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 2 

Skeletonema potamos is a poorly known freshwater species in the ancestrally and 

predominantly marine genus Skeletonema. With phylogenetic analysis of two nuclear 

{partial SSU (18S) and partial LSU (28S) rDNA)} and two chloroplast (rbcL and psbC) 

genes, we verified its placement within the genus Skeletonema and identified the mostly 

brackish species, Skeletonema subsalsum, as its closest known relative. Comparisons of 

SSU and LSU rRNA genes from S. potamos populations from Europe and North 

America revealed no intraspecific variation. Skeletonema potamos can be a dominant 

element of the phytoplankton community in various ecosystems, including the River 

Danube. We tracked phytoplankton composition in the River Danube weekly from 1979 

to 2 012, and throughout this period, S. potamos exhibited a strong increase in 

proportion of total phytoplankton abundance and biomass – an increase that was 

correlated with increasing water temperature over the same time period. Current 

records indicate a temperate distribution of S. potamos, but ecological data predict 

possible expansion of its geographic range and increase in seasonal duration within 

existing habitats in response to the warming of surface waters. 

 

Key words: biogeography; ecology; phylogeny; global warming; Skeletonema potamos. 
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 3 

Introduction 

 

The classic taxonomy of diatoms is morphology-based using features of their characteristic 

silica cell wall called frustule (e.g. Ettl et al. 1986). Medlin et al. (1988) introduced molecular 

methods into diatom taxonomy. Based on molecular, morphological and cytological results, 

Medlin and Kaczmarska (2004) proposed major clades of diatoms including Mediophyceae 

for bipolar centrics and the Thalassiosirales. Phylogenetic relationships of this latter order 

were reconstructed by Alverson et al. (2007).  

Recently, morphological studies are supplemented by molecular investigations on 

various Skeletonema species (Alverson and Kolnick 2005; Kooistra et al. 2008; Sarno et al. 

2005, 2007). Medlin et al. (1988) determined the phylogenetic status of the marine diatom 

Skeletonema costatum among the eukaryotes based on 16S-like (=18S) rDNA. Molecular 

and/or morphological studies investigated S. costatum or S. costatum-like diatoms and 

revealed new species, such as S. pseudocostatum (Medlin et al. 1991), S. grevillei (Zingone et 

al. 2005), S. dohrnii, S. grethae, S. japonicum, S. marinoi (Sarno et al. 2005) and S. ardens 

(Sarno et al. 2007).  Skeletonema was found to be monophyletic and ancestrally a marine 

genus (Alverson et al. 2007). There are only two non-marine species in this genus: S. 

subsalsum occurring mainly in saline and brackish waters and occasionally in freshwater 

habitats (  Aké Castillo et al. 1995; Gibson et al. 1993; Hasle Evensen 1975; Hustedt 1957) 

and S. potamos that is recorded from freshwater and slightly brackish habitats (Kiss et al. 

2012). This latter species was not involved in molecular investigations previously. 

Microsiphonia potamos C.I. Weber was first collected in 1966 from the Little Miami 

River, Cincinatti, Ohio and described by Weber (1970). New material from the Little Miami 

River, 25 May 1973, was observed by Hasle and Evensen (1976) and as they found this 

species highly similar to species of the genus Skeletonema, suggested its transfer to this genus 
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 4 

as Skeletonema potamos (C.I. Weber) Hasle in Hasle & Evensen; they found the same taxon 

in the liquid-preserved sample from the Jensensee, Plön (Germany), 19 August 1922, Hustedt 

Collection E 4555, which Hustedt (1928) used when preparing the description of the diatom 

to which he applied erroneously the name Stephanodiscus subsalsus (Cleve-Euler) Hustedt. 

Skeletonema potamos is a broadly distributed species (Supplementary Material Table S1) and 

is considered invasive in several regions, including the Great Lakes of the United States 

(Mills et al.1993), the River Loire in France (Descy et al. 2012), and the River Elbe in the 

Czech Republic (Desortová et al. 2011). Investigations of phytoplankton in the River Danube 

at Göd have been carried out with weekly sampling frequency for more than thirty years. 

