

Available online at www.sciencedirect.com

Discrete Mathematics 308 (2008) 4378-4388

www.elsevier.com/locate/disc

Growing perfect cubes

Márk Horváth, Antal Iványi*

Eötvös Loránd University, Department of Computer Algebra H-1117 Budapest, Pázmány Péter sétány 1/c

Received 5 June 2006; accepted 8 August 2007 Available online 27 September 2007

Dedicated to the 60th birthday of Miklós Simonovits

Abstract

An (n, a, b)-perfect double cube is a $b \times b \times b$ sized *n*-ary periodic array containing all possible $a \times a \times a$ sized *n*-ary array exactly once as subarray. A growing cube is an array whose $c_j \times c_j \times c_j$ sized prefix is an (n_j, a, c_j) -perfect double cube for j = 1, 2, ..., where $c_j = n_j^{v/3}$, $v = a^3$ and $n_1 < n_2 < \cdots$. We construct the smallest possible perfect double cube (a 256 × 256 × 256 sized 8-ary array) and growing cubes for any a. © 2007 Elsevier B.V. All rights reserved.

MSC: 05B15; 68R05; 94A55

Keywords: de Bruijn array; Perfect map; Colouring

1. Introduction

Cyclic sequences in which every possible sequence of a fixed length occurs exactly once have been studied for more than a hundred years [6]. The same problem, which can be applied to position localization, was extended to arrays [5].

Let \mathbb{Z} be the set of integers. For $u, v \in \mathbb{Z}$ we denote the set $\{j \in \mathbb{Z} \mid u \leq j \leq v\}$ by [u..v] and the set $\{j \in \mathbb{Z} \mid j \geq u\}$ by $[u..\infty]$. Let $d \in [1..\infty]$ and $k, n \in [2..\infty], b_i, c_i, j_i \in [1..\infty]$ $(i \in [1..d])$ and $a_i, k_i \in [2..\infty]$ $(i \in [1..d])$. Let $\mathbf{a} = \langle a_1, a_2, \ldots, a_d \rangle$, $\mathbf{b} = \langle b_1, b_2, \ldots, b_d \rangle$, $\mathbf{c} = \langle c_1, c_2, \ldots, c_d \rangle$, $\mathbf{j} = \langle j_1, j_2, \ldots, j_d \rangle$ and $\mathbf{k} = \langle k_1, k_2, \ldots, k_d \rangle$ be vectors of length $d, \mathbf{n} = \langle n_1, n_2, \ldots \rangle$ an infinite vector with $2 \leq n_1 < n_2 < \cdots$.

Definition 1. A *d* dimensional *n*-ary array *A* is a mapping $A : [1..\infty]^d \to [0, n-1]$. If there exist a vector **b** and an array *M* such that

 $\forall \mathbf{j} \in [1..\infty]^d : A[\mathbf{j}] = M[(j_1 \mod b_1) + 1, (j_2 \mod b_2) + 1, \dots, (j_d \mod b_d) + 1],$

then A is a **b**-periodic array and M is a period of A. The **a**-sized subarrays of A are the **a**-periodic n-ary arrays.

Although our arrays are infinite we say that a **b**-periodic array is **b**-sized.

* Corresponding author.

E-mail addresses: cyber@inf.elte.hu (M. Horváth), tony@compalg.inf.elte.hu (A. Iványi) *URLs:* http://people.inf.elte.hu/cyber, http://people.inf.elte.hu/tony (A. Iványi).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.08.031

Definition 2. Indexset A_{index} of a **b**-periodic array A is the Cartesian product

$$A_{index} = \times_{i=1}^{d} [1..b_i].$$

Definition 3. A *d* dimensional **b**-periodic *n*-ary array *A* is called $(n, d, \mathbf{a}, \mathbf{b})$ -perfect, if all possible *n*-ary arrays of size **a** appear in *A* exactly once as a subarray.

Here *n* is the alphabet size, *d* gives the number of dimensions of the "window" and the perfect array *M*, the vector \mathbf{a} characterizes the size of the window, and the vector \mathbf{b} is the size of the perfect array *M*.

Definition 4. An $(n, d, \mathbf{a}, \mathbf{b})$ -perfect array A is called \mathbf{c} -cellular, if c_i divides b_i for $i \in [1..d]$. A cellular array consists of $b_1/c_1 \times b_2/c_2 \times \cdots \times b_d/c_d$ disjoint subarrays of size \mathbf{c} , called *cells*. In each cell the element with smallest indices is called the *head* of the cell. The contents of the cell is called *pattern*.

Definition 5. The product of the elements of a vector **a** is called the *volume* of the vector and is denoted by $|\mathbf{a}|$. The number of elements of perfect array *M* is called the volume of *M* and is denoted by |M|.

