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Reconstruction of score sets
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Abstract. The score set of a tournament is defined as the set of its
different outdegrees. In 1978 Reid [15] published the conjecture that for
any set of nonnegative integers D there exists a tournament T whose
degree set is D. Reid proved the conjecture for tournaments containing
n = 1, 2, and 3 vertices. In 1986 Hager [4] published a constructive proof
of the conjecture for n = 4 and 5 vertices. In 1989 Yao [18] presented an
arithmetical proof of the conjecture, but general polynomial construction
algorithm is not known. In [6] we described polynomial time algorithms
which reconstruct the score sets containing only elements less than 7. In
[5] we improved this bound to 9.

In this paper we present and analyze new algorithms Hole-Map,
Hole-Pairs, Hole-Max, Hole-Shift, Fill-All, Prefix-Deletion,
and using them improve the above bound to 12, giving a constructive
partial proof of Reid’s conjecture.

1 Introduction

We will use the following definitions [3]. A graph G(V,E) consists of two finite
sets V and E, where the elements of V are called vertices, the elements of E
are called edges and each edge has a set of one or two vertices associated to
it, which are called its endpoints (head and tail). An edge is said to join its
endpoints. A simple graph is a graph that has no self-loops and multi-edges.
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A directed edge is said to be directed from its tail and directed to its head.
(The tail and head of a directed self-loop is the same vertex.)

A directed graph (shortly: digraph) is a graph whose edges are directed. If
in a directed graph (u, v) ∈ E, then we say that u dominates v. An oriented
graph is a digraph obtained by choosing an orientation (direction) for each
edge of a simple graph. A tournament is a complete oriented graph. That is,
it has no self-loops, and between every pair of vertices, there is exactly one
edge. Beside the terms of graph theory we will use the popular terms player,
score sequence, score set, point, win, loss etc.

A directed graph (so a tournament too) F = (E, V ) is transitive, if (u, v) ∈ E
and (v, w) ∈ E imply (u,w) ∈ E.

The order of a tournament T is the number of vertices in T . A tournament
of order n will be called an n-tournament.

An (a, b, n)-tournament is a loopless directed graph, in which every pair of
distinct vertices is connected with at least a and at most b ≥ a edges. An
(a, b, n)-tournament is complete, if in the matches any integer partition of c
points is permitted for a ≤ c ≤ b.

The score (or out-degree) of a vertex v in a tournament T is the number of
vertices that v dominates. It is denoted by d+T (v) (shortly: d(v)).

The degree sequence (score sequence) of an n-tournament T is the ordered
n-tuple s1, s2, . . . , sn, where si is the score of the vertex vi, 1 ≤ i ≤ n, and

s1 ≤ s2 ≤ · · · ≤ sn. (1)

An n-regular sequence is an increasingly ordered n-length integer sequence,
that is an n-length score sequence is and n-regular sequence.

The score set of an n-tournament T is the ordered m-tuple D = (d1, d2,
. . . , dm) of the different scores of T , where

d1 < d2 < · · · < dm. (2)

Figure 1 shows a (1, 1, 4)-tournament with score sequence S = 0, 2, 2, 2
and score set D = {0, 2}.

Theorem Landau [8, 10, 16] allows to test potential score sequences in linear
time.

Theorem 1 (Landau [10]) A nondecreasing sequence of nonnegative integers
S = s1, s2, . . . , sn is a score sequence of an n-tournament if and only if

k∑
i=1

si ≥
k(k − 1)

2
, 1 ≤ k ≤ n, (3)

with equality when k = n.
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Figure 1: A tournament with score sequence 0, 2, 2, 2 and score set {0, 2}

Proof. See [10, 16]. �

To reconstruct a prescribed score set is much harder problem, then com-
puting the score set belonging to the score sequence of a given tournament.
Therefore surprising is the following conjecture published by Reid in 1978
[15]: if m ≥ 1, D = {d1, d2, . . . , dm} is a set of nonnegative integers, then there
exists a tournament whose score set is D.

In his paper Reid described the proof of his conjecture for score sets con-
taining 1, 2, and 3 elements, further for score sets representing an arithmetical
or geometrical series. In 1986 Hager [4] published a constructive polynomial
proof of the conjecture for m = 4 and m = 5.

In 2006 Pirzada and Naikoo gave a constructive proof of a special case of
Theorem 3.

Theorem 2 (Pirzada and Naikoo [14]) If s1, s2, . . . , sm are nonnegative inte-
gers with s1 < s2 < · · · < sm, then there exists such n ≥ m for which there
exists an n-tournament T with score set

D =

{
d1 = s1, d2 =

2∑
i=1

si, . . . , dm =

m∑
i=1

si

}
. (4)

Proof. See [14]. �

In 1976 Chartrand, Lesniak and Roberts [1] proved that for any finite set S
of nonnegative integers there exists an oriented graph whose score set is S.

In 1989 Yao proved the conjecture of Reid.

Theorem 3 (Yao [18]) If m ≥ 1, D = {d1, d2, . . . , dm} is a set of nonneg-
ative integers, then there exists a tournament T with score sequence S =
s1, s2, . . . , sn such, that the score set of T is D.
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Proof. See [18]. �

The proof of Yao uses arithmetical tools and only proves the existence of
the corresponding tournaments, but it does not give a construction.

