b, ..., b)) be sequences of elements I
with p=1, ¢=0. The sequence y = (¢, ..., S) is called an order-preserving
union of « and § (or an order-preserving addition of $ to «) if the following
four conditions hold (where i(2) denotes the index of z in the sequence y):

a) {e, -6 ={ay, .., apULby, .., b}

b) ¢ = ay,;

¢) ifu<v,a,€a, q,ca then i(a,)<i(a,);

d) if x<y, b.€p, b,€p, then i(b,)<i(b,). [xi
Definition 3. Definition of the processing algorithm

Step 1. Processing proceeds in the points of time 1, 2, .... Let i be
equal to 1. Go to Step 2.
Step 2. Let k{ denote the greatest positive integer k, for which

(1.2) (fO, f9, ..., fiD,)€S.
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Let s, denote the sequence f{V, fV, ..., jk(nH Go to Step 3.

Step 3. If kD, k@, ..., k=D and s, , have been defined but k® has
not been defmed then let k(’) be the greatest nonnegative integer k for
which there exists an order-preserving union €S of the sequences s,_, and
1o, . f('> Lets, = s,_, if K = 0, and let s, = v, if k¥ =0 (if there exist

several such y, then we choose the first occuring of them in the corresponding

ordered S).
If t<'r then go to Step 3.
Step 4. In the i-th point of time we process the first k® (t = 1, ..., r)

elements of the f-th sequence. We omit these processed elements and decre-
ase the index of the remaining elements by k) in the t-th sequence. Go to
Step 5.

Step 5. We add 1 to i. Go to Step 2. [¥]

In connection with the definition we remark

a) in Step 2 due to the property d) of S there exists a positive integer
kD, and 2<k{V <k.

b) in Step 2 due to the property ¢) of S there exists only one k{V.

¢) in Step 3 due to the definition of the order-preserving umon there

exists a nonnegative k;, — for example k; = 0. Of course k{® <k — 2 kD,

For characterizing the processing we register the processed and the
first nonprocessed elements for every sequence and for every point of
time. Therefore the processing in the i-th point of time is characterized by

the array
(1) 1
f(ll)n | ERE) fk‘(l),p ”f;()l)_‘_l i
(1.3)
fg.’:)n k(f) i ||f§((1)+1 it

kO =0(@¢ =2, ...,r;i=1,2,...)holds for given f and i, then we
write %, [|f{", in the ¢-th line of (1.3). For the sake of brevity let

(1.4) AP = ([0 1 Jilo, o 1o 4,
ar
(1.5) AP = (x, lfk<z>+, e

Using this notation the processing in the s-th point of time is characteri-
zed by

(1.6) 9, = (AL, ..., AD).

Let 7D, denote the set of all possible 9-s. Then the processing of a given
array of type (1.1) can be described by the state sequence

(1.7) B, By oy By o (BED, 5 =1,2,...).

3*
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Let 9, have the form (1.6), where

(1.8) AP = (i |y il o 179
or
(1.9) AP = (*, [j©)-

Of course, if #,¢7D,, then
a) at least one order-preserving union of (i{V;, itV ..., 1(1) o JP)

and (i¥?,, ..., ij‘?”’ Jbelongs to Sy, where 1, = k{V +k{®. If there are several
unions, then let é, be the first occuring of them in Sp,;

b) at least one order-preserving union of §,_, and (if’s, .. k(,) 5) be-
longs to Sn, where n, = n,_,+k{ (for t =3, ..., r). If there are several
unions, then let é, be the first occuring of them in Sp,.

There are such pairs D,, D,¢7D,, that cannot occur as consecutive
states, i.e. for which 4, = D,, #,,, = D, is not possible.
Let in ¥, and fin &, denote the initial and final elements of 9, i.e.