Definition 6. If $b_1 = b_2 = \cdots = b_d$, then the $(n, d, \mathbf{a}, \mathbf{b})$ -perfect array *A* is called *symmetric*. If *A* is symmetric and $a_1 = a_2 = \cdots = a_d$, then *A* is called *doubly symmetric*. If *A* is doubly symmetric and

- (1) d = 1, then A is called a *double sequence*;
- (2) d = 2, then A is called a *double square*;
- (3) d = 3, then A is called a *double cube*.

According to this definition, all perfect sequences are doubly symmetric. In the case of symmetric arrays we use the notion (n, d, \mathbf{a}, b) and in the case of doubly symmetric arrays we use (n, d, a, b) instead of $(n, d, \mathbf{a}, \mathbf{b})$.

The first known result originates from Flye-Sainte [6] who proved the existence of $(2, 1, a, 2^a)$ -perfect sequences for all possible values of *a* in 1894.

One dimensional perfect arrays are often called de Bruijn [4] or Good [7] sequences. Two dimensional perfect arrays are called also perfect maps [16] or de Bruijn tori [8–10].

De Bruijn sequences of even length—introduced in [11]—are useful in construction of perfect arrays when the size of the alphabet is an even number and the window size is 2×2 . Their definition is as follows.

Definition 7. If n is an even integer then an $(n, 1, 2, n^2)$ -perfect sequence $M = (m_1, m_2, \dots, m_{n^2})$ is called *even*, if $m_i = x$, $m_{i+1} = y$, $x \neq y$, $m_j = y$ and $m_{j+1} = x$ imply j - i is even.

Iványi and Tóth [11] and later Hurlbert and Isaak [9] provided a constructive proof of the existence of even sequences.

Definition 8. Lexicographic indexing of an array $M = [m_{j_1 j_2 \dots j_d}] = [m_j](1 \le j_i \le b_i)$ for $i \in [1..d]$ means that the index $I(m_j)$ is defined as

$$I(m_{\mathbf{j}}) = j_1 - 1 + \sum_{i=2}^{d} \left((j_i - 1) \prod_{m=1}^{i-1} b_m \right).$$

The concept of perfectness can be extended to infinite arrays in various ways. In *growing arrays* [9] the window size is fixed, the alphabet size is increasing and the prefixes grow in all *d* directions.

Definition 9. Let *a* and *d* be positive integers with $a \ge 2$ and $\mathbf{n} = \langle n_1, n_2, \ldots \rangle$ be a strictly increasing sequence of positive integers. An array $M = [m_{i_1 i_2 \ldots i_d}]$ is called (\mathbf{n}, d, a) -growing, if the following conditions hold:

(1)
$$M = [m_{i_1 i_2 \dots i_d}] \ (1 \le i_j < \infty)$$
 for $j \in [1 \dots d]$;

(2) $m_{i_1i_2...i_d} \in [0..n-1];$

(3) the prefix
$$M_k = [m_{i_1 i_2 \dots i_d}]$$
 $(1 \le i_j \le n_k^{a^d/d} \text{ for } j \in [1..d])$ of M is $(n_k, d, a, n_k^{a^d/d})$ -perfect array for $k \in [0..\infty]$.

For the growing arrays we use the terms growing sequence, growing square and growing cube.

Definition 10. For $a, n \in [2..\infty]$ the new alphabet size N(n, a) is

$$N(n, a) = \begin{cases} n & \text{if any prime divisor of } a \text{ divides } n, \\ nq & \text{otherwise,} \end{cases}$$
(1)

where q is the product of the prime divisors of a not dividing n.

Note, that alphabet size *n* and new alphabet size *N* have the property that $n \mid N$, furthermore, n = N holds in the most interesting case d = 3 and $n = a_1 = a_2 = a_3 = 2$.

The aim of this paper is to prove the existence of a double cube. As a side-effect we show that there exist (\mathbf{n}, d, a) -growing matrices for any n, d and a.

2. Necessary condition and earlier results

Since in the period M of a perfect array A each element is the head of a pattern, the volume of M equals the number of the possible patterns. Since each pattern—among others the pattern containing only zeros—can appear only once, any size of M is greater than the corresponding size of the window. So we have the following necessary condition [2,9]: If M is an $(n, d, \mathbf{a}, \mathbf{b})$ -perfect array, then

$$|\mathbf{b}| = n^{|\mathbf{a}|} \tag{2}$$

and

$$b_i > a_i \quad \text{for } i \in [1..d]. \tag{3}$$

Different construction algorithms and other results concerning one and two dimensional perfect arrays can be found in the fourth volume of *The Art of Computer Programming* written by Knuth [12]. For example, a (2,1,5,32)-perfect array [12, p. 22], a 36-length even sequence whose 4-length and 16-length prefixes are also even sequences [12, p. 62], a (2,2,2,4)-perfect array [12, p. 38] and a (4,2,2,16)-perfect array [12, p. 63].