In 1983 Wayland [17] proposed a sufficient condition for a set D of nonneg-
ative integers to be the score set of a bipartite tournament. This result was
improved to a sufficient and necessary condition in 1983 by Petrovič [12].

In [7] we proved that the extension of Yao’s theorem is not true for k-
tournaments (where every pair of vertices is connected with k ≥ 2 edges).

Now we present three lemmas allowing a useful extension of Theorem 3.

Lemma 4 If d1 ≥ 1, then the score set D = {d1} is realizable by the unique
score sequence S = d<2d1+1>

1 .

Proof. If |S| = n and S generates D then the sum of the elements of S
equals to nd1 and also to n(n−1)/2 implying n = 2d1 +1. Such tournament is
realizable for example so, that any player Pi gathers one points against players
Pi+1, . . . , Pi+(n−1)/2 and zero against the remaining players (the indices are
taken mod n). �

In this lemma and later a<b> means a multiset, in which a is repeated
b times.The form of the score sequences using this notation is called power
form.

Lemma 5 If the score sequence S = s1, s2, . . . , sn corresponds to the score set
D = {d1, d2, . . . , dm}, then n ≥ dm + 1.

Proof. If the score of a vertex v is dm, then v dominates dm different vertices.
�

Lemma 6 If m ≥ 2 and the score sequence S = s1, s2, . . . , sn corresponds to
the score set D = {d1, d2, . . . , dm}, then

2d1 + 2 ≤ n ≤ 2dm, (5)
and both bounds are sharp.

Proof. Every element of D has to appear in S. Therefore the arithmetical
mean of the scores is greater, than d1, and smaller, than dm. From the other
side n-tournaments contain Bn =

(
n
2

)
edges, so the arithmetical mean of their

scores is Bn/n = (n− 1)/2, therefore

d1 <
n− 1

2
< dm, (6)

implying (5).
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For example if k ≥ 0 and D = {k, k + 1}, then according to (6) n = 2k + 2
imply the sharpness of both bounds. �

The next extension of Theorem 3 is based on Lemmas 4, 5, 6.

Theorem 7 (Iványi, Lucz, Matuszka, Gombos [6]) If m ≥ 1 and D = {d1, d2,
. . . , dm} is an increasingly ordered set of nonnegative integers, then

• there exist a tournament T , whose score sequence is S and score set is
D;
• if m = 1, then S = s<2d1+1>

1 ;
• if m ≥ 2, then

max(dm + 1, 2d1 + 2) ≤ n ≤ 2dm; (7)

• the bounds in (7) are sharp.

Proof. The assertion follows from the above lemmas (see [6]). �

Taking into account the remark of Beineke and Eggleton [16, page 180]
we can formulate Reid’s conjecture as an arithmetical statement without the
terms of the graph theory. Let D = {d1, d2, . . . , dm} be an increasingly ordered
set of nonnegative integers. According to the conjecture there exist positive
integer exponents x1, x2, . . . , xm such that

S = d<x1>
1 , d<x2>

2 , . . . , d<xm>
m (8)

is the score sequence of some (
∑m

i=1 xi)-tournament. Using Landau’s theo-
rem it can be easily seen that Reid’s conjecture is equivalent to the following
statement [13, 18].

For every set D = {d1, . . . , dm} with the property 0 ≤ d1 < d2 < · · · < dm
there exist positive integers x1, . . . , xm, such that

k∑
i=1

xidi ≥
(∑k

i=1 xi
2

)
, for k = 1, . . . , m− 1, (9)

and
m∑
i=1

xidi =

(∑m
i=1 xi
2

)
. (10)

Commenting Yao’s proof Qiao Li wrote in 1989 [11]: Yao’s proof is the first
proof of the conjecture, but I do not think it is the last one. I hope a shorter
and simpler new proof will be coming in the near future.

However, the constructive proof has not been discovered yet.
Our algorithms investigate only the zerofree score sets, The base of this

approach is the following lemma.
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Lemma 8 Let m ≥ 2. A sequence S = s<e1>
1 , s<e2>

2 , . . . , s<em>
n is the score

sequence corresponding to the score set D = {0, d2, d3, . . . , dm} if and only
if the sequence S′ = (s2 − 1)<e2>, (s3 − 1)<e3>, . . . , (sn − 1)<en> is the score
sequence corresponding to D′ = {d2 − 1, d3 − 1, . . . , dm − 1}.

Proof. Part if of the proof: If S is the score sequence corresponding to D
then s1 = 0 and e1 = 1 that is all other players won against the player having
the score s1 = 0, so S′ corresponds to D′.

Part only if of the proof: If S′ corresponds to D′, then we add a new score
d1 = 0 to D′, increase the multiplicity of the other scores by 1 and get D
which correspond to S. �

2 Reconstruction of score sets of tournaments

Earlier [5, 6] we proposed polynomial approximate algorithms Balancing,
Shortening, and Shiftening.

By computer experiments we proved that they reconstruct all score sets
with dm < 9. We also described exact brute force algorithms Sequencing
and Diophantine [6].

The proposed algorithms reconstruct the majority of the score sets with
dm = 9. , but there are three exceptional sets with dm = 9. Exceptions are the
sets {2, 4, 5, 6, 7, 8, 9}, {1, 2, 5, 6, 7, 8, 9}, and {1, 2, 4, 7, 8, 9}.

