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Abstract. A binary matrix A of size m x n is called r-good if it con-
tains in each column at most r 1’s; the matrix is called r-schedulable if,
by deleting some zeros, the matrix becomes r-good; A is called r-safe if
the first k (1 < k < n) columns of the matrix contain at most kr 1’s.

Let Z = [zij]mxn be a matrix of independent random variables, hav-
ing the common distribution P(zy; = 1) = p and P(zy; = 0) = 1 —p,
where 0 < p < 1. For m > 1, lower and upper bounds are presented for
the asymptotic probability of the event that a concrete realization of Z
is 1-schedulable: the lower bound is connected with good, and the upper
bound with safe matrices. Further exact formula is given for the critical
probabilities scrit(m) defined as the supremum of probabilities, guaran-
teeing that the matrix Z is 1-safe with positive probability for arbitrary
value of n and m.

1 Introduction

Percolation is a very popular research area of combinatorics [2, 3, 5, 6, 9, 10,
11, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 52] and physics [15, 28, 36, 37, 38, 39,
42, 46].

In this paper we use and extend a mathematical model proposed by Peter
Winkler [53] and studied later among others in [13, 14, 19, 20, 33, 35, 46].
This model is also useful for the investigation of some scheduling problems of
parallel processes [40, 51] using resources requiring mutual exclusion [1, 7, 16,
21, 34, 45, 50].
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According to the Winkler model, two processes share one unit of a resource.
We extend this model for m > 2 processes and v > 0 units of the resource
requiring mutual exclusion. The rise of the number of processes results a
model describing the percolation in three or more dimensions.

Estimations of the probability of schedulability of processes are derived using
different methods, first of all by investigating of asymmetric random walks
across the x axis.

2 Formulation of the problem

Let m and n be positive integers, let 1 (0 < r < m) and p (0 <p < 1) be real
numbers and let

Z11 Z12 ... Zin
z Z v z

7 — 21 22 2n
Zml Zm2 .-+ Zmn

be a matrix of independent random variables with the common distribution

Plzy = k) = P, ifk=Tand1<i<m, 1<j<n,
VYTl g=1-p, ifk=0andl<i<m, 1<j<n.
Let
a a2 ... Qin
A — a;y az ... Qazn
am] anlz [ am-n_

be a concrete realization of Z.

The good, safe and schedulable matrices are defined as follows.

Matrix A is called r-good if the number of the 1’s is at most r in each column.
The number of different r-good matrices of size m x n is denoted by G(m,n),
and the probability that Z is good is denoted by g.(m,n,p).

Matrix A is called r-safe if

m

k
> ) ay<kr (k=1,2,...,n).

i=1 j=1

The number of different r-safe matrices of size m x 1 is denoted by S.(m,n)
and the probability that Z is safe, is denoted by s;(m,n,p).
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If ai; = 0, then it can be deleted from A. Deletion of ai; means that we de-
crease the second indices of aij41,...,aim and add aijym =0 to the ith row of
A.

Matrix A is called Winkler r-schedulable (shortly r-schedulable or r-
compatible) if it can be transformed into an r-good matrix B using dele-
tions. The number of different r-schedulable matrices of size m x n is de-
noted by Wy(m,n), and the probability that Z is r-schedulable is denoted by
wy(m,n,p). The function w,(m,n,p) is called r-schedulability function.
The functions g(m,n,r), wy(m,n,r) and s;(m,n,r) are called the density of
the corresponding matrices. The asymptotic density of the good, safe and
schedulable matrices are defined as:

gr(m,p) = lim g.(m,n,p),
n—oo

se(m,p) = lim sy(m,n,p),

WT‘(m, p) = nL)H;O WT‘(m) na p)

The critical probabilities defined as
Wcrit,r(m) = Sup{p | Wr(m»p) > O},

Gerit,r(M) = sup{p | gr(m,p) > 0},

and
Scrit,r(m) = Sup{p | Sr(m>p) > O}

represent special interest for some applications.