It is known [4,12] that in the one-dimensional case the necessary condition (2) is sufficient too. There are many construction algorithms, like the ones of Cock [2], Fan et al. [5], Martin [14] or any algorithm for constructing of directed Euler cycles [13].

Chung et al. [1] posed the problem to give a necessary and sufficient condition of the existence of $(n, 2, \mathbf{a}, \mathbf{b})$ -perfect arrays.

The conditions (2) and (3) are sufficient for the existence of $(2, 2, \mathbf{a}, \mathbf{b})$ -perfect arrays [5] and (n, 2, a, b)-perfect arrays [15]. Paterson in [16] supplied further sufficient conditions.

Hurlbert and Isaak [9] gave a construction for one and two dimensional growing arrays.

3. Algorithms for constructing growing de Bruijn arrays

In the construction of perfect de Bruijn arrays we use the following algorithms.

Algorithm MARTIN [14] generates de Bruijn sequences. Its inputs are the alphabet size n and the window size a. Its output is an n-ary perfect sequence of length n^a . The output begins with a zeros and always continues with the maximal permitted element of the alphabet.

Algorithm EVEN [9] produces even de Bruijn sequences.

Algorithm MESH [9,11] produces doubly symmetric cellular perfect arrays when *n* is even, d = 2, $a_1 = 2$ and $a_2 = 2$. The input of algorithm MESH is an even alphabet size *n* and an even de Bruijn sequence $e_1, e_2, \ldots, e_{n^2}$, the output is an $(n, 2, n^2, n^2)$ -perfect array P, whose elements are calculated by the meshing function [11]:

$$P_{ij} = \begin{cases} e_j & \text{if } i+j \text{ is even,} \\ e_i & \text{if } i+j \text{ is odd,} \end{cases}$$
(4)

Algorithm SHIFT [2] is a widely usable algorithm to construct perfect arrays. We use it to transform cellular (N, d, a, \mathbf{b}) -perfect arrays into $(N, d + 1, a, \mathbf{c})$ -perfect arrays.

We introduce three new algorithms.

CELLULAR results cellular perfect arrays. Its input data are n, d and \mathbf{a} , its output is an $(N, d, \mathbf{a}, \mathbf{b})$ -perfect array, where $b_1 = N^{a_1}$ and $b_i = N^{a_1a_2...a_i-a_1a_2...a_{i-1}}$ for i = 2, 3, ..., d. CELLULAR consists of five parts:

- (1) *Calculation* (line 1 in the pseudocode) determining the new alphabet size N using formula (1);
- (2) *Walking* (lines 2–3) if d=1, then construction of a perfect symmetric sequence S_1 using algorithm MARTIN (walking in a de Bruijn graph);
- (3) Meshing (lines 4–6) if d = 2, N is even and a = 2, then first construct an N-ary even perfect sequence $\mathbf{e} = \langle e_1, e_2, \dots, e_{N^2} \rangle$ using EVEN, then construct an $N^2 \times N^2$ sized N-ary square S_1 using meshing function (4);
- (4) Shifting (lines 7–12) if d > 1 and (N is odd or a > 2), then use MARTIN once, then use SHIFT d 1 times, receiving a perfect array P;
- (5) Combination (lines 13–16) if d > 2, N is even and a = 2, then construct an even sequence with EVEN, construct a perfect square by MESH and finally use of SHIFT d 2 times, results a perfect array P.

COLOUR transforms cellular perfect arrays into larger cellular perfect arrays. Its input data are

- $d \ge 1$ —the number of dimensions;
- $N \ge 2$ —the size of the alphabet;
- a—the window size;
- **b**—the size of the cellular perfect array *A*;
- A—a cellular $(N, d, \mathbf{a}, \mathbf{b})$ -perfect array.
- $k \ge 2$ —the multiplication coefficient of the alphabet;
- $\langle k_1, k_2, \dots, k_d \rangle$ —the extension vector having the property $k^{|\mathbf{a}|} = k_1 \times k_2 \times \dots \times k_d$.

The output of COLOUR is

• a (*kN*)-ary cellular perfect array *P* of size $\mathbf{b} = \langle k_1 a_1, k_2 a_2, \dots, k_d a_d \rangle$.