In this paper we present new polynomial algorithms Hole-Pairs, Hole-
Max, Hole-Shift, Prefix-Shift, Fill-All and using these theorems we
improve the earlier bound to dm < 12. Our algorithms are based on Theorem 7.
Since there are quick (quadratic) algorithms to construct n-tournaments cor-
responding to a given score sequence, our algorithms construct only a suitable
score sequence.

If the score sequence of a tournament is S and its score set is D, then we
say, that S generates D, or D corresponds to S. If D is given, then we call the
corresponding score sequence good.

3 Hole-type algorithms

The Hole-type algorithms are based on the idea that we take the transitive
score sequence s = 0, 1, . . . , dm and gradually remove from it the elements
corresponding to the missing elements of the investigated score set.

In a score set D = {d1, d2, . . . , dm} there is a k-hole before element di (1 ≤
i ≤ m), if
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• d1 = k + 1, or

• 2 ≤ i ≤ m and di − di−1 = k.

In the first case the hole is outer, while in the second case it is an inner hole.
The missing elements are called hole elements, while the neighbors of a hole are
its lower, resp. upper bound. During the maintenance of the score set D a hole
is active, if the elements of the hole are present in s. At the beginning all holes
are active. A hole is passive, if its elements are missing from the actual score
sequence. During the reconstruction of D we gradually transform the active
holes to passive. The reconstruction process is finished, when D contains only
passive holes.

We prepare the work of the Hole-type algorithms with the construction of
a hole-map.

3.1 Algorithm Hole-Map

The hole map of a score set D = {d1, . . . , dm} is an (m × dm)-sized array
H(D) = H[1 . .m, 1 . .dm], where the j-th column of H(D) describes the j-
sized active holes: H[i, j] gives the beginning address of the i-th j-sized hole
in D (if there exists such hole, otherwise H[i, j] is undetermined).

The next algorithm Hole-Map generates the hole map H(D), further the
number of active holes N [0](D) and the number of active i-holes N [i](D)
(1 ≤ i ≤ dm) in D. N(D) is the frequency vector of the active holes.

The pseudocodes of this paper are written using the conventions proposed
in the textbook [2].

Input. m = m(D) (m ≥ 1): the number of the elements of D;
D = {d1, . . . , dm}: a score set containing m elements.

Global variables. D = {d1, . . . , dm}: score set;
m: the number of elements of D;
H: hole map of D.

Working variables. i, j: cycle variables.
Output : H[1 . . m, 1 . . dm]: the hole map of D;

N [0 . . m] = N(D): the hole frequency vector of D.

Hole-Map(m,D)

01 for i = 0 to dm // Line 01–03: initialization
02 N [i] = 0
03 if d1 > 0 // Line 03–06: is there an outer hole?
04 N [0] = 1
05 N [d1] = 1
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06 H[1, d1] = 0
07 for j = 1 to m− 1 // Line 07–11: investigation of the inner holes
08 if dj+1 − dj > 1
09 N [dj+1 − dj − 1] = N [dj+1 − dj − 1] + 1
10 N [0] = N [0] + 1
11 H[N [dj+1 − dj − 1], dj+1 − dj − 1] = dj + 1 + 1
12 H[N [0] = 0
13 ‘no inner hole’
14 return H,N // Line 13: return of the results

If we use algorithm Hole-map for the score set D = {2, 4, 6, 7}, then the
input is D and m = 4, the size of the vector N is 7. Table 1 contains H(D).

beginning/hole size 1 2 3 4 5 6 7

first hole 2 0 −− −− −− −− −−
second hole 4 −− −− −− −− −− −−

third hole −− −− −− −− −− −− −−
fourth hole −− −− −− −− −− −− −−

Table 1: Hole map H(D) of the score set D = {2, 4, 6, 7}

The running time of Hole-map is Ω(dm) in all cases.

3.2 Algorithm Hole-Pairs

Two i-sized holes form a hole pair. The hole which appear earlier in D is called
lower hole, while the other one is called upper hole.

Our algorithms do not change the result of the matches between players in
the active holes and any other player. Since for the initial transitive sequence
is it true that the players are defeated by any other player having larger score,
this property remains true (in such sense that there exists such tournament
which realizes the given score sequence and has this property) for the players
whose score is in an active hole after the application of Hole-Pairs and
Hole-Max. We can call the such sequences hole-transitive.

The next algorithm Hole-Pairs forms the maximal possible number, that
is bN [i]/2c, of pairs of i-holes of D for 1 ≤ i ≤ dm and removes the hole
elements from the corresponding sequence.

Input. N(D): the frequency vector of the active holes in D.
Global variables. D = {d1, . . . , dm}: score set;

m: the number of elements of D;
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H: hole map of D;
s = 0, 1, . . . , dm: the starting transitive score sequence;

Working variables. i, j: cycle variables.
Output. t = t0, t1, . . . , tdm : the sequence produced by Hole-Pairs;

M(D): the frequency vector of the active holes in D.