Diatoms in the order Thalassiosirales were among the most abundant in the phytoplankton in 

this system, with Skeletonema potamos (C.I. Weber) Hasle and various Stephanodiscus 

species among the dominant taxa (Kiss 1985; Verasztó et al. 2010). Skeletonema potamos was 

first recorded in the Danube in the late 1950s (Kiss 1986) and subsequently became abundant 

in the Hungarian stretch of the river by the end of the 1960s (Kiss et al. 1994).  

Climate-associated warming has been shown in several freshwater ecosystems, 

including both lakes (e.g. Lake Baikal, Hampton et al. 2008) and rivers (e.g. the River Loire, 

Floury et al. 2012). Increased temperature can have cascading ecosystem effects resulting in 

shifts in the community composition. Sensitive species are replaced by more tolerant species 

that change the interactions in the community (Anneville et al. 2007; Sommer et al. 2012). As 

primary producers, phytoplankton plays an important role in the biochemical cycling of both 

carbon and oxygen and is, therefore, an important regulator of global climate (Winder and 

Sommer 2012). Climate-mediated changes in phytoplankton communities have the potential 

to alter ecosystem functioning on both local and global scales. Sommer et al. (2012) 

summarised known responses of phytoplankton including changes in community biomass and 

biodiversity, range shifts and alterations in seasonality. One of the best known examples is the 
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spread of Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju , a 

cyanobacterium with a tropical origin, which expanded its original range towards the 

temperate zone both on the northern and the southern hemisphere, where it is now considered 

invasive in many lakes (Ryan and Hamilton 2003; Stüken et al. 2006). Northward expansion 

of other thermophilic phytoplankton species can be also enhanced by climate change, such as 

mild winters that enabled the permanent establishment of some diatom (e.g. Rhizosolenia 

indica) and dinoflagellate (e.g. Alexadrium minutum) species in the North Sea and the 

German Bight (Nehring 1998). Warming can also enhance the frequency of harmful algal 

blooms (Paerl and Paul 2012).  

In the case of the River Danube, Sipkay et al. (2009) predicted a global warming-related 

increase in total phytoplankton abundance and large inter-annual differences by the end of the 

century.  According to Sipkay et al. (2012), a linear temperature rise leads to drastic changes 

in phytoplankton biomass only in case of high nutrient load. 

We had two major aims in our study. First, we aimed to extend the knowledge on the 

taxonomy of S. potamos and clarify the taxonomic status of the species. To achieve this, we 

applied both morphological and molecular analyses. Our second aim was to study ecological 

features of S. potamos.  We collected all available information on the distribution of S. 

potamos. Based on long-term data (for more than three decades), we aimed to find 

relationships with possible environmental drivers which enabled this species to become the 

dominant member of the phytoplankton of River Danube in warm-water periods. 

 

Results 

Morphology of Skeletonema potamos 

Skeletonema potamos is one of the smallest centric diatoms in the River Danube, and its thin 

frustule and small chloroplasts make it easy to be overlooked (Fig. 1A). It commonly occurs 
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in chains comprising 2–4 cells, but both single cells and longer chains (6–10 cells) are also 

somewhat common. Within chains, cells are connected by marginal fultoportulae (Fig. 1B, C) 

that are barely visible in untreated samples under the light microscope (Fig. 1A). Cell 

diameter ranges from 3.0 to 6.5 µm (average: 4.5 µm), and the pervalvar axis ranges from 5 to 

18 µm (average: 10 µm) in length. The valve face is flat in the centre and slightly rounded 

near the valve mantle (Fig. 1F). There are fine radial striae on the valve face, consisting of 

irregular polygonal areolae and branched (2–3 times) interfascicles (Fig. 1D, E). A ring of 4–8 

marginal fultoportulae is situated at the valve margin (Fig. 1F, G). The fultoportulae are 

tubular externally, the cleft at the distal tip and their silica-wall is relatively thick like the 

valve face with the rib-like elevations extending from the valve surface onto the fultoportulae 

(Fig. 1E, F, H). At the bases of fultoportulae, external pores cannot be found (a difference 

compared to S. subsalsum). A single rimoportula is visible close to the ring of marginal 

fultoportulae (Fig. 1F), it can be in a different position in terminal and intercalary valves 

(similarly to some other Skeletonema species). The structure of the valve mantle is the same 

as that of the valve face with irregular polygonal areolae (Fig. 1D, F). Numerous bands 

compose the thin girdle. The valve is more heavily silicified than the girdle. 