The aim of this paper is to characterise the density, asymptotic density and
critical probability of good, schedulable and safe matrices.

The starting point of our research is due to Péter Gacs [20], proving that

wi(2,p) is positive for p small enough. His proof implies that wep1(2) >
]07400‘

2.1 Interpretation of the problem

Although the Winkler model was proposed to study the percolation, we de-
scribe a possible interpretation as a model of parallel processes. Let m pro-
cesses use T units of some resource R. The requirements of the process P; are
modelled by the sequence aii, ai2,...,aim. aij = 1 means that the process Py
needs a unit of the given resource in the j*" time unit. aij = 0 means that the
process P; executes some background work in the j*"* time unit which can be
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delayed and executed after the last usage of R.

The special case m = 1 and r = 1 is the well-known ticket problem [52] or
ballot problem [17], while the special case m = 2 and r = 1 is the Winkler
model of percolation [20, 53].

The good matrices are schedulable without deletion of zeros. But some not
good matrices are schedulable, since they can be transformed into good matri-
ces using the permitted deletion operation. Safeness is a necessary condition
of schedulability. Therefore, the number of good matrices gives a lower bound
and the number of safe matrices results an upper bound for the number of
schedulable matrices.

Since we handle the model as a model of informatics, in the sequel we follow
the terminology used by Feller [17] in queueing theory.

3 Analysis

In this section first of all we investigate — using different methods — the function
of the asymptotic density of 1’s as the function of the probability p of the
appearance of 1’s and of the number of sequences m.

Some basic properties of the investigated functions (g(m,n,p), wy(m,n,p)
and sy(m,n,p)) are the following:

encN' reRandre[0,m],p e Randpc0,1];

e as the functions of n they are monotonically decreasing;
e as the functions of p they are monotonically decreasing;
e as the functions of m they are monotonically decreasing;

e as the functions of r they are monotonically increasing;

In the following we suppose that r = 1, that is in the column of the good
matrices at most one 1, and in the first k columns of the safe matrices at most
k 1’s are permitted. Since r everywhere equals 1, it is omitted as an index.

3.1 Preliminary results

In the further sections we need the following assertions.

Let C,, (n € NT) denote the number of binary sequences aj, as,...,dmn,
containing n ones and N zeros in such a manner that each prefix ai, ap, ..., ax
(1 <k < 2n) contains at most so many ones as zeros.
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Lemma 1 Ifn >0, then

1 n
Ch=—— .
T+ < n )
It is worth remark that C,, is the n'™ Catalan number, whose explicit form
appears in numerous books and papers [8, 30, 31, 32, 48, 52].

Lemma 2 [f0 <x <1, then

X
f(x):XZ]<2k>(x(1—x))k= T—x if0<x< 3,
o kT IAK 17 ifl<x<.

Proof. See [47]. [

If m > 2, then the columns containing only 0’s are called white (W), the
columns containing only 1’s are called black (B) and the remaining columns
are called gray (G).

If m > 2, then each column of the matrix A is white or gray with probability
q™+mpq™ ", therefore g(m,n,p) = (¢™+mpg™ ") If p > 0, then

. 1 n
g(m,p) = lim (q‘“+pq’“* m) =0,
n—oo

so the density of the good matrices tends to zero, when the number of the
columns tends to infinity.

If in the case m = 2 we delete the white columns from a good matrix, then
only gray columns remain in the matrix, that is, each row of the matrix is the
complementer of the other row.

The following simple assertion plays an important role in the following.

Lemma 3 If m > 2, then the good matrices are schedulable, and the schedu-
lable matrices are safe.

Proof. If in every column of matrix A is at most one 1, then the first k
columns contain at most k 1’s.