Hole-Pairs(N, s)

01 for i = 0 to dm // Line 01–03: initialization
02 M [i] = N [i]
03 t[i] = s[i]
04 for i = dm downto 1 // Line 04–11: processing of the hole pairs
05 while M [i] > 1
06 for j = H[M [i], i] to H[M [i], i] + i− 1

// Line 06–07: maintenance of the upper hole
07 t[j] = t[H[M [i], i]]− 1
08 for j = H[M [i]− 1, i] to H[M [i]− 1, i] + i

// Line 08–09: maintenance of the lower hole
09 t[j] = t[H[M [i− 1] + i, i]] + 1
10 M [i] = M [i]− 2 // Line 10: updating of M [i]
11 return t,M // Line 11: return of the results

If the input of Hole-Pairs is the hole map H(D) of the score set D =
{2, 4, 6, 7}, then the algorithm starts with the transitive score sequence t =
0, 1, . . . , 7, and processing the 1-holes at 3 and 5 gets the shortened sequence
t = 0, 1, 2, 43, 6, 7. The number of active holes in D is reduced to M [0] = 1.

The running time of Hole-Pairs is Θ(dm) in all cases.

3.3 Algorithm Hole-Max

If M [0](D) > 0, then we have at least one active hole and can simply eliminate
the largest one: if the largest hole is a c-hole, then we add the elements dm +
1, dm + 2, . . . , dm + c to t and reduction of these elements to dm allows us to
increase the elements of the c-hole to its upper bound, as the next algorithm
Hole-Max makes.

Input. M(D): the updated frequency vector of the active holes in D;
t = t0, t1, . . . , tdm : the reduced sequence produced by Hole-Pairs.

Global variables. D : score set;
m: the number of elements of D;
H: hole map of D.

Working variables. i, j, k: cycle variables.
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Output. u = u0, u1, . . . , udm+c: the reduced score sequence produced by
Hole-Max;
O(D): the updated frequency vector of the active holes in D;
c: the size of the largest active hole in t.

Hole-Max(M, t)

01 for i = 0 to dm // Line 01–02: initialization
02 O[i] = M [i]
03 c = dm // Line 03–14: elimination of the largest hole
04 while M [c] = 0 // Line 04–05: seeking of the largest hole
05 c = c− 1
06 for j = 0 to dm // Line 06–09: initialization u
07 uj = tj
08 for j = dm + 1 to dm + c
09 uj = j
10 for k = 1 to c // Line 10–12: maintenance of the lower hole
11 uH[1,c]+k = uH[1,c]+c

12 udm+k = udm
13 O[c] = O[c]− 1 Line 13–14: updating of number of active holes
14 O[0] = O[0]− 1
15 return u, c,O Line 15: return of the result

If D = {2, 4, 6, 7} and the input of algorithm Hole-Max is the sequence
t(D), then Hole-Max eliminates the remained hole and we get the score
sequence u = 23, 43, 6, 73 corresponding to D.

Running time of Hole-Max is Ω(dm) in all cases.

3.4 Algorithm Hole-Shift

After algorithm Hole-Pairs there is at most one i-hole for every i, that is
0 ≤ O[i] ≤ 1 for every 1 ≤ i ≤ dm. Algorithm Hole-Max eliminates the
largest hole by appending c scores dm + 1, . . . , dm + c to the input sequence
t and reducing these scores to dm.

Let the player having uj points be Tj (1 ≤ j ≤ dm + c). The following

algorithm Hole-Shift uses the power form w = w<e1>
1 , . . . , w

<eq>
q of the

input sequence u. An element wk of w is called point-sender if its exponent ek
is greater than 1. If wj and wk are upper bounds of active holes and j < k,
then Tk can send ek − 1 points—through the player Tj—to the players in the
lower active hole to increase their scores to wk.
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The hole list is a pair of vectors consisting of the begin vector b(D) =
b1, . . . , bO[0] and the length vector l(D) = l1, . . . , lO[0], where b contains the
beginning indices of the active holes in increasing order, while l contains the
length of the corresponding holes. E.g. if D = {2, 5, 9}, then b(d) = 0, 3, 6
and l(D) = 2, 2, 3.
Hole-Shift uses also the score sequence w = w<e1>

1 . . . w<en>
n which is

the power form of u. If 2 ≤ j ≤ q, ej > 1, and wj − wj−1 = 1, then ej − 1
players from the players having wj points can give one pointto any player
having smaller index. These ej − 1 points are called free points. The following
algorithm Hole-Shift extends this idea for the case wj − wj−1 > 1.

The next algorithm Hole-Shift finds the largest holes in the investigated
score sequence and tries to remove this hole by shifting of the points from the
point-sender scores to the scores in the given active hole.

Input. O(D): O[0] is the number of active holes in D, O[i] (1 ≤ i ≤ dm) is
the number of active i-holes in D;
V : the sum of the sizes of the active holes in D;
u = u0, u1, . . . , udm+c: the reduced sequence produced by Hole-Max.

Global variables. D : score set;
m: the number of elements of D;
H: hole map of D;
c: the length of largest hole removed by Hole-Shift.

Working variables. b(D) = b1, . . . , , bO[0]: the begin vector of the active holes
of D;
l(D) = l1, . . . , lO[0]: the length vector of the active holes of D;

w(D) = w<e1>
1 . . . w

<eq>
q : power form of u;

b(D) = b1, . . . , bO[0] q: the length of the power form of u;
g: size of the actual largest active hole;
a: the index of the investigated largest active hole;
h = O[0]: the number of active holes;
s: difference between two consecutive scores in w;
r: number of points required by the investigated active hole to shift scores in
an active hole to theirs upper bound;
i, j, k: cycle variables.

Output. v = v1, . . . , vdm+c: the reduced score sequence produced by Hole-
Shift;
P (D): the updated frequency vector of D.