 

Specificity of Primers and Phylogenetic Analyses of Skeletonema potamos 

We were able to acquire SSU and LSU rDNA from the River Danube and River Tisza 

samples, as well as the Missouri River culture. However, plastid genes could be sequenced 

only from the isolated cells of River Danube and from the Missouri River culture. 

Our Skeletonema-specific SSU and LSU rDNA primers successfully isolated S. potamos 

sequences from the River Tisza community DNA. The plastid primers were, however, more 

conserved and therefore not limited to members of Skeletonema, so we could only amplify 

these genes from clonal culture from the River Missouri and isolated cells from the River 
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 7 

Danube. The nuclear SSU rDNA (Supplementary Material Figs S1, S3) and LSU 

(Supplementary Material Figs S1, S4) sequences were identical among the Missouri culture, 

Danube and Tisza populations. Moreover, these nuclear rDNA sequences were identical to 

those of a brackish culture from Japan (GenBank AB728775 and AB728772) identified as S. 

subsalsum. One nucleotide substitution in the rbcL gene separated the Danube population and 

Missouri River culture. This substitution was in the third position of the codon.  Phylogenetic 

analysis of the single-gene (data not shown), the combined two-gene (18S rDNA+28S rDNA 

and rbcL+psbC, Supplementary Material Figs S1, S2) and the four-gene dataset (Fig. 2) 

placed S. potamos well within the genus Skeletonema supporting the monophyly of this genus 

and identified S. subsalsum as its closest relative. Skeletonema potamos therefore represents a 

recent freshwater coloniser within Thalassiosirales. 

Based on the plastid genes, S. potamos and S. subsalsum formed a lineage distinct from 

other species within the genus (Supplementary Material Fig. S1). Since 18S and 28S rDNA 

sequences are available from more Skeletonema species than rbcL or psbC, we were able to 

investigate the phylogenetic position of S. potamos compared to more Skeletonema taxa based 

on the ribosomal genes than on the plastid genes. S. costatum rbcL and psbC sequences were 

involved in just the single-gene analyses (data not shown), because these plastid gene 

sequences are available from different strains. According to both the LSU and SSU rDNA, the 

S. potamos-S. subsalsum lineage also involved S. costatum, however, the position of this 

lineage compared to other Skeletonema species differed between the 18S and 28S rDNA-

phylogeny (Supplementary Material Fig. S2). 

 In most Skeletonema species, intraspecific variability was observed at least in the SSU 

rRNA gene (this phenomenon occurred also in both ribosomal genes in S. marinoi-dohrnii, S. 

menzelii, S. grethae, S. tropicum, S. costatum; it have to be mentioned that only one SSU 
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 8 

rDNA sequence was available for S. grevillei). Invariability in both genes was observed only 

in S. potamos and S. ardens (Supplementary Material Figs S3, S4). 

 

Geographical Distribution of Skeletonema potamos 

Skeletonema potamos is broadly distributed across the temperate zone (Fig. 3). The species is 

most common in Europe, mainly in large rivers and their reservoirs, slowly flowing tributaries 

and connected lakes (altogether 91 water bodies). In North America, S. potamos was found in 

some lakes and rivers flowing into the Atlantic and Pacific Oceans and in their estuaries 

(altogether 61 water bodies). It was detected in South America (Brazil, Argentina) in rivers 

and lagoons along the coastal region of Atlantic Ocean (altogether 5 water bodies). In Asia it 

has been found in the River Ob (Russia), Lake Hovsgol (Mongolia), in a channel at Xaimen 

(China) and it has four occurrences in Japan. From Australia, it was recorded in three water 

bodies.  