(1.10) ind, = (i{Vs, iPs, -, i)
and
(1.11) find, = (j©, j&, ..., j")

remarking that if AP = (¥, [[j¢), then in in & we put *j® instead of
i, 1t is clear, that 19 and #;,, can occur as consecutive states (with other
words the transition # s— 54, is realizable) if and only if fin 8, = in @,,,.
Deciding about this equallty we do not take into account whether the com-
ponents of in ¥,,, contain asterisk or not.

§ 2. Processing of independent Markov-chains

Let g (=1, ...,r;i=1,2, ...) be random variables with values
from (7(, for which the following conditions hold.

a) The sequences ¢ (i=1,2, . ..) for every [ form homogeneous Mar-
kov-chains with an initial distribution =, and transition probability matrix
I, i.e.

= (p(, 1), ..., p(N, 1)), where pk,I)=PE®P =4k (*k=1,...,N)
and
p(l, 1,0 ... p(1, N, I)
o=
P(N, 1, 1) ... p(N, N, I)
where

px,y, 1) =PEh, =yl =x) xy=1,..,Niv=12...).
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b) The sequences £ (i = 1, 2, ...) are mutually independent.

¢) There exists such a j (1=j=N) for which all of the conditional
probabilities p(x, j, ) (x = 1, ..., N; I =1, ..., r) are positive.

Let mm p(x, j, 1) be denoted by e. Of course e = 0.

Our alm is to characterize the processing of the array of random vari-
ables

2.1)

Let
(2.2) By Byy ooy By - -

be random variables with values from 7,. Let us suppose that this sequence
is the state sequence of type (1.6) which describes the processing of the ar-
ray (2.1).

Now we are going to show the homogeneity and ergodicity of this se-
quence.

Theorem 1. If the sequences ¢ (t =1, ..., r;i = 1,2, ...) form for
every { mutually independent, homogeneous Markov-chains (that is under
the conditions a) and b)), then the corresponding state sequence of type
(2.2) represents a homogeneous Markov-chain. [x]

Proof. Let us compute the probabilities

(2:3) P(B, = 1) = q(9)
and
(2.4) P(Br = 85411B, =¥, ..., By = 1))

for every possible state ¢ and state-sequence &,, ..., 9.
We shall use the notations (1.8) and (1.9).

Let
(25) W(AL) = i1, ) pUP1, 01,0 - - pE0, 0 1)
if A{® has the form (1.8) and let
(2.6) (A®D) = p(jO, 1)

if A{® has the form (1.9).
It is clear that

@7 a®) = Mo AP).

Let
(2.8) KO (ALY = pif)s, i), 1) .- pUQ (, JO 1),
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if A® has the form (1.8) and let

(2.9 2O(AY) = 1
if A® has the form (1.9).
Further let
(2.10) Q(#,) = I A9(AY).
t=1

Since the sequences £ form homogeneous Markov-chains, therefore
(2.11) P(By =9y, .., By = 9511) = q(8) QD) - - Q(Fs))

if all of the transitions 8, ~9,, ..., 8,8, are realizable, and
(2.12) P(@l = 191, . "@S'Fl = 'ﬁs+1) = 0
otherwise.

So we have proved that the sequence (2.2) is a homogeneous Markov-
chain with initial distribution (2.7) and with the following transition pro-
babilities:

(2.13) P(@s+l=ﬁs+1|@1=ﬂl’ e —»@s=ﬁs)= Q(ﬁSH?’ R Bouy =i Bera
otherwise. [x|

After this we prove the ergodicity of (2.2) using the following assertion
due to Markov.

Let (2, A, P) be a probability space, g, g, - .. @ homogeneous Markov-
chain with a finite set of possible states {1, ..., n}. LetIT denote the matrix
of transition probabilities, i.e. IT = [p};,j=1,...,n and pg.") denote the
m-step ;transition probabilities, i.e. p{™ = P(osy,, = jlos = 1) (i, j = 1,...,
N;s=1,2,...).