Hole-Shift(O, u)

01 for i = 0 to dm // Line 01–02: initialization
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02 P [i] = O[i]
03 for i = 1 to dm + c
04 v[i] = u[i]
06 w1 = u1 // Line 06–14: computation of the power form of u
07 e1 = 1
08 q = 1
09 for k = 2 to dm + c
10 if uk = uk−1
11 eq = eq + 1
12 else q = q + 1
13 wq = uk
14 eq = 1
15 if d1 > 0 and u1 == 0 // Line 15–24: computation of b, l, and h
16 b1 = 0
17 l1 = d1
18 h = 1
19 else h = 0
20 for i = 1 to m + c− 1
21 if di+1 − di ≥ 2
22 h = h + 1
23 bh = di + 1
24 lh = di+1 − di − 1
25 while P [0] > 0 // Line 25: while is active hole
26 g = dm // Line 26–31: finding of the largest active hole
27 a = 1
28 for i = 1 to h
29 if li > la
30 a = i
31 g = la
32 r = g(g + 1)/2 // Line 32: number of the required points
33 while r > 0
34 j = 1 // Line 34–36: finding the starting score;
35 while wj < ba + la and ej = 1 and wj − wj−1 > r and j ≤ q
36 j = j + 1
37 if j > q // Line 37–38: defeat
38 return // ’Hole-Shift is not sufficient ’
39 y = br/(wj − wj−1)c
40 r = r −min(ej − 1, y)(wj − wj−1)
41 ej = ej −min(ej − 1, y)
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42 for i = 1 to la
43 wj−1 + 1 = wj−1 + la
44 q = q − la
45 return P,w, v

The running time of Hole-Shift is O(mdm), since it is determined by the
cycles in Lines 33–41, and there are at most m holes and for every hole at
most dm players can give a point.

3.5 Algorithm Fill-All

If dm < 10, then our previous algorithms can reconstruct all possible score set,
but if dm = 10, then there are two critical sets, and if dm = 11, then there are
three ones. If dm = 10, then the score sets {1, 3, 4, 5, 8, 10} and {1, 2, 3, 5, 8, 10},
while if dm = 11, then the score sets {2, 3, 4, 5, 6, 7, 8, 9, 11}, {1, 2, 3, 5, 7, 11},
and {1, 2, 3, 4, 5, 6, 7, 8, 11} are unsolvable for them.

The following Fill-All reconstructs these score sets. The basic idea of
Fill-All is that at first we add new elements to the starting sequences, suf-
ficient to cover the point requirements of all holes. If we are lucky then the
number the additional points is equal to the total point requirement. Other-
wise we gradually increase the number of additional scores and try to hide the
additional points.

Input. Q(D): Q[0] is the number of active holes in D, Q[i] (1 ≤ i ≤ dm) is
the number of active i-holes in D.

Global variables. D : score set;
m: the number of elements of D.

Working variables. T : the total point requirement of the holes;
a: the number of added new scores;
p = a(a− 1)2: the number of additional points;
q: the number of free additional points;
w(D) = w<e1>

1 . . . w
<eq>
q : power form of u;

e = e1, . . . , eq: ei (1 ≤ i ≤ q) is the exponent od wi;
i, j: cycle variables.

Output. e = e1, . . . , em: the exponents of the score sequence corresponding
to D.

Fill-All(m.D)

01 T = 0 // Line 01–06: computation of the point requirement of the holes
02 if d1 > 0
03 T = d1
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04 for i = 2 to m
05 if di − di−1 > 1
06 T = T + (di − di−1)(di − di−1 − 1)/2
07 e1 = 1 // Line 07–15: computation of the exponents
08 if d1 > 0
09 e1 = d1
10 for j = 2 to m− 1
11 ej = 1
12 if dj − dj−1 > 1
13 ej = dj − dj−1
14 a = min(k | k(k − 1)/2 ≥ T ) // Line 14: first number of additional scores
15 for k = a to dm // Line 15–23: testing of the potential score sequences
16 p = k(k − 1)/2 // Line 16: number of additional points
17 q = p− T // Line 17: number of free additional points
18 for i = 1 to m− 1
19 if ei+1 − ei > 1 and di+1 − di ≤ q
20 f = min(bq/(di − di−1c, ei−1)
21 ei−1 = ei−1 − f
22 ei = ei + f
23 q = q − f(di − di−1)
24 if q == 0
25 return e
26 print ’algorithms are not sufficient’ // Line 26–27: algorithms
27 stop // could not reconstruct D

The running time of Fill-All is O(d2m) in all cases.

4 Algorithm Prefix-Deletion

The earlier algorithms can not reconstruct the score sets {1, 7, 10} and {1, 7, 11}.
Part of the earlier described algorithm Shortening [5, 6] is the deletion

of the leading zero element from a score set, and decreasing of the remaining
elements by 1.

Now we generalize this idea. If the score set D = {d1, . . . , dm} begins with 1,
then according to the theorem of Landau a corresponding score sequence can
contain one, two or three 1’s. If it contains exactly three 1’s, then each of the
corresponding players gathered one point in their minitournament, therefore
provisionally deleting them we get the smaller score set D′ = {d2 − 3, d3 −
3, . . . , dm − 3}. In the concrete case, when D = {1, 4, 7} Balancing results
the solution s(D′) = 46, 76, resulting s(D) = 13, 76, 106.
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In general case we have to investigate also the cases when the corresponding
sequence contains one or two 1’s.