 

Long-term Change of Skeletonema potamos and its Response to Environmental 

Change in the River Danube 

Since the abundance and biomass of S. potamos showed seasonal peaks in the warmer period 

(May-October) in the River Danube, we used these data from the years 1979-2012 to 

investigate environmental factors that affect the quantity of this diatom. The data presented in 

the following are also referring to this warmer period. The proportion of S. potamos in the 

total phytoplankton abundance (Fig. 4A; R
2
=0.035, p<0.001) and biomass (Fig. 4B; R

2
= 0. 

017, p<0. 0374) showed a significant increase in the last thirty years. Mean values of relative 

abundance increased from 5.2 to 23.6 %, and its relative biomass from 11.3 to 35.1% from 

1979 to 2009. In 2009, its proportion reached higher values (abundance: 87.4; biomass: 

91.4%) than at any time in the preceding 30 years. Temperature was the only significant 
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 9 

predictor in the linear mixed-effects model based on relative abundance of S. potamos (slope: 

0.15, p<0.001), while in the case of carbon biomass, temperature (slope: 0.13, p<0.001) and 

water discharge (slope: -0.04, p<0.01) were significant predictors. . Water temperature in the 

River Danube increased during the >30-year period of 1979–2012 (Table 3, Fig. 4C, 

R
2
=0.023, p<0.001). The mean temperature of May-October ranged from approximately 14.9 

to 17.7
 o
C until the late 1990s, but temperature did not drop below 16

 o
C and often exceeded 

18
 o
C from 2000 to 2012. Maximum values within a year varied between 19.6–24

 o
C during 

the period of 1979–1999, and between 22–27 
o
C during 2000–2012. Years with high and low 

water discharge alternated in the period of 1979–2012, with a clear decrease in annual mean 

water discharge from 2003 to 2012 compared to the period of 1979-1999 (Fig. 4D).  

 

Discussion 

Morphology of Skeletonema potamos 

Skeletonema potamos usually occurs in chains comprising 2–4 cells in the River Danube. The 

length of chains may depend on turbulence of the river; in low water periods when the current 

is low (turbulence, too) chains of 6–10 cells are much frequent than in high water periods 

when the current is higher and water is much more turbulent. We investigated the 

morphological features of Skeletonema potamos populations in the River Danube and River 

Tisza and compared them to S. subsalsum. S. potamos has 4–8 tubular fultoportulae with cleft 

tips, without a pore at the bases of them (identical with EM micrographs of Cavalcante et al. 

2013), whereas S. subsalsum has 7–14 flat, flat-bifurcated, or flat spoon-like marginal 

fultoportulae with an external pore on the base (Hasle and Evensen 1975; Kiss et al. 2012). 

Considering these, Skeletonema potamos and S. subsalsum are clearly distinguishable 

morphologically based on the presence or absence of an external pore on the base of marginal 

fultoportulae. The shape and position of the single rimoportula is hardly seen on EM 
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 10 

micrographs. It can be a little bit better seen by TEM if the position of the valve face is 

optimal (Fig. 1 B, D arrow). It is difficult to find the small external pore of the rimoportula on 

SEM micrographs.  

 

Phylogenetic Position of Skeletonema potamos 

Phylogenetic analysis resolved S. potamos within the genus Skeletonema (Fig. 2, 

Supplementary Material Figs S1-S4), supporting the transfer of Microsiphonia potamos into 

Skeletonema by Hasle and Evensen (1976). Phylogenetic trees also revealed S. subsalsum to 

be the closest known relative of S. potamos.  

Skeletonema is an ancestrally marine genus (Alverson et al. 2007). Skeletonema 

subsalsum is euryhaline, occurring mainly in saline and brackish waters and occasionally in 

freshwater habitats (Aké Castillo et al. 1995; Gibson et al. 1993; Hasle Evensen 1975; 

Hustedt 1957 ). Skeletonema potamos is somewhat more specialised, being restricted to 

freshwater and slightly brackish habitats (Kiss et al. 2012). Thus, S. potamos represents 

another recent, phylogenetically restricted marine-to-freshwater transition within 

Thalassiosirales (Alverson et al. 2007). 