If there is a k (1 < k < n), that the first k columns of matrix A contains more
1’s than k, then — according to the pigeonhole principle — there is at least one
column containing two 1’s. If we delete a zero from A, then the number of the
1’s in the first k columns does not decrease, therefore A is not schedulable. B

A useful consequence of this assertion is the following corollary.
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Corollary 1 If m > 2, then
g(m,n,p) <w(m,n,p) <s(mmn,p),
glm,p) <w(m,p) < s(m,p),

gcrit(m) S Wcrit(m) S Scrit(m)-

3.2 Matrices with two rows

For the simplicity of the notations we analyse the function w(2,n,p) =1 —
s(2,n,p) instead of s(2,n,p). At first we derive a closed formula for u(2,n, 0.5).

Lemma 4 Ifn > 1, then

no LG22
u2,n,05) =) 21—‘—21cj<
j=0

i—=T\ i

. 2 )4 . (1)
i=1

Proof. Let’s classify the possible matrices of size 2 x n according to their first
such column, in which the cumulated number of 1’s became greater than the
number of 0’s. This column is called the deciding column of the matrix.
The index of the deciding column is 1,2,...,n— 1 or n. The matrices of the
received classes can be further classified according to the number of black
columns before the deciding column: the possible values of this number are
0, 1,..., [In—=1)/2].

The outer summing takes into account the deciding columns, while the inner
summing does the black columns before the deciding column. The binomial
coefficient mirrors the number of possibilities for the placement of the 2j black
and white columns in the i — 1 columns preceding the deciding column. The
j*h Catalan number C; gives the number of corresponding sequence of the
black and white columns. The power of base 2 gives the number of possible
arrangements of the gray columns. Finally the power of base 4 takes into
account the fact, that the columns after the deciding one can be filled in
arbitrary manner — the matrix will be unsafe in any case. |
It seems that it would be hard to handle the formula (1) for w(2,n,0.5).
Therefore, we present a combinatorial method and three further ones based
on random walks to get the explicit form of s(2,p).

Lemma 5 If0 <p <1, then

p2

1-s(2,p) =u(2,p) ={ ¢2’ ifO<p <
1, if 3 <p<i

Nl—
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Proof. Some part of the unsafe matrices is unsafe due to the first black
column. The general form of such matrices is G*BAP, where a+b+1=mn,
further G means a gray, B means a black and A means an arbitrary column.
The asymptotic fraction of such columns is

2

Zco 2pq)*© ]_pzpqco.

The general form of the following group of the unsafe matrices is G*BGPW
G°BAY, where a+b+c+d+3 = n. The fraction of such matrices asymptotically
equals to

e 2 2 2

2pq)® 292y (2 L p a
;}(Pq)pbz_o(pq ;}pq =T 25qS' T 2pa 1= 2ng

Generally, if the (i 4+ 1)*™ black column is deciding, then the asymptotic con-
tribution of such matrices to the probability of the unsafe matrices equals

t
¢ 2 2 2 2
P> (P q

1—2pq "\1—-2pq1—2pq/ "’
0 2 2 2 i

p p q
2,p) = - .
HaP) é]zpqc‘(lzpmzpq)

Lemma 2, gives the required formula with the substitutions p?/(p?+ q%) = x
and q?/(p?+q%) =1—x. [
We get a useful method for the investigation of our matrices assigning to each
matrix a random walk [17, 43] on the real axis containing a sink at the point
—T.

Another proof of Lemma 5 is as follows. In the following proofs of Lemma 5
we consider only the case 0 < p < 1/2 since if 1/2 < p < 1, then the following
famous result of Gyorgy Polya [41, 43] implies our assertion.

and so

Lemma 6 The probability that the moving point performing a random walk
over the real axis returns infinitely often to its initial position is equal to one.

Second proof of Lemma 5. Let’s assign a random walk to matrix A so that
a black column implies a step to left, a white column implies a step to right
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and a gray column results that the moving point preserves its position.
Let bi(A) denote the number of 1’s in the first k columns of matrix A. Then

k

b= (arsz).

i=1

Ifbi<kfori=1,2,...,k, then after k time units the moving point is in the
point (k — by, 0) of the real axis, otherwise the point is absorbed by the sink
at —1.

