COMMUNICATION

CONSTRUCTION OF INFINITE DE BRUIJN ARRAYS

Antal IVÁNYI
Department of General Computer Science, Eotvòs Loránd University, Bogdánfy Odon u. 10/a, H-1117 Budapest, Hungary

Received 14 October 1988

Communicated by L. Lovász

Abstract

We construct a perıodic array containing every k-ary $m \times n$ array as a subarray exactly once. Using the algorithm SUPER (which for $k \geq 3$ generates an infinte k-ary sequence whose beginning parts of length $k^{m}, m=1,2, \ldots$, are de Bruijn sequences) we also construct infinite $k^{m} \times \infty k$-ary arrays in which each beginning part of size $k^{m} \times k^{m n-m}, n=1,2$, , as a periodic array, contains every k-ary $m \times n$ array exactly once.

Keywords. k-ary perfect maps, k-ary infinite de Bruijn matrices

1. Introduction

This paper deals with the construction of finite and infinite de Bruijn arrays (perfect maps and supercomplex arrays). Such arrays are connected with frequency allocation for multibeam satellites [2], picture coding and processing [11] and complexity of nucleotid sequences [3]. Algorithms for constructing de Bruijn sequences are described in $[1,4,10,14]$.

Definition 1.1. Let $k \geq 2, m, n, M, N$ be positive integers, $X=\{0,1, \ldots, k-1\}$. A (k, m, n, M, N) srray (or de Bruijn array) is a periodic $M \times N$ array with elements from X and $m \leq M, n \leq N, M \times N=k^{m n}$ in which each of the different k-ary $m \times n$ arrays appears exactly once.

Definition 1.2. Let $k \geq 2, m$ and M be positive integers, $X=\{0,1, \ldots, k-1\}$. A (k, m, M)-array (or infinite de Bruijn array) is a k-ary infinite $M \times \infty$ array with elements from X whose beginning parts of length $k^{m n} / M$ as periodic arrays are ($k, m, n, M, k^{m n} / M$)-arrays for $n=1,2, \ldots$.

We remark that ($k, 1, n, 1, k^{n}$)-arrays are de Bruijn sequences and ($k, 1,1$)-arrays are infinite de Bruijn sequences.

The following existence results are known. For any m and n there are M and
N such that a ($2, m, n, M, N$)-array exists $[5,6]$. If k is odd, then for any m a ($k, m, 2, k^{m}, k^{m}$)-array exists [5]. No ($2,1,1$)-arrays exist [1, 7, 13], but for $k \geq 3$ ($k, 1,1$) -arrays exist $[1,7,13]$. Constructions of (k, m, m, M, M)-arrays are presented in [6] for $k=2$ and in [9] for $m=2$.

2. Algorithms

The algorithm bruisn walks in a de Bruijn graph $B(k, n)$ defined as follows: the vertex set is X^{n} and the edge set is X^{n+1} in such a way that $\kappa_{1} \kappa_{2} \ldots \kappa_{n+1} \in$ X^{n+1} determines an edge going from the vertex $\kappa_{1} \kappa_{2} \cdots \kappa_{n} \in X^{n}$ to the vertex $\kappa_{2} \kappa_{3} \ldots \kappa_{n+1} \in X^{n}$.

If $m \geq n$, then any sequence $q=\gamma_{1} \gamma_{2} \ldots \gamma_{m}\left(\gamma_{i} \in X, i=1, \ldots, m\right)$ determines a directed path in $B(k, n)$ beginning at the vertex $\gamma_{1} \gamma_{2} \ldots \gamma_{n}$, going through the vertices $\gamma_{2} \gamma_{3} \ldots \gamma_{n+1}, \ldots, \gamma_{m-n} \gamma_{m-n+1} \ldots \gamma_{m-1}$ and ending at the vertex $\gamma_{m-n+1} \gamma_{m-n+2} \ldots \gamma_{m}$.
bruisn finds an Eulerian circuit p of $B(k, n)$ [12, p. 413].

Algorithm bruisn.