COLOUR consists of three steps:

- (1) *Blocking:* (line 1) arranging $k^{|\mathbf{a}|}$ copies (blocks) of a cellular perfect array *A* into a rectangular array *R* of size $\mathbf{k} = k_1 \times k_2 \times \cdots \times k_d$ and indexing the blocks lexicographically (by 0, 1, ..., $k^{|\mathbf{a}|} 1$);
- (2) *Indexing:* (line 2) the construction of a lexicographic indexing scheme *I* containing the elements $0, 1, ..., k^{|a|} 1$ and having the same structure as the array *R*, then construction of a colouring matrix *C*, transforming the elements of *I* into *k*-ary numbers consisting of $|\mathbf{a}|$ digits;
- (3) *Colouring:* (lines 3 & 4) colouring *R* into a symmetric perfect array *P* using the colouring array *C* that is adding the *N*-fold of the *j*th element of *C* to each cell of the *j*th block in *R* (considering the elements of the cell as lexicographically ordered digits of a number).

The output *P* consists of blocks, blocks consist of cells and cells consist of elements. If $e = P[\mathbf{j}]$ is an element of *P*, then the lexicographic index of the block containing *e* is called the *blockindex* of *e*, the lexicographic index of the cell containing *e* is called the *cellindex* and the lexicographic index of *e* in the cell is called *elementindex*. For example, the element $S_2[7, 6] = 2$ in Table 3 has blockindex 5, cellindex 2 and elementindex 1.

Finally, algorithm GROWING generates a prefix S_r of a growing array G. Its input data are r, the number of required doubly perfect prefixes of the growing array G, then n, d and \mathbf{a} . It consists of the following steps:

(1) *Initialization*: construction of a cellular perfect array *P* using CELLULAR;

- (2) *Resizing:* if the result of the initialization is not doubly symmetric, then construction of a symmetric perfect array S_1 using COLOUR, otherwise we take *P* as S_1 ;
- (3) Iteration: construction of the further r 1 prefixes of the growing array G repeatedly, using COLOUR.

4. Examples of constructing growing arrays using colouring

In this section particular constructions are presented.

4.1. Construction of growing sequences

As the first example let n = 2, a = 2 and r = 3. CELLULAR calculates N = 2 and MARTIN produces the cellular (2,1,2,4)-perfect sequence P = 00|11.

Since *P* is symmetric, $S_1 = P$. Now GROWING chooses multiplication coefficient $k = n_2/n_1 = 2$, extension vector $\mathbf{k} = \langle 4 \rangle$ and uses COLOUR to construct a 4-ary perfect sequence.

COLOUR arranges $k_1 = 4$ copies into a four blocks sized array receiving

$$R = 00|11||00|11||00|11||00|11.$$
(5)

COLOURING receives the indexing scheme I = 0 1 2 3, and the colouring matrix *C* transforming the elements of *I* into *a* digit length *k*-ary numbers: C = 00 || 01 || 10 || 11.

Finally we colour the matrix *R* using *C*—that is multiply the elements of *C* by n_1 and adding the *j*th (j = 0, 1, 2, 3) block of $C_1 = n_1 C$ to both cells of the *j*th copy in *R*:

$$S_2 = 00|11||02|13||20|31||22|33.$$
(6)

Since r = 3, we use COLOUR again with $k = n_3/n_2 = 2$ and get the (8,1,2,64)-perfect sequence S_3 repeating S_2 four times, using the same indexing array I and colouring array C' = 2C.

Another example is a = 2, n = 3 and r = 2. To guarantee the cellular property now we need a new alphabet size N = 6. Martin produces a (6,1,2,36)-perfect sequence S_1 , then COLOUR results a (12,1,2,144)-perfect sequence S_2 .

4.2. Construction of growing squares

Let n = a = 2 and r = 3. Then N(2, 2) = 2. We construct the even sequence $W_4 = e_1e_2e_3e_4 = 0$ 0 1 1 using EVEN and the symmetric perfect array A in Table 1a using the meshing function (4). Since A is symmetric, it can be used as S_1 . Now the greatest common divisor of a and a^d is 2, therefore indeed $n_1 = N^{2/2} = 2$.

GROWING chooses $k = n_1/N = 2$ and COLOUR returns the array R repeating the array $A k^2 \times k^2 = 4 \times 4$ times.