Lemma 1. Let us suppose that there exist j and m so that p,(;")>0 for
i =1, ..., n Then

n

j=
further
(2.15) P9 —x;| =C- g7,

where C>0 and ¢ (O<g <) are suitable constants. [x|

Theorem 2. Under the conditions a), ) and c) the sequence (2.2) is
an ergodic Markov-chain. [x]

Proof. We shall show that there exist a state C* €D, and a positive
integer z for which all the conditional probabilities

(2.16) P(Bs*z = C*|B° = C)
are positive for every C¢D,.
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Hence by Lemma | we shall get our theorem immediately.
Let

' ' (1) !
i@ |80 o il || 190
(2.17) C(Aél)w . Agf)) — : . \ ’
: . .(N
lgr,)s: lg.)S’ M lkér)’ t f§’

where each but the first rows may have the form %, ||f®, too.
Let je@ denote the index and state belonging to the positive columns
of matrices I, and let

bl il
*,

(2.18) c*=| -
¥, ... j

where p(x, j, {)=e=0 holds for every x and ¢ due to the condition ¢ ).
Let P, denote the probability of the event that f& will be followed by
J atleast (r+ 1) (k— 1) times, that is that the f-th sequence has the form

) r+1)(k=1)
(2.19) N Y R
Then
(2.20) P, = (= D=1,
and therefore
(2.21) Il P,= grFDk=-1 - (|
t=1

In the case of such continuation of the sequences from the first sequ-
ence our algorithm processes f{ (and at most (k—1) j* s) in the (s+1)-th
point of time, and at most m=k—1 j’s in the (s+2)-th, ..., (s+r)-th points

of time. Therefore
m

1
(2.22) Al s AR = (o 0l

From the {-th (f = 2, ..., r) sequence in the (s+ 1)-th, ..., (s+f—1)-th
points of time our algorithm may process some beginning elements (but not
more than k—2 elements in one point of time). If f® is not processed ear-
lier, then it will be processed in the (s+f)-th point of time, and therefore

@223) AQuy == AG = (50 (=20,

We see that choosing 2 = r+1 all of the z-step transition probabilities
of type C—~C* are positive, and so the proof is finished. [x|
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§ 3. Characterization of the performance of the processing
algorithm

Let R(9) be a real valued function defined for every # belonging to ,.
Since any given array of type (1.1) determines uniquely the sequence
(1.6), therefore the sequence

3.1) R(5,), R(8), ..

is determined too. We are interested in such functions R that characterize
the performance of the processing. Assuming that the conditions stated for
&0 in § 2. are satisfied, we shall show that the mean values of the random
variables

(32) @) = 2 R3)

can be computed using Lemma 1.

Let (2, A, P) be a probability space, g, 0, ... a homogeneous ergodic
Markov-chain with a finite set of possible states @ ={1, ..., n}.
Let

(3.3) =Py s Pn)
denote the initial distribution and
(3.4) IT = [pyli,j=1,...,n

the matrix of transition probabilities.

Let f be a function having real values and defined on the set {1, 2, ..., n}.
Let M, f(o;) denote the mean value of f(p,) supposing that g, has an initial
distribution «. Let ©,, @,, ... be a stationary Markov-chain on the set
{1, ..., n} with a transition probability matrix (3.4). Therefore the Markov-
chain @, 6,, ... has an initial distribution x = {x;, ..., x,;}. As an immediate
consequence of Lemma | we get

3.5) |Mz f(e)— M f(©)| =Cy-q,
where C;>0, ¢ (O<g<1) are constants. Since 0, O,, . .. is stationary, there-
fore
(3.6) M, f(0) = M, f(6,),
and from (3.6) it follows that
(3.7) W[ 3, £l0) | = i M1 @)+ 00).
j=1

Theorem 2 guarantees the fulfilment of the conditions of Lemma 1
for the sequence (2.2). The approximate determination of M #,(l) is simple,
if the stationary initial distribution belonging to the chain (2.2) is known.
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The explicite calculation of the stationary values is in general case a
cumbersome matter, since the number of elements in D, is about n® even
for the minimal values r = 1, k = 3.