It is a natural idea to extend the investigation to the general case 1 ≤ d1 ≤ k,
when according to Landau’s theorem the corresponding sequences can start
with 1 ≤ p ≤ 2d1 + 1 d1’s.

Since in the case dm < 12 it is sufficient to consider the case k = 1 and
p = 3, we present only pseudoprogram for this special case.

In the program we call the procedure Sequence-Base which handles the
results of the previous reconstruction algorithms for all score sets with dm <
12. If we wish to reconstruct a score set, whose largest element is dm, then the
corresponding data base has to contain 2dm−1 score sequence, but the search
in it requires only O(m) time.

Its input is the reduced variant of D (D′ = {d2 − 3, d3 − 3, . . . , dm − 3}),
and the output is the score sequence corresponding to D′ (w = w1, . . . , wy),
further its length (y).

Input. Q(D): the updated hole frequency vector;
v = v0, v1, . . . , vdm+c: the reduced sequence produced by Hole-Max.

Global variables. D : score set;
m: the number of elements of D;
H: hole map of D-

Working variables. D′ = {d′1, . . . , d′m−1} = {d2, . . . , dm}: the shortened
score set;
w(D) = w<e1>

1 . . . w
<eq>
q : power form of u;

i, j: cycle variables.
Output. x = x1, . . . , xy+3: the score sequence corresponding to D.

Prefix-Deletion(Q, v)

01 for i = 1 to dm // Line 01–05: initialization
02 R[i] = Q[i]
03 w[i] = v[i]
04 for i = dm + 1 to dm + c
05 w[i] = v[i]
06 if m < 4 or d1 6= 1 or d2 < 3 // Line 06–07: defeat
07 ’Prefix-Deletion is not sufficient’
08 for i = 1 to m− 1
09 d′i = di+1

10 Sequence-Base(D′) // Line 10: call of Sequence-Base
11 x1 = x2 = x3 = 1 // Line 11: reconstructed sequence begins with three 1’s
12 for j = 4 to y + 3 // Line 12–13: computation of the further elements of x
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13 xj = wj−3
14 return x // Line 14: return of the results

Running time of Prefix-Deletion is Ω(dm) in all cases.

5 The main program

The previous pseudocodes are procedures. These procedures are called by the
following main program Main.
Main(m,D)

01 Hole-Map(m,D) // Line 01: construction of the hole map
02 if N [0] = 0 // Line 02–04: printing the solution
03 print ’no hole in the score set’
04 stop
05 Hole-Pairs(N) // Line 05: construction of the hole pairs
06 if M [0] = 0 // Line 06–08: printing the solution
07 print t
08 stop
09 Hole-Max(M, t) // Line 09: filling of the longest hole
10 if O[0] = 0 // Line 10–12: printing the solution
11 print u
12 stop
13 Hole-Shift(P, u) // Line 13: shifting of the holes
14 if P [0] = 0 // Line 14–16: printing the solution
15 print v
16 stop
17 Prefix-Deletion(Q, v) // Line 17: shifting of the holes
18 if Q[0] = 0 // Line 18–20: printing the solution
19 print w
20 stop
21 Fill-All(N,w) // Line 21: filling of the holes
22 if q = 0 // Line 22–24: printing the solution
23 print e
24 stop
25 Prefix-Deletion(Q, v) // Line 25: deletion a prefix
26 if Q[0] = 0 // Line 26–28: printing the solution
27 print w
28 stop
29 print ’the algorithms are not sufficient’ // Line 29–30: defeat
30 stop
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In worst case the running time of Main is O(d2m).

6 Simulation results

Algorithm Balancing reconstructs all score sets with dm < 6, but can not
reconstruct the score sets {1, 3, 6} and {1, 2, 3, 5, 6} [6]. For these critical score
sets algorithm Shortening gives the solutions 13, 3, 65 and 12, 2, 32, 5, 6. These
algorithms can not reconstruct the score sets 1, 2, 3, 5, 7 and 1, 2, 3, 4, 6, 7. In
the first case algorithm Shiftening results a corresponding score sequence
12, 2, 32, 5, 73, while in the second case it gives 1, 2, 3, 42, 64, 7 [5].