Table 1								
Column/row	1	2	3	4				
(a) A (2, 2, 4, 4)-square								
1	0	0	0	1				
2	0	0	1	0				
3	1	0	1	1				
1	0	1	1	1				
b) Indexing scheme I of si	$ze 4 \times 4$							
1	0	1	2	3				
2	4	5	6	7				
3	8	9	10	11				
1	12	13	14	15				

Table 2 Binary colouring matrix *C* of size 8×8

Column/row	1	2	3	4	5	6	7	8
1	0	0	0	0	0	0	0	0
2	0	0	0	1	1	0	1	1
3	0	1	0	1	0	1	0	1
4	0	0	0	1	1	0	1	1
5	1	0	1	0	1	0	1	0
6	0	0	0	1	1	0	1	1
7	1	1	1	1	1	1	1	1
8	0	0	0	1	1	0	1	1

Table 3 A (4,2,2,16)-square generated by colouring

Column/row	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	2	1	2	2	0	3	0	2	2	3	2
3	1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1
4	0	1	1	1	0	3	1	3	2	1	3	1	2	3	3	3
5	0	2	0	3	0	2	0	3	0	2	0	3	0	2	0	3
6	0	0	1	0	0	2	1	2	2	0	3	0	2	2	3	2
7	1	2	1	3	1	2	1	3	1	2	1	3	1	2	1	3
8	0	1	1	1	0	3	1	3	2	1	3	1	2	3	3	3
9	2	0	2	1	2	0	2	1	2	0	2	1	2	0	2	1
10	0	0	1	0	0	2	1	2	2	0	3	0	2	2	3	2
11	3	0	3	1	3	0	3	1	3	0	3	1	3	0	3	1
12	0	1	1	1	0	3	1	3	2	1	3	1	2	3	3	3
13	2	2	2	3	2	2	2	3	2	2	2	3	2	2	2	3
14	0	0	1	0	0	2	1	2	2	0	3	0	2	2	3	2
15	3	2	3	3	3	2	3	3	3	2	3	3	3	2	3	3
16	0	1	1	1	0	3	1	3	2	1	3	1	2	3	3	3

COLOUR uses the indexing scheme I containing k^4 indices in the same 4×4 arrangement as it was used in R. Table 1b shows I.

Transformation of the elements of I into 4-digit k-ary form results the colouring matrix C represented in Table 2.

Colouring of array R using the colouring array 2C results the (4,2,2,16)-square S₂ represented in Table 3.

In the next iteration COLOUR constructs an 8-ary square repeating $S_2 4 \times 4$ times, using the same indexing scheme *I* and colouring by 4*C*. The result is S_3 , a (8, 2, 2, 64)-perfect square.

4.3. Construction of growing cubes

If d = 3, then the necessary condition (2) is $b^3 = (n)^{a^3}$ for double cubes, implying *n* is a cube number or *a* is a multiple of 3. Therefore, either $n \ge 8$ and then $b \ge 256$, or $a \ge 3$ and so $b \ge 512$, that is, the smallest possible perfect double cube is the (8, 3, 2, 256)-cube.

Layer 0	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7
0001	0001	1011	1011	1011	1011	1011	1011
0010	0010	0001	0001	0111	0111	0111	0111
1011	1011	1011	1011	1011	1011	1011	1011
0111	0111	1011	1011	1011	1011	1011	0111

Table 4Eight layers of a (2,3,2,16)-perfect array

As an example, let n = 2, a = 2 and r = 2. CELLULAR computes N = 2, MESH constructs the (2, 2, 2, 4)perfect square in Table 1a, then SHIFT uses MARTIN with N = 16 and a = 1 to get the shift sizes for the layers of the $(2, 3, 2, \mathbf{b})$ -perfect output P of CELLULAR, where $\mathbf{b} = \langle 4, 4, 16 \rangle$. SHIFT uses P as zeroth layer and the *j*th $(j \in [1 : 15])$ layer is generated by cyclic shifting of the previous layer downwards by w_i (div 4) and right
by w_i (mod 4), where $\mathbf{w} = \langle 0 \ 15 \ 14 \ 13 \ 12 \ 11 \ 10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \rangle$. Eight layers of P are shown in
Table 4.

Let A_3 be a $4 \times 4 \times 16$ sized perfect, rectangular matrix, whose zeroth layer is the matrix represented in Table 1, and the (2, 3, a, b)-perfect array *P* in Table 4, where a = (2, 2, 2) and b = (4, 4, 8).

GROWING uses COLOUR to retrieve a doubly symmetric cube. $n_1 = 8$, thus b = 256, $k = n_1/N = 4$ and $\mathbf{k} = \langle 256/4, 256/4, 256/4, 256/64 \rangle$, that is we construct the matrix R repeating $P \ 64 \times 64 \times 16$ times.

I has the size $64 \times 64 \times 16$ and $I[i_1, i_2, i_3] = 64^2(i_1 - 1) + 64(i_2 - 1) + i_3 - 1$. COLOUR gets the colouring matrix *C* by transforming the elements of *I* into 8-digit 4-ary numbers—and arrange the elements into $2 \times 2 \times 2$ sized cubes in lexicographic order—that is in order (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1). Finally colouring results a double cube S_1 .