We wish to determine the probability of the absorption of the moving point.
The probability of a step to left is p?, the probability of a step to right is
g? and 2pq is the probability of the event that the point does not change its
position.

Using the notation u(2,p) = x we have

x = p? + 2pgx + q°x°.
The roots of this equation are

1-2pq++/(1-2pq)?—4p%q? _p’>+a°+/(p?—q?)?

X12 =

zqz zqz ’
from where we get
p2
x1:?andx2:1. (2)
This formula and s(2,p) =1 —u(2,p) result the required formula. |

Since first of all we are interested in the probability of the absorption, we can
assign a random walk to matrix Z neglecting the gray columns, as the gray
columns have no influence on the limit probability of the absorption (they only
make the convergence slower).
Another proof of Lemma 5 is the following.
Third proof of Lemma 5. Dividing the probability of the gray columns
among the black and white columns in the corresponding ratio we get for the
probability a of the step to left and for the probability of the step to right
that 5

a = ﬁ és b= ﬁ
Using these probabilities, we get the equation

2

(3)

x = a+ bx>.
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Substituting a and b into the roots of this equation, according to (3), we also
get here the roots corresponding to (2). [
Finally we present such a method, which later can be extended to arbitrary
m > 2 sequences.

Fourth proof of Lemma 5. Let xi (k = —1,0,1,2,...) denote the proba-
bility of the event that the point starting at point k will be absorbed by the
sink at x = —1. Let’s assign again a step to left to the columns containing
two 1’s, a step to right to the columns containing two 0’s and preserve of the
position to the mixed columns.

Then we can write the following system of equations.

Xo = 4*x1 + 2qpxo + P
x1 = q’*x2 + 2qpx1 + pxo,
Xy = q2X3 + 2qpx2 + p2X1, (4)
X3 = d*x4 + 2qpxz + Ppxa,

Let -
G(z) = Z xizt
i=1

be the generator function of sequence xg,x1, X2, . ... Multiplying the equation
beginning with x; I = 1,2, ... of the system of equations (4) by z' and summing
up the new equations, we get the equation:

G(z) =q

G(Z)Z—XO +2pqG(z) + p2(1 4 2G(2)).

From this equation G(z) can be expressed in the form

_ P(2)
G(z) = Q)
where
P(z) = a%xo— pz
and

Q(z) = p?2® + 2pqz + ¢° — z.

In the zero places z, with |zg| < 1 of the polynomial Q(z), according to Cauchy-
Hadamard theorem [44, page 69] it must hold P(z) = 0. Writing the equation
Q(z) =0 in the form

(pz+q)* =z
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Figure 1: The curve of the schedulability function s(2,p,1) in the interval
p € [0,0.5].

we directly get that z = 1 is a root of the polynomial Q(z). From the equation
P(1) = 0 we get the root

implying

2
5(2)17):1_%» n

Figure 1 shows the part belonging to the interval p € [0,0.5] of the curve of
the function s(2,p, 1) defined in the interval [0, 1].

According to the properties of the functions g(2,p) and s(2,p), the critical
probabilities satisfy the following inequalities:

0= gcrit(z) < Wcrit(z) < Scrit(z) = %
Let’s remind that Gécs proved wp(2) > 10740 [20].
Let T(m,n) denote the number of binary matrices of size m x n. Then
T(m,n) =2m"
Figure 2 contains the number and fraction of the good, schedulable and safe
matrices for the case m = 2, p = 0.5, and n = 1,2,...,15. In this case
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| n| cew Wy | wen [ SEE | sen | wmh | S
1 3| 0.750 3| 0.750 3| 0.750 1
2 91| 0.562 10 | 0.625 10 | 0.625 1
3 27 | 0.452 35 | 0.547 35 | 0.547 1
4 81 | 0.316 124 | 0.484 126 | 0.492 | 0.984
5 243 | 0.237 444 | 0.434 462 | 0.451 | 0.961
6 729 | 0.178 1592 | 0.389 1716 | 0.419 | 0.927
7 2187 | 0.133 5731 | 0.350 6435 | 0.393 | 0.890
8 6561 | 0.100 20671 | 0.315 24310 | 0.371 | 0.850
9 19683 | 0.075 74722 | 0.285 92378 | 0.352 | 0.808
10 59049 | 0.056 270521 | 0.258 352716 | 0.336 | 0.767
11 177147 | 0.042 980751 | 0.234 1352078 | 0.322 | 0.725
12 531441 | 0.032 3559538 | 0.212 5200300 | 0.310 | 0.684
13 | 1594323 | 0.022 | 12931155 | 0.193 | 20058300 | 0.299 | 0.646
14 | 4782969 | 0.018 | 47013033 | 0.175 | 77558760 | 0.289 | 0.606
15 | 14348907 | 0.013 | 171036244 | 0.159 | 300540195 | 0.280 | 0.568

Figure 2: Rounded data belonging to the parameters m =2 and p = 0.5.

the fractions equal to the probability of the corresponding matrices. Ac-
cording to Lemma 5 in this case G(m,n)/T(m,n), W(m,n)/T(m,n), and
S(m,n)/T(m,n) tend to zero when n tends to infinity.

Figure 3 contains the fractions of the good, schedulable and safe matrices for
thecase m=2,p=04,andn=1,2,...,16. In column s(2,n,0.4) of Table
3 the computed limit is 5/9 ~ 0.555.

Figure 4 contains the fractions of the good, schedulable and safe matrices for
thecase m =2, p=0.35 andn=1, 2, ..., 17. For the column s(2,n,0.35)
of Table 4 the computed limit is 120/169 ~ 0.710.

3.3 Matrices with three rows

If m = 3, then the possible ratios of the 1’s and 0’s are 3:0, 2:1, 1:2 or 0:3.
We assign such random walk to the investigated matrix, in which the walking
point jumps by two to left with the probability p> of the column containing
three 1’s; the point makes a step to left with the probability 3p?q; the position
is preserved with the probability q3 of the column containing only zeros.

Using the notation xy introduced in the fourth proof of Lemma 5, we get the
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’ n ‘ T(2,n) ‘ g(2,n,0.4) ‘ w(2,n,0.4) ‘ s(2,n,0.4) %
1 4 0.8400 0.8400 0.8400 1
2 16 0.7056 0.7632 0.7632 1
3 64 0.5927 0.7171 0.7171 1
4 256 0.4979 0.6795 0.6862 0.9902
5 1024 0.4182 0.6487 0.6639 0.9771
6 4096 0.3513 0.6206 0.6470 0.9592
7 16384 0.2951 0.5957 0.6339 0.9397
8 65536 0.2479 0.5731 0.6234 0.9193
9 262144 0.2082 0.5524 0.6149 0.8984
10 1048576 0.1749 0.5332 0.6078 0.8773
11 4194304 0.1469 0.5155 0.6019 0.8565
12 16777216 0.1234 0.4988 0.5967 0.8359
13 67108864 0.1037 0.4832 0.5924 0.8157
14 268435456 0.0871 0.4685 0.5886 0.7960
15 1073741824 0.0731 0.4545 0.5854 0.7764
16 4294967296 0.0644 0.4412 0.5825 0.7574
17 | 169779869184 0.0516 0.4286 0.5800 0.7390

Figure 3: Rounded data belonging to the parameters m = 2 and p = 0.4.

following equations:

X0
X1
X2
X3

Let

be the generator function of the sequence xg, x1, X2, . .

q
q
q
q

w W W W

X1
X2
X3
X4

3q%pxo
3g%pxy
3q%px2
3g%px3

+ 4+

3qp?