n D s Algorithms Diophantine

1 {2, 4, 5, 6, 7, 8, 9, 10} 3, 2, 1, 1, 1, 1, 2, 2 M + S 4, 1, 1, 1, 1, 1, 2, 1
2 {2, 3, 5, 7, 9, 10} 3, 1, 2, 3, 2, 2 P + M + S 3, 2, 2, 2, 1, 1
3 {1, 7, 10} 3, 6, 6 X same
4 {1, 4, 5, 7, 9, 10} 2, 3, 1, 3, 2, 2 P + M + S 3, 1, 3, 2, 1, 1
5 {1, 3, 6, 8, 9, 10} 2, 2, 4, 1, 2, 2 P + M + S 1, 5, 2, 1, 1, 1
6 {1, 3, 6, 7, 8, 10} 2, 2, 3, 2, 1, 3 P + M + S 3, 1, 4, 1, 1, 1
7 {1, 3, 4, 7, 9, 10} 2, 2, 1, 4, 2, 2 P + M + S 3, 1, 4, 1, 1, 1
8 {1, 3, 4, 5, 8, 10} 2, 2, 1, 1, 3, 5 F 2, 2, 2, 1, 3, 1
9 {1, 2, 5, 7, 9, 10} 2, 1, 3, 3, 2, 2 P + M + S 2, 1, 5, 1, 1, 1
10 {1, 2, 5, 6, 7, 8, 10} 2, 1, 3, 1, 1, 2, 3 P + M 2, 2, 2, 1, 1, 2, 1
11 {1, 2, 4, 8, 9, 10} 2, 2, 1, 4, 1, 4 P + M 1, 3, 2, 4, 1, 1
12 {1, 2, 4, 6, 9, 10} 2, 1, 2, 2, 3, 4 P + M 2, 1, 2, 4, 1, 1
13 {1, 2, 3, 7, 8, 10} 2, 1, 1, 4, 2, 4 P + M 1, 1, 4, 2, 2, 1
14 {1, 2, 3, 5, 8, 10} 2, 1, 1, 2, 3, 5 F 1, 2, 2, 2, 3, 1
15 {1, 2, 3, 5, 8, 9, 10} 2, 1, 2, 1, 3, 1, 3 P + M 1, 2, 1, 4, 1, 1, 1
16 {1, 2, 3, 5, 7, 10} 2, 1, 1, 3, 1, 6 A 2, 1, 1, 2, 4, 1
17 {1, 2, 3, 5, 6, 9, 10} 2, 1, 2, 1, 1, 3, 3 P + M 2, 1, 1, 1, 4, 1, 1
18 {1, 2, 3, 4, 6, 7, 10} 2, 1, 1, 2, 1, 1, 5 P + M 2, 1, 1, 1, 1, 4, 1

Table 2: Reconstruction results of the critical score sets ending with dm = 10

Balancing, Shortening, and Shiftening reconstruct the majority of
score sets with dm < 9. Exceptions are the sets {1, 2, 3, 5, 7, 8} and {1, 2, 3, 4, 6,
7, 8}. In the first case Hole-Max gives a corresponding score sequence 12,
2, 32, 52, 7, 82, while in the second case algorithm Hole-Pairs presents the
solution 12, 2, 32, 4, 6, 7, 8.

If dm = 9, then for the first three algorithms the critical sets are {2, 4, 5, 6, 7, 8,
9}, {1, 2, 5, 6, 7, 8 9} and {1, 2, 4, 7, 8, 9}. Hole-Max solves these problems:
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corresponding sequences are in the first case 23, 42, 5, 6, 7, 8, 92, in the second
case 12, 2, 52, 6, 7, 8, 92, and in the third case 12, 22, 4, 73, 8, 93.

n D s Algorithms Diophantine

1 {3, 5, 6, 7, 8, 9, 10, 11} 4, 2, 1, 1, 1, 1, 2, 3 M + S 5, 1, 1, 2, 1, 1, 1, 1
2 {3, 4, 5, 6, 8, 9, 10, 11} 4, 1, 1, 1, 2, 1, 2, 3 M + S 5, 1, 1, 1, 1, 1, 2, 1
3 {3, 4, 5, 6, 7, 10, 11} 4, 1, 1, 1, 1, 6, 1 M + S 4, 2, 1, 1, 2, 1, 1
4 {2, 4, 5, 6, 7, 8, 9, 10, 11} 3, 2, 1, 1, 1, 1, 1, 2, 2 M + S 4, 1, 1, 1, 1, 1, 1, 2, 1
5 {2, 3, 5, 9, 10, 11} 3, 1, 2, 5, 3, 1 M + S 1, 3, 5, 1, 1, 1
6 {2, 3, 5, 7, 9, 10, 11} 3, 1, 2, 2, 2, 1, 4 P + M + S 3, 2, 2, 2, 1, 1, 1
7 {2, 3, 4, 8, 9, 11} 3, 1, 1, 4, 1, 6 M + S 3, 1, 3, 2, 2, 1
8 {2, 3, 4, 5, 6, 8, 9, 10, 11} 3, 1, 1, 1, 1, 2, 1, 2, 2 M + S 3, 1, 2, 1, 1, 1, 1, 1, 1
9 {2, 3, 4, 5, 6, 7, 8, 10, 11} 3, 1, 1, 1, 1, 1, 1, 3, 2 M + S 3, 1, 1, 1, 2, 1, 1, 1, 1
10 {2, 3, 4, 5, 6, 7, 8, 9, 11} 3, 1, 1, 1, 1, 1, 1, 2, 3 F 3, 1, 1, 1, 1, 2, 1, 1, 1
11 {1, 7, 11} 3, 2, 14 X 3, 1, 3, 2, 1, 1, 1
12 {1, 4, 5, 7, 9, 10, 11} 2, 3, 1, 3, 1, 2, 2 P + M + S 3, 1, 3, 2, 1, 1, 1
13 {1, 3, 5, 6, 7, 10, 11} 2, 2, 2, 1, 1, 3, 4 P + M + S 3, 1, 3, 2, 1, 1, 1
14 {1, 3, 4, 5, 8, 10, 11} 2, 2, 1, 1, 4, 2, 2 P + M + S 2, 2, 2, 1, 3, 1, 1
15 {1, 2, 6, 8, 9, 11} 2, 1, 4, 3, 1, 4 P + M + S 2, 2, 4, 2, 1, 1
16 {1, 2, 5, 9, 10, 11} 2, 1, 3, 4, 1, 5 P + M + S 2, 2, 3, 4, 1, 1
17 {1, 2, 4, 8, 10, 11} 2, 1, 2, 5, 2, 3 P + M + S 1, 2, 4, 3, 1, 1
18 {1, 2, 4, 8, 9, 11} 2, 1, 2, 5, 1, 4 P + M + S 1, 2, 4, 2, 2, 1
19 {1, 2, 4, 7, 9, 10, 11} 2, 1, 2, 4, 1, 2, 2 P + M + S 1, 3, 2, 3, 1, 1, 1
20 {1, 2, 4, 6, 9, 10, 11} 2, 1, 3, 1, 3, 2, 2 P + M + S 2, 1, 2, 4, 1, 1, 1
21 {1, 2, 4, 5, 7, 10, 11} 2, 1, 2, 1, 2, 3, 4 P + M + S 2, 1, 2, 1, 4, 1, 1
22 {1, 2, 3, 7, 8, 9, 10, 11} 2, 1, 1, 4, 1, 1, 2, 3 M + S 2, 1, 2, 3, 1, 2, 1, 1
23 {1, 2, 3, 6, 10, 11} 2, 1, 1, 3, 7, 1 M + S 1, 1, 2, 6, 1, 1
24 {1, 2, 3, 5, 8, 10, 11} 2, 1, 1, 2, 4, 2, 2 P + M + S 1, 2, 1, 4, 1, 1, 1, 1
25 {1, 2, 3, 5, 7, 11} 2, 1, 1, 2, 2, 7 F 1, 2, 1, 1, 6, 1
26 {1, 2, 3, 5, 7, 10, 11} 2, 1, 1, 2, 2, 3, 4 P + M + S 2, 1, 1, 2, 2, 3, 4
27 {1, 2, 3, 5, 7, 8, 11} 2, 1, 1, 2, 2, 1, 6 P + M + S 2, 1, 1, 2, 2, 3, 1
28 {1, 2, 3, 5, 6, 9, 11} 2, 1, 1, 2, 1, 3, 5 P + M + S 2, 1, 1, 3, 1, 3, 1
29 {1, 2, 3, 5, 6, 8, 11} 2, 1, 1, 2, 1, 2, 6 P + M + S 2, 1, 1, 2, 1, 4, 1
30 {1, 2, 3, 4, 9, 10, 11} 2, 1, 1, 1, 5, 2, 4 M + S 1, 1, 2, 3, 4, 1, 1
31 {1, 2, 3, 4, 5, 9, 10, 11} 2, 1, 1, 1, 1, 4, 2, 3 P + M 2, 1, 1, 1, 2, 4, 1, 1
32 {1, 2, 3, 4, 5, 6, 7, 8, 11} 2, 1, 1, 1, 1, 1, 1, 3, 4 F 1, 1, 2, 1, 1, 1, 1, 3, 1