 S_1 contains 2^{24} elements therefore it is presented only in electronic form (on the homepage of the corresponding author).

If we repeat the colouring again with k = 2, then we get a 64-ary $65536 \times 64536 \times 64536$ sized double cube S_2 .

5. Proof of the main result

The main result of this paper can be formulated as follows.

Theorem 11. If $n \ge 2$, $d \ge 1$, $a \ge 2$, $n_j = N^{dj/\gcd(d,a^d)}$ with N = N(n, a) given by (1) for $j \in [0..\infty]$, then there exists an (\mathbf{n}, d, a) -growing array.

The proof is based on the following lemmas.

Lemma 12 (*Cellular lemma*). If $n \ge 2$, $d \ge 1$ and $a \ge 2$, then algorithm CELLULAR produces a cellular (N, d, a, \mathbf{b}) perfect array A, where N is determined by formula (1), $b_1 = N^a$ and $b_i = N^{a^i - a^{i-1}}$ ($i \in [2..d]$).

Proof. It is known that algorithms EVEN + MESH and MARTIN + SHIFT result perfect outputs.

Since MESH is used only for even alphabet size and for 2×2 sized window, the sizes of the constructed array are even numbers and so the output array is cellular.

In the case of SHIFT we exploit that all prime divisors of *a* divide the new alphabet size *N*, and $b_i = N^{(a-1)(a^{i-1})}$ and $(a-1)(a^{i-1}) \ge 1$. \Box

Lemma 13 (Indexing lemma). If $n \ge 2$, $d \ge 2$, $k \ge 2$, C is a d dimensional **a**-cellular array with $|\mathbf{b}| = k^{|\mathbf{a}|}$ cells and each cell of C contains the corresponding cellindex as an $|\mathbf{a}|$ digit k-ary number, then any two elements of C having the same elementindex and different cellindex are heads of different patterns.

Proof. Let P_1 and P_2 be two such patterns and let us suppose they are identical. Let the head of P_1 in the cell have cellindex g and head of P_2 in the cell have cellindex h (both cells are in array C). Let g - h = u.

We show that $u = 0 \pmod{k^{|b|}}$. For example in Table 2 let the head of P_1 be (2, 2) and the head of P_2 be (2, 6). Then these heads are in cells with cellindex 0 and 2 so here u = 2.

In both cells, let us consider the position containing the values having local value 1 of some number (in our example they are the elements (3,2) and (3,6) of C.) Since these elements are identical, then k|u. Then let us consider the positions with local values k (in our example they are (3,1) and (3,5).) Since these elements are also identical so $k^2|u$. We continue this way up to the elements having local value $k^{|b|}$ and get $k^{|b|}|u$, implying u = 0.

This contradicts to the conditon that the patterns are in different cells. \Box

Lemma 14 (*Colouring lemma*). If $k \ge 2$, $k_i \in [2..\infty]$ ($i \in [1..d]$), A is a cellular ($n, d, \mathbf{a}, \mathbf{b}$)-perfect array, then algorithm COLOUR($N, d, \mathbf{a}, k, \mathbf{k}, A, S$) produces a cellular ($kN, d, \mathbf{a}, \mathbf{c}$)-perfect array P, where $\mathbf{c} = \langle k_1 a_1, k_2 a_2, ..., k_d a_d \rangle$.

Proof. The input array *A* is *N*-ary, therefore *R* is also *N*-ary. The colouring array *C* contains the elements of [0..N(k-1)], so elements of *P* are in [0..kN - 1].

The number of dimensions of S equals to the number of dimensions of P that is, d.

Since *A* is cellular and c_i is a multiple of b_i $(i \in [1..d])$, *P* is cellular.

All that has to be shown is that the patterns in P are different.

Let us consider two elements of P as heads of two windows and their contents—patterns p and q. If these heads have different cellindex, then the considered patterns are different due to the periodicity of R. For example, in Table 3 P[11, 9] has cellindex 8, the pattern headed by P[9, 11] has cellindex 2, therefore they are different (see parity of the elements).

If two heads have identical cellindex but different blockindex, then the indexing lemma can be applied. \Box

Proof of the main Theorem. Lemma 18 implies that the first call of COLOUR in line 10 of GROWING results a doubly symmetric perfect output S_1 . In every iteration step (in lines 14–16 of GROWING) the zeroth block of S_i is the same as S_{i-1} , since the zeroth cell of the colouring array is filled up with zeros.

Thus S_1 is transformed into a doubly symmetric perfect output S_r having the required prefixes $S_1, S_2, \ldots, S_{r-1}$. \Box

6. Final remarks

The proposed definitions and algorithms can be extended for arbitrary **a**.