Input. The alphabet size $t(t \geq 2)$ and the pattern size $n\{n \geq 1)$.
Output. A $\left(t, 1, n, 1, t^{n}\right)$-array p.
Step 1. If $n=1$, then let $p:=01 \ldots(t-1)$ and Stop.
Step 2. Let $p:=\kappa_{1} \kappa_{2} \ldots \kappa_{n}=00 \ldots 0$.
Step 3. If $p=\kappa_{1} \kappa_{2} \ldots \kappa_{s}$ 2nd $s=t^{n}+n+1$, then go to Step 7.
Step 4. If $p=\kappa_{1} \kappa_{2} \ldots \kappa_{s}, \kappa_{s}=i$ and the last vertex $V=\kappa_{s-n+1} \kappa_{s-n+2} \ldots \kappa_{s}$ has at least one unused outgoing edge, then let κ_{s+1} be the first suitable element in the sequence $i, 1+1, \ldots, t-1,0,1, \ldots, i-1$ and go to Step 3 .

Step 5. (Now the last vertex V in p has no unused outgoing edges.) Let us find and insert into p a suitable circuit seeking its start vertex going back in p from V and constructing it using Step 4 [12].

Step 6. Go to Step 3.
Step 7. (Now $p=\kappa_{1} \kappa_{2} \ldots \kappa_{s}$ and $s=t^{n}+n+1$.) Let $r:=t^{n}, p:=\kappa_{1} \kappa_{2} \ldots \kappa_{r}$ and Stop.

The algorithm SUPER generates infinite de Bruijn sequences using the following characteristics of $B(k, n)$:
(a) There is a ono-to-one mapping among the Euler circuits of $B(k, n)$ and the Hamiltonian circuits of $B(k, n+1)[10]$.
(b) If $n \geq 3$ and $k \geq 1$, then any Hamiltonian carcuit p of $B(k, n)$ can be continued in order to get an Eulerian circuit q of $B(k, n)$ [7].

Algorithm Super.
Input. The alphabet size $t(t \geq 3)$.
Output. A ($t, 1,1$)-array p.

Step 1. Let $p:=01 \cdots(t-1)$ and $n:=1$.
Step 2. Continue p in order to get an Eulerian circuit of $B(t, n)$ using Steps 3-7 of Algorithm BRUIJN.

Step 3. Let $n:=n+1$ and go to Step 2.

3. Construction results

Theorem 3.1. For any $k \geq 2, m \geq 1$ and $n \geq 1$ there are M and N such that a (k, m, n, M, N)-array P exists.

Proof (Sketch). (a) If $\min (m, n)=1$, then Algorithm BRUIJN generates the required array.
(b) If $n=m=2$, then see [9].
(c) If $n \geq 3$ and $m \geq 2$, then we construct P as follows.
(c.1) If the input parameters of BRUIJN are the alphabet size k and the pattern size m, then the output as a column will be the first column of P.
(c.2) The i th, $i=2, \ldots, k^{m(n-1)}$ column of P is generated shifting cyclically downwards its $(\boldsymbol{l}-1)$ th column by b_{t-1} where

$$
b_{1} b_{2} \ldots b_{s}, \quad s=k^{m(n-1)}-1
$$

is the output of BRUIJN for $t=k^{m}$.
(d) The case $n=2, m \geq 3$ is similar to case (c).
(e) Since in the cases (c) and (d) the height (k^{m}) of the constructed array is a divisor of the sum of the shift sizes and any two $m \times n$ subarrays are different (either their first columns or at least one of their corresponding shift sizes are different), the construction is correct [9].

Theorem 3.2. For any odd $k \geq 3$ and $m \geq 1$ and also for any even $k \geq 2$ and $m \geq 3$ there is an M such that a (k, m, M)-array S exists.

Proof (Sketch). (a) The output of bkUiJn as a column for alphabet size k and pattern size m gives the first column of S.
(b) The i th, $l=2,3, \ldots$ column of S is generated by cyclically downward shifting of its $(i-1)$ th column by b_{t-1}, where $b_{1} b_{2} \ldots$ is the output of SUPER for alphabet size k^{m}.
(c) To prove the correctness of this construction it is enough to show that \boldsymbol{k}^{m} divides the sum of the relative shift sizes and any two $m \times n$ subarrays are different in the $k^{m} \times k^{m n-m}$ beginning parts for $n=1,2, \ldots$ [9].