Table 3: Reconstruction results of the critical score sets ending with dm = 11

If dm = 10, then there are 18 sequences which are not reconstructable if we
use only the algorithms Balancing, Shortening, and Shiftening. Table 2
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contains a possible reconstruction of these sequences. The used algorithms are
P = Hole-Pairs, M = Hole-Max, S = Hole-Shift, X = Prefix-Shift,
and F = Fit-All. The table contains also a shortest solution found by the
brute force algorithm Diophantine described in [6]. Diophantine uses the
algorithm described by Knuth [9, page 392].

If dm = 11, then there are 72 sequences which are not reconstructable if
we use only the algorithms Balancing, Shortening, and Shiftening. The
majority of these sets can be reconstructed adding only P = Hole-Pairs
and M = Hole-Max to the three basic algorithms. Table 3 is similar to
the previous Table 2, but it contains only those examples (32 sets), whose
reconstruction requires at least one of the algorithm Hole-Shift, Prefix-
Shift, and Fit-All.

It is interesting to analyze the length of the critical sets. According to The-
orem 7 for the length n of the score sequences corresponding to a score set
D = {d1, d2, . . . , dm} hold the bounds max(dm + 1, 2d1 + 2) ≤ n ≤ 2dm, and
these bounds are sharp.

According to the lower bound in the case dm = 10 we get n ≥ 11. The data
represented in Table 2 show, that Dophantine in 17 cases reaches this mini-
mal length (the exception is D = {2, 3, 5, 7, 9, 10}) the approximate algorithms
generate longer solutions in all cases.

If dm = 11, then in the case of the critical sets the lower bound is n ≥ 12.
In the majority of cases Diophantine founds solutions of length 12, while
the approximate algorithms never find a solution of length 12. The exact algo-
rithm Diophantine in 29 cases found shorter sequence than the polynomial
algorithms.

7 Summary

Checking all relevant score sets by polynomial time approximate algorithms
we proved Theorem 3 for score sets whose maximal element is less than 12.
Our proof is constructive, since we generated score sequences corresponding
to the investigated score sets.
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of Informatics, Vol. 3, mondAt, Vác, 2013, 1209–1258. ⇒211

[9] D. E. Knuth, The Art of Computer Programming, Volume 4A. Addison Wesley,
Upper Saddle River, NJ, 2011. ⇒228

[10] H. H. Landau, On dominance relations and the structure of animal societies.
III., Bull. Math. Biophysics, 15 (1953) 143–148. ⇒211, 212

[11] Q. Li, Some results and problems in graph theory, New York Academy of Science,
576 (1989) 336–343. ⇒214
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