Unlike previous population-level studies of other Skeletonema species that revealed 

sometimes extensive intraspecific variation at the DNA level (Sarno et al. 2005, 2007, even 

intragenomic variation as in Alverson and Kolnick 2005), we found little or no sequence 

variation in populations from Central Europe, the continental United States, and very likely 

Japan. While the nuclear rDNA sequences from our Hungarian samples and the U.S. culture 

were identical to one from a brackish culture strain from Japan (Yamada et al. 2013) 

identified as Skeletonema subsalsum (GenBank AB728775 and AB728772), and because 

Skeletonema potamos and S. subsalsum are clearly distinguishable morphologically, we 
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assume that the sequence from the above mentioned Japanese strain could belong to S. 

potamos.  

Small and large subunit ribosomal RNA genes are variable within other Skeletonema 

species (Alverson and Kolnick 2005; Sarno et al. 2005, 2007), suggesting relatively recent 

dispersal of S. potamos across the globe. More variable genetic markers and increased 

population sampling will shed more light on its place of origin and pattern and timing of 

dispersal. 

 

Geographical Distribution of Skeletonema potamos 

Krammer and Lange-Bertalot (1991) regarded Skeletonema potamos as a relatively rare 

species. However, more than 160 localities have been published by now. Its distribution is 

restricted to the temperate zone. The only exception is a recent record in a tropical shallow 

channel near Itabuna (Brazil) (Cavalcante et al. 2013).  

Data compiled from multiple localities show that S. potamos occurs in waters ranging 

from 10 to 29
 o
C (see References and Supplementary Material: references). This may 

represent the full temperature-tolerance range for S. potamos. It may survive the unfavourable 

periods with too low or too high water temperature by forming resting stages (like many other 

microalgae, McQuoid and Hobson 1995).   

 

Relationship Between Skeletonema potamos and Environmental Shifts in the River 

Danube 

The relative abundance and biomass of S. potamos exhibited long-term increases in the River 

Danube and were positively correlated with water temperature over the same period. 

Moreover, only temperature had a long-term effect on the relative abundance of S. potamos. 

Kiss et al. (1994) demonstrated that seasonal dynamics of S. potamos followed the changes of 
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the water temperature. They classified S. potamos as a warm stenotherm species based on a 

two-year intensive study in the River Danube, which showed that water temperature was one 

of the main factors influencing the abundance of S. potamos. They observed that population 

growth started in June, with temperature around 15 
o
C, and decreased in September–October 

when temperature was below 14–16 
o
C. A similar trend was found in the Little Miami River 

(USA, Weber 1970) and the River Rott (Germany, Chang and Steinberg 1988). Lehman 

(2000) found that S. potamos commonly occurs in the southern Delta of San Francisco Bay 

Estuary during summer, when salinity is high from discharge of agricultural return water and 

the seasonal peak in water temperature is increased by long residence time. Kaeriyama et al. 

(2011) showed that the occurrence of seven Skeletonema species was mainly affected by 

water temperature and less by irradiance in Dokai Bay (Japan). Under experimental 

conditions, Skeletonema species were able to grow at temperatures ranging from 15 to 25 
o
C 

(Kaeriyama et al. 2011). 

Effect of global warming was observed also on other Thalassiosirales species in the 

River Danube. A shift in the timing of the end-winter centric bloom, in which Stephanodiscus 

minutulus (Kützing) Cleve et Möller is one of the dominant species was reported (Kiss and 

Genkal 1997; Kiss 2000). It usually occurs 3-4 weeks earlier in the 2000s than in the 1980s. 

Several papers predict earlier maxima in algal biomass related to climate change, which is 

generally accompanied by biomass increase (Flanagan et al. 2003; Sipkay et al. 2012), 

especially in spring (Dokulil et al. 2010; Nõges et al 2010; Sipkay et al. 2009; Thackeray et 

al. 2008 ).  