Now we compute it in some special cases.

§. 4. Computation of the stationary distribution

Let us suppose that in any point of time any element of (4 is processable
(independently) at most b (b=1) times. Therefore we construct the special
stopping set S® as follows. Let

Nb+1

4.1 S = U 8.
J=b+1

For asequencery, ..., r, (€9, i =1,...,k) let » denote the number
of occurences of i in the sequence Usmg this notatlon let S(") (G =b+1,
Nb+ 1) be the set of sequencesr,, 1y, .. ., r; for which the fo]lowmg COHdlthHS
hold:

a) riedt (i=1,...,7J);

b) O=py=... <vN<b hold for the sequence ry...,r;_;;

¢) vy=>bforr, ..., ri,.

For example S") = {(l 1), (2 2),(,2 1),(1,22), 21, 1),(21,2).

Let ¢ (i = 1, s l=1,...,7r; r>l) be random variables with

values belonging to OZ and having the followmg properties.
The sequences ¢ for every [ form homogeneous Markov-chains with a

common initial distribution z=(1,0, ..., 0) and transition probability
matrix

o« 0 ﬂ . 0
(4.2) =\ : )

« 0 0 . B

B 1 0 0 |
that is
Lifj=1i=N;

(4.3) py=1%* fj=1,i=1...,N=1I;

Byitj=2 ..., N=1;i=j+1;
0 otherwise,

where a=0, =0, a+8>1.

Using this model of program behaviour (transition matrix) we suppose:
all of the entry-points and jumps in the programs concern to the memory-
modul 7.
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In our case the conditions of the Theorem 1 and Theorem 2 hold, there-
fore the state sequence

(4.4) By, By, .. (BED, s = 1,2, ...)

belonging to the given sequences :{ is a homogeneous ergodic Markov-
chain.
Let us observe, that for the given = and// only the states of form

L ...,

*,
(4.5) .
*, o
can occur in (4.4). Namely only such elements of S® are used for stopping
of the processing, for which (neglecting the last, ,stopping” elements)
hold the inequalities

(4.6) P=r= L =y

(the value 2 can occur only after the value 1, 3 only after 2, ..., N only
after N—1), and therefore », = b, and the stopping element is 1.

Hence we get: no elements from the second, ..., r-th sequences will be
processed. Further, we prove the following

Theorem 3. For the mutually independent Markov-chains £ with
initial distribution = = (1, 0, ..., 0) and transition probability matrix
(4.2) using the processing algorithm defined in § 1. with stopping set S»
we have the following stationary distribution of (4.4):

lﬁN-l, if D has a form of D,,

4.7 x(D) = | «-pi=1, if D has a form of D,,
|0 otherwise,
where
B l, 27 3: y Ny 1 7]
*, I
4.8 D =| . .
* 1]
‘l, 2,3 ..., 1, 1]
'*y 1
4.9) D, =] . . (i=1..,N=-1)]x
*; 1 _
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Proof. At first we show that (4.7) gives the initial distribution, i.e.
P(B, = D) =pN-!,
(4.10) P(B, = D,)) = «-pi-*,
P(B, = D) =0 (Dy=D,, Dy=D,).

In D, there are N—1 transitions of type i—i+1 (i=1, ..., N—1;
all with probability ) and one transition N -1 (with probability 1).

In D, there are i—1 transitions of type li—i+1 (so called step
— with probability §) and one transition of type (N=)i—1 (so called jump —
with probability «).