3qp?xo
3qp?x;
3qp*x2

+ 4+ +

G(z) = i xnz'
i=0

.. Then multiplying the

equations of the system (5) with the corresponding powers of z and summing
up the received equations, we get:

G(z)=q

sCE X0 4 3020G(2) + 3ap2(1 +26(2)) +° (1 +2 4 2%6(2))
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] n \ T(2,n) \ g(2,0.35) \ w(2,0.35) \ s(2,1,0.35) \ i \
1 4 0.8775 0.8775 0.8775 1
2 16 0.7700 0.8218 0.8218 1
3 64 0.6757 0.7901 0.7901 1
4 256 0.5929 0.7645 0.7699 | 0.9930
5 1024 0.5203 0.7441 0.7561 0.9841
6 4096 0.4565 0.7255 0.7462 | 0.9723
7 16384 0.4006 0.7094 0.7389 | 0.9601
8 65536 0.3515 0.6949 0.7334 | 0.9475
9 262144 0.3085 0.6817 0.7291 0.9350
10 1048576 0.2707 0.6696 0.7258 | 0.9226
11 4194304 0.2375 0.6585 0.7231 0.9107
12 16777216 0.2084 0.6481 0.7210 | 0.8989
13 67108864 0.1839 0.6383 0.7192 | 0.8875
14 | 268435456 0.1605 0.6291 0.7178 | 0.8764
15 | 1073741824 0.1401 0.6204 0.7166 | 0.8658
16 | 4294967296 0.1236 0.6122 0.7156 | 0.8555

Figure 4: Rounded data belonging to the parameters m = 2 and p = 0.35.

from where G(z) can be expressed as the fraction of two polynomials:

where

and

P(z) = a*x0 — 3qp°z — p*(2 + 2%)

Q(z) = p323 4 3p%qz® + 3pq?z+ q° — z.

The equation Q(z) = 0 can be transformed into the form

(a+7pz)’ =z
from where the root z; = 1 follows immediately. Expressing xo from the
equation P(1) =0, we get:
3p2  2p3
xo= P4 2P0 (6
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w(3,n,0.5)
n T(3,n) | g(3,n,0.5) | w(3,n,0.5) | s(3,n,0.5) SB.m.05)
1 8 0.5000 0.5000 0.5000 1.0000
2 64 0.2500 0.2969 0.2969 1.0000
3 512 0.1250 0.1914 0.1914 1.0000
4 4 096 0.0625 0.1282 0.1296 0.9892
) 32 768 0.0312 0.0880 0.0907 0.9702
6 262 144 0.0156 0.0612 0.0651 0.9401
7 2 097 152 0.0078 0.0429 0.0475 0.9032
8 | 16 777 216 0.0039 0.0303 0.0352 0.8594

Figure 5: Rounded data belonging to the parameters m = 3 and p = 0.5.

implying
(7)

The value of the function 1—x¢ = xo(p/q) is 1 at p/q = 0 and it is decreasing
if 0 < p/q < 1/2. With the multiplication by q = (1—p)> we get the equation

3p? 2p3
P S+ 1 o=,
(T=p)> (0-p)
which — by algebraic manipulations — results the value p = 1/3, that is

Scrit(s) = ]/3

Figure 5 contains the fraction of the good, schedulable and safe matrices for
the case m=3,p=05,andn=1,2,...,8.

In this table g(3,n,0.5), w(3,n,0.5), and s(3,n,0.5) all have to tend to zero
when n tends to infinity.

Figure 6 contains fraction of the good, schedulable and safe matrices for the
cassem=3,p=0.25andn=1,2,...,5.

In this table g(3,1,0.25) has to tend to zero, if n tends to infinity, but accord-
ing to formula (7) 16/23 ~ 0.593 is the computed limit for s(3,n,0.25) when
n tends to infinity.