Among others, the following problems are open: existence of (6, 2, 5, **b**)-perfect array with $\mathbf{b} = \langle 2 \times 3^8, 2^8 \times 3 \rangle$ or with $\mathbf{b} = \langle 2 \times 3^{24}, 2^{24} \times 3 \rangle$ and the existence of a (2,3,3,512)-perfect array (it would be the second smallest double cube).

7. Pseudocodes of the algorithms used

The algorithms are written using the pseudocode of [3]. The running time of these algorithms is determined by the number of the elements of the generated perfect array—e.g. GROWING needs $\Theta((n_r)^{a^3})$ time.

Since we deal only with the construction of symmetric perfect arrays, the window is always symmetric.

7.1. Pseudocode of the algorithm GROWING

Input parameters of GROWING are n, d, a and r, the output is a doubly symmetric perfect array S_r , which is the rth prefix of an (\mathbf{n}, d, a) -growing array.

 $GROWING(n, d, a, r, S_r)$ CELLULAR(n, d, a, N, P)1 calculation of N using formula (1) 2 3 **if** *P* is symmetric **then** $S_1 \leftarrow P$ if *P* is not symmetric then 4 $n_1 \leftarrow N^{d/\gcd(d,a^d)}$ 5 $k \leftarrow n_1/N$ 6 $k_1 \leftarrow (n_1)^{a^d/3}/N^a$ 7 for $i \leftarrow 2$ to d8 $k_i \leftarrow (n_1)^{a^d/d} / N^{a^i - a^{i-1}}$ 9 $COLOUR(n_1, d, a, k, \mathbf{k}, P, S_1)$ 10 11 $k \leftarrow N^d / \operatorname{gcd}(d, a^d)$ 12 for $i \leftarrow 1$ to d $k_i \leftarrow (n_2)^{a^d/d} / N^{a^i - a^{i-1}}$ 13 14 for $i \leftarrow 2$ to r15 $n_i \leftarrow N^{di/\gcd(d,a^d)}$ $COLOUR(n_i, d, \mathbf{a}, k, \mathbf{k}, S_{i-1}, S_i)$ 16 17 return S_r

7.2. Pseudocode of the algorithm CELLULAR

This is an extension and combination of the known algorithms SHIFT, MARTIN, EVEN and MESH. CELLULAR(n, d, a, N, A)

```
1 N \leftarrow N(n, a)
2 if d = 1 then MARTIN(N, d, a, A)
3 return A
4 if d = 2 and a = 2 and N is even then
5
                                                MESH(N, a, A)
6
                                                return A
7 if N is odd or a \neq 2 then
8
                                 MARTIN(N, a, P_1)
9
                                 for i \leftarrow 1 to d - 1
                                     SHIFT(N, i, P_i, P_{i+1})
10
11
                                     A \leftarrow P_1
12
                                 return A
13 \text{MESH}(N, a, P_1)
14 for i \leftarrow 2 to d - 1
       SHIFT(N, i, P_i, P_{i+1})
15
16A \leftarrow P_d
17 return P<sub>d</sub>
```

7.3. Pseudocode of the algorithm MARTIN

The following effective implementation of MARTIN is taken from [11].

```
MARTIN(n, a, \mathbf{w})
1 for i \leftarrow 0 to n^{a-1} - 1
2
        C[i] \leftarrow n-1
3 for i \leftarrow 1 to a
4
      w[i] \leftarrow 0
5 for i \leftarrow a + 1 to n^a
      k \leftarrow w[i - a + 1]
6
7
      for j \leftarrow 1 to a - 1
           k \leftarrow kn + w[i - a + j]
8
9
           w[i] \leftarrow C[k]
10
           C[k] \leftarrow C[k] - 1
11 return P
```

7.4. Pseudocode of the algorithm SHIFT

 $\text{SHIFT}(N, d, a, P_d, P_{d+1})$

- 1 MARTIN $(N^{a^d}, a 1, \mathbf{w})$
- 2 for $i \leftarrow 0$ to $N^{a^d a^{d-1}} 1$
- 3 transform w_i to an a^d digit *N*-ary number
- 4 produce the (j + 1)-st layer of the output P_{d+1} by multiple shifting the *j*th layer of P_d by the transformed number (the first *a* digits give the shift size for the first direction, then the next $a^2 a$ digits in the second direction etc.)
- 5 return P_{d+1}