As other states can not occur, therefore for other states P(B, =D;)=0.
As both possible states are stopped by [, (4.7) gives the stationary
distribution. [x]

Now extending the stopping set and restricting J{ to 7 = {l, 2} we
get the following

Theorem 4. Let J{ = {1, 2} and the stopping set S = S®. Under the
further conditions of Theorem 3 the stationary distribution has the form

b—i Bi P

.11) x(D) = bt g if D has. the form Dy,

0  otherwise,
where

I

*, |1
(4.12) D, =| . o,

*, 1
and the first line of D, consists of (b+ 1+) elements (i =0, ..., N): at

the places 2, ..., b+i the 1 ’s occur exactly (b— 1) times (and the 2’s exactly
i-times), in any ordering for which 2 is followed by 1. [x]

The proof of Theoreim 4 is omitted, because it is similar to the proof of
Theorem 3.

§ 5. Computation of the speed

For the characterization of the performance of the processing algorithm
we shall use some abstraction of the average number of the executed ope-
rations in a time unit, the so called speed.

Let the function R(#) introduced in § 3. have the form

(5.1) R@) = 3 kD),
j=1



44 IVANYI, A. AND KATAI, I.

where k; denotes the number of processed elements of the j-th sequence.
k
For the algorithm defined in § I with § = U §; we have
j=2
(5.2) I=R()=<k-1
for every #€7D,, where k denotes (according to the definition) the length of

the longest sequence in S.
We use the following

Definition 4. Definition of the speed
Let the sequences & (I =1, ..., r; i = 1,2, ...) and the processing
algorithm satisfying the conditions stated in § 1. be given. We shall say

that the quantity
t r
M[ >3 k,(ai)]
(5.3) V = lim ’=“=t‘

-+

is the speed of processing. [x]
For our algorithm V exists for any sequences, and it holds due to (5.2)

(5.4) I=V=k-1.

Under the conditions of Theorems | and 2 the sequence 9, &,, .. . forms
an ergodic Markov-chain, therefore from (3.7) we get

(5.5) V=M, k(8y),
j=1

where x denotes the stationary distribution.
As we have seen, under the conditions of Theorems 3 or 4

(5.6) Z kj(ﬁl) =0,
j=2

therefore for both cases
b-N

(5.7) V=3 j-P(ky(d") = j).
j=b

Now we prove the following assertions.

Theorem 5. Under the conditions of Theorem 3

(5.8) v=1=f"

Theorem 6. Under the conditions of Theorem 4
(5.9) V=01+p). x
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In the proofs of these theorems we shall use the following equalities
which are provable for example by simple induction.

Let «=>0, f=>0 be real numbers for which «+ 5 = 1 holds, and let b=1
and N=2 be integer numbers. Then

N-1 N
(5.10) N-BN-1+ S ia-git = S g
i=1 i=0
and
(5]1) éi[é]ab_iﬂi:b-ﬂ b [é]ﬂiab—i'
=t \1 i—o\!

Proof of Theorem 5.
Using Theorem 3 and (5.7) we get

N-1
(5.12) V=N-N"T+ > i o fit.
i=1
From here due to (5.10)
N-1
(5.13) V=>g.
i=0
This sum forms a geometrical series, therefore we get (5.8) immedia-
tely. [x

Proof of Theorem 6.
Using Theorem 4 and (5.7) we get

i b i
(5.14) V = Z][ fa®-ipitt

j=o \b—j
from where due to (5.11)

b b
(5.15) V=b-z[l?]ab‘iﬂi+2i [_)]ab"ﬂi=b21+22.
i=o\! i=1 \1!
Here the members of 3, are positive elements of the stationary distri-
bution (with the proper multiple) in Theorem 4, therefore >, = 1. Then using
(5.11) for 3, we get our assertion. x|
For a sequence

(5.16) Ty ooy (r €0l i =1,2,..))

let 7, and 7, denote the necessary processing points of time for the processing
algorithms using SV and S® resp.
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It is not hard to prove that for any sequence of form (5.16) 7, = b-f
implies r,=f. From here under the conditions of Theorems I and 2 we have

(5.17) VO =p. Y0,

where V® and V) denote the speeds corresponding to S® and S™ resp.
Comparing (5.17) with (5.9) we get that the estimation (5.17) is not im-
provable.
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