We remark that the master thesis of Rudolf Szendrei [49] contains further
simulation results.
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w(3,n,0.25)
n | T3,m) | g(3,n,025) | w(3,n,0.25) | s(3,n,0.25) SB.m.025)
1 8 0.8437 0.8437 0.8437 1.0000
2 64 0.7119 0.7712 0.7712 1.0000
3 512 0.6007 0.7286 0.7286 1.0000
4 4 096 0.5068 0.6981 0.7004 0.9967
5 | 32768 0.4276 0.6748 0.6804 0.9917

Figure 6: Rounded data belonging to the parameters m = 3 and p = 0.25.

4 Main result

The analysis of the safe matrices of size m x n in the case of m > 4 is similar.
If a column of matrix A contains at least b > 3 1’s, then the walking point
jumps (b — 2) positions to left; if the column contains two 1’s then the point
makes a step to left; in the case of one 1 the point preserves its position and
if the column contains only 0’s, then the point makes a step to right. The
corresponding probabilities are (7)p®~2q™" 2 (F)p™2q?, (T)pg™ ' and
(?)qm,. So we get the following equations:

o = (g)a™  + (Ppa™xo +  (Ppra™

+  (Hpam™? + (r™
xi = (d™2  + (Ppa™ " + (Dp<a™ o

+  (PpPa™? + + (™, (8)
x2 = (a™axs + (Pea™'x2 + (H)p2a™ *x;

+ (Pp3a™3x0 + + (Mp™,

Let -
G(z) = Z Xnz™"
i=0

be the generator function of the sequence xg, %1, X2, .... Then multiplying the
equations in (8) with the corresponding powers of z and summing up them,
we get:

6(2) = (3 )am S0 (T pam 6tz + (7 )wam 201 + 260

+ (T;)p3qm_3(1+z+z2G(z))+~ ot (2)1}‘“ (1 tzdo 2™ g™ G(z)) ,
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from where one can express G(z) as the fraction of two polynomials:

where
m m m . ) i-2 )
szz<o>qu“_;; <i>p%wll2%£
f—y ]:

If the denominator has a root x with [x| < 1, then the value of the nominator
at x must be zero.
Reordering the equation Q(z) = 0 to the form

(g+pz)™ =1

we get the root zy = 1. Division of the equation P(1) = 0 by g™ results the

equation
m m i )
0 () () e
i=2

The value of the function xg = xo(p) is zero at p = 0, and the function is
increasing, if p is positive. From the equation xg =1 we get p = 1/m.
Taking into account the results received above for cases m = 2 and m = 3, we
received the following result.

Theorem 1 Ifm > 2 and 0 < p <m, then

Scrit(m) = TTlL (9)

and

S(m,p)_{ =Y%M (%) A=1), fo<p<g, (10)

- 0, fl<p<l.

Proof. a) The special case m = 2 is equivalent with Lemma 5.
b) The special case m = 3 is equivalent with formula (7).
c¢) For the case m > 4, see the proof before the theorem. |
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5 Summary

We determined the explicit form of the asymptotic density s(m,p) for every
number of the rows m > 2 and probability of 1’s p. Furthermore we gave
the exact values of the critical probabilities s.q(m) for m > 2. The value of
Serit(2) 18 0.5, which is characteristic to several other two dimensional critical
probabilities. The further critical probabilities are decresse when m grows.
According to the simulation experiments the critical probabilities are near to
the received upper bounds: Table 2 shows the data belonging to m = 2 and
p = 0.5, Table 3 the data belonging to m = 2 and p = 0.4, Table 4 the data
for m = 2 and p = 0.35, Table 5 the data belonging to m = 3 and p = 0.5,
and Table 6 presents the data belonging to m = 3 and p = 0.25.

On the base of the data of the figures we suppose that the bound p >
1074 in [20] can be improved, but the analysis of the behaviour of frac-
tion w(m, p)/s(m,p) requires further work.

We are able to give a bit better lower and upper bounds of the investigated
wy(m,n,p) probabilities, but the more precise characterisation of the critical
probabilities requires more useful matrices than the good and safe ones.
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