7.5. Pseudocode of the algorithm EVEN

If *N* is even, then this algorithm generates the N^2 -length prefix of an even growing sequence [9]. EVEN (N, \mathbf{w})

```
1 if N = 2 then
2
                    w[1] \leftarrow 0
3
                    w[2] \leftarrow 0
4
                    w[3] \leftarrow 1
5
                    w[4] \leftarrow 1
                    return w
6
7 for i = 1 to N/2 - 1
8
      for j = 0 to 2i - 1
          w[4i^2 + 2j + 1] \leftarrow j
9
      for j = 0 to i - 1
10
          w[4i^2 + 2 + 4j] \leftarrow 2i
11
      for i = 0 to i - 1
12
         w[4i^2+4+4j] \leftarrow 2i+1
13
       for j = 0 to 4i - 1
14
          \tilde{w}[4i^2 + 4i + 1 + j] \leftarrow w[4i^2 + 4i - j]
15
16
       w[4i^2+8i+1] \leftarrow 2i+1
       w[4i^2 + 8i + 2] \leftarrow 2i
17
       w[4i^2+8i+3] \leftarrow 2i
18
       w[4i^2+8i+4] \leftarrow 2i+1
19
20 return w
```

7.6. Pseudocode of the algorithm MESH

The following implementation of MESH is taken from [11]. MESH (N, \mathbf{w}, S)

1 for $i \leftarrow 1$ to N^2 2 for $j \leftarrow 1$ to N^2 3 if i + j is even then $S[i, j] \leftarrow w[i]$ 4 else $S[i, j] \leftarrow w[j]$ 5 return S

7.7. Pseudocode of the algorithm COLOUR

Input parameters are N, d, a, k, **k**, a cellular (N, d, a, **b**)-perfect array A, the output is a $(kN, d, \mathbf{a}, \mathbf{c})$ -perfect array P, where $\mathbf{c} = \langle a_1k_1, a_2k_2, \dots, a_dk_d \rangle$.

 $COLOUR(N, d, \mathbf{a}, k, \mathbf{k}, A, P)$

- 1 arrange the copies of *P* into an array *R* of size $k_1 \times k_2 \times \cdots \times k_d$ blocks
- 2 construct a lexicographic indexing scheme *I* containing the elements of $[0.k^{a^d} 1]$ and having the same structure as *R*
- 3 construct an array C transforming the elements of I into k-ary numbers of v digits and multiplying them by N
- 4 produce the output *S* adding the *j*th $(j \in [0..k^{a^d} 1])$ element of *C* to each cell of the *j*th block in *R* for each block of *R*
- 5 return S

Acknowledgement

The authors thank Gábor Balázs and Balázs Gerőfi, students of Faculty of Informatics of Eötvös Loránd University, for constructing and validating of a $256 \times 256 \times 256$ sized perfect double cube.

References

- [1] F.R.K. Chung, P. Diaconis, R.L. Graham, Universal cycles for combinatorial structures, Discrete Math. 110 (1992) 43-59.
- [2] J.C. Cock, Toroidal tilings from de Bruijn cyclic sequences, Discrete Math. 70 (1988) 209-210.
- [3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, second ed., The MIT Press/McGraw Hill, 2003 (Fourth printing).
- [4] N.G. de Bruijn, A combinatorial problem, Kon. Nederl. Akad. Wetensch. 49 (1946) 758-764.
- [5] C.T. Fan, S.M. Fan, S.L. Ma, M.K. Siu, On de Bruijn arrays, Ars Comb. 19A (1985) 205–213.
- [6] T.M. Flye-Sainte, Solution of problem 58, Intermediare des Mathematiciens 1 (1894) 107–110.
- [7] I.J. Good, Normally recurring decimals, J. London Math. Soc. 21 (1946) 167–169.
- [8] G. Hurlbert, G. Isaak, On the de Bruijn torus problem, J. Combin. Theory Ser. A 164 (1993) 50-62.
- [9] G. Hurlbert, G. Isaak, A meshing technique for de Bruijn tori, Contemp. Math. 178 (1994) 153-160.
- [10] G. Hurlbert, C. Mitchell, K.G. Paterson, On the existence of the Bruijn tori with two by two window property, J. Combin. Theory Ser. A 76 (1996) 213–230.
- [11] A. Iványi, Z. Tóth, Existence of de Bruijn words, in: I. Peák (Ed.), Automat. Languages Programming Syst. 88-4 (1988) 165–172.
- [12] D. E. Knuth, The Art of Computer Programming, vol. 4., Fascicle 2. Generating All Tuples and Permutations, Addison-Wesley, Upper Saddle River, 2005.
- [13] L. Lovász, Combinatorial Problems and Exercises, Academic Press, Budapest, 1979.
- [14] M.H. Martin, A problem in arrangements, Bull. American Math. Soc. 40 (1934) 859-864.
- [15] K.G. Paterson, Perfect maps, IEEE Trans. Inf. Theory 40 (3) (1994) 743-753.
- [16] K.G. Paterson, New classes of perfect maps. II., J. Combin. Theory Ser. A 73 (1996) 335-345.