We remark that if k is even and $m=2$, then the algorithm used in the proof of Theorem 3.2 generates a k-ary $k^{m} \times \infty$ array whose beginning parts of length $k^{m n-m}$ as periodic arrays are ($k, m, n, k^{m}, k^{m n-m}$)-arrays for $n=1,3,4,5, \ldots(n \neq 2)$.

Theorem 3.2 does not cover the case when k is even and $m \leq 2$. No $(2,1, M)$ - and ($2,2, M$)-arrays exist [8]. If $s \geq 2$, then ($2 s, 1,1$)-arrays [1, 7] and ($2 s, 2,2 s^{2}$)-arrays [8] exist.

4. An example

If $t=3$ and $m=2$, then Algorithm BRUIJN gives $p=001122021$. If $t=k^{m}=9$, then the 81 -length beginning part of the output of SUPER is:

$$
\begin{aligned}
q= & b_{1} b_{2} \ldots b_{81} \\
= & 01234567880022446681133557703604714825837261505162 \\
& 7384063074175285318642087654321 .
\end{aligned}
$$

In this case the sequence of the absolute shift sizes $p=c_{1} c_{2} \cdots c_{81}$ is defined as

$$
0 \leq c_{j} \leq 8, \quad c_{j} \equiv b_{1}+\cdots+b_{81}, \quad j=1,2, \ldots, 81 .
$$

Table 1 shows the first 81 column of a $(3,2,9)$-array and under the columns the corresponding relative (q) and absolute (p) shift sizes:

Table 1
001011101000010120222100022000002201102012102002102012001001201101011101000100010 000220220011102111202202101002000121210220220002222222002001120211221221001221221 110120210111101201020211120111112011120122212110210120112112010212122212111211121 111001001122210202212010210110111002021001001112002002110112001022002002112002002 221021201222210012101220201220220100220020200221201021222220101220020200222202022 222112112200021210000121001221220112100110110220110110221222112102112112220110110 002102012022221122010001212001001211021101001000010100000001212021101011002012102 220200020211102021111022112222221220011201021221021201220220220010200020221021191 112212122100022000121112020112112020102212122111121211111110022100210120110120210

$q=$

012345678800224466811335577036047148258372615051627384063074175285318642087654321 $p=$
013616310888137285456038420030042376843646340056353650060072316873676370086383680

References

[1] L J. Cummings and D. Wiedemann, Embedded de Bruijn sequences, Congr. Numer 53 (1986) 155-160
[2] J Denes and A D Keedwell, Frequency allocation for a mobile radio telephone system, IEEE Trans Communications 36 (1988) 765-767
[3] W Ebeling and R Festel, Physik der Selbstorganisation und Evolution (Akademie-Verlag, Berlın, 1982)
[4] T. Etzion, Algorithms to construct m-ary de Bruijn sequences, J. Algorithms 7 (1986) 331-340.
[5] T. Etzion, Constructions for perfect maps and pseudo-random arrays, IEEE Trans. Inforrn. Theory (to appear).
[6] C.T. Fan, S.M. Fan, S.L. Ma and M.K. Siu, On de Bruijn arrays, Ars Combin. 19A (1985) 205-213.
[7] A Iványı, On the d-complexity of words, Annnales Unıv Sci. Budapest. Sect. Comput 8 (1987) 69-90
[8] A. Iványı, Construction of supercomplex matrices, in: A. Iványı, ed., Fourth Conference of Program Designers (Eotvos Loránd University, Budapest, 1988).
[9] A. Iványı and Z. Tỏth, Existence of de Bruijn words, in: I. Peák, ed., Automata, Languages and Programming Systems (Karl Marx University of Economics, Budapest, 1988).
[10] L. Lovász, Combinatorial Problems and Exercises (Akadémıaı Kıadò, Budapest, 1979).
[11] S.L. Ma, A note on binary arrays with a certain window property, IEEE Trans. Inform. Theory 30 (1984) 774-775.
[12] C H. Papadımitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity (Prentice-Hall, Englewood Cliffs, NJ, 1982).
[13] N. Voros, On the complexity of symbol-sequences, in: A. Iványl, ed., Conference of Young Programmers and Mathematicians (Eotvos Loránd University, Budapest, 1984), 43-50.
[14] S. Xie, Notes on de Bisun sp ;uences, Discrete Appl. Math. 16 (2) (1987) 157-177.