S. potamos also occurs in the River Tisza in the region, where it is exposed to similar 

climatic effects as in the River Danube. One might therefore expect S. potamos to be similarly 

abundant in both rivers. However, the high light demand of S. potamos might limit its 

abundance in the River Tisza, which has higher overall levels of suspended matter throughout 
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the year compared to the River Danube (Istvánovics et al. 2010). This supposition needs more 

study, though relationship between light and S. potamos abundance had been shown in other 

aquatic ecosystems. In the Paraná River System, a positive correlation between the abundance 

and biovolume of the functional group D (containing S. potamos) with Secchi transparency 

was found, which is influenced by water currents through transported suspended material 

(Devercelli 2006; Devercelli and O’Farrell 2013). Torgan et al. (2009) supposed that the main 

factors influencing the development of S. potamos populations are probably light and/or 

competition with other chain-forming centric diatoms (Aulacoseira granulata and A. 

ambigua) whose species were abundant in the phytoplankton of the Patos lagoon (Brazil). The 

competition of these Aulacoseira taxa is not relevant in the River Danube and Tisza, because 

they are much less abundant here. 

In our earlier studies (Kiss et al. 1994; Sipkay et al. 2012; Verrasztó et al. 2010) we 

clearly demonstrated that there is an intra-annual effect of water discharge of the River 

Danube on the quantity of S. potamos. In our present study, we focused on long-term changes 

and found that water discharge was not significantly related to the relative abundance of the 

species. However, it was significant in the case of relative carbon biomass. The River Danube 

exhibited a gradual decrease in mean water discharge during the last decades (Fig.4D), 

parallel to the increase in S. potamos dominance. While this trend can have indirect positive 

influences on the quantity of S. potamos, (e.g. via more favourable light conditions), we 

suggest that its effect is secondary as water temperature was clearly the predominant factor in 

explaining its dominance (i.e. being significant or showing stronger effect in the linear mixed-

effects models).  

According to our results, S. potamos undoubtedly became the dominant member of 

phytoplankton of River Danube in warm water period and its seasonal dominance was also 

observed in other freshwater lakes (e.g. Postmünster Lake, Chang and Steinberg 1988), rivers 
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(e.g. River Rhine, Friedrich and Pohlman 2009; Ibelings et al. 1998) and estuaries (e.g. 

Chesapeke Bay, Marshall and Egerton 2009). The consequences of this shift are hard to 

predict because of the lack of knowledge on the ecology of this species. However, 

Skeletonema spp. are known to be bloom-forming taxa, sometimes contributing to close to 

monodominant phytoplankton communities ( Borkman and Smayda 2009; Rost et al. 2003) 

due to their high growth potential when silica is not limiting, which can make them superior 

competitors over other microalgae (Egge and Aksnes 1992). Moreover, Skeletonema species 

were found to negatively affect zooplankton either via mechanical interference with the 

filtering process of cladocerans (Müller-Solger et al. 2002) or by suppressing hatching success 

of eggs in some of the copepod consumers (Ban et al. 1997; Miralto et al. 1999). Considering 

these, the dominance of S. potamos in the phytoplankton may have serious consequences on 

the trophic web, and hence, energy flow in its habitats. Therefore, further studies on its 

position in nutrient cycling are mandatory. Especially because the species seems to be 

favoured by the warming of surface waters and can accordingly become dominant in its 

present habitats and its further expansion can also be expected. 

 

Conclusions 

 

Skeletonema potamos is a species with temperate zone distribution (Fig. 1), where it occurs in 

a wide variety of low-salinity (mostly freshwater) habitats. Skeletonema subsalsum, occurring 

mainly in brackish waters, proved to be the closest relative of S. potamos and marine 

Skeletonema species were more distant relatives. We found little or no sequence variation in 

S. potamos populations from Central Europe, the continental United States, and very likely 

Japan. Small and large subunit ribosomal RNA genes are variable within other Skeletonema 

species (Alverson and Kolnick 2005; Sarno et al. 2005, 2007), suggesting relatively recent 
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dispersal of S. potamos across the globe. Previous studies reported it as a warm stenotherm 

species (Devercelli and O’Farrell 2013; Kiss et al. 1994), which is consistent with our 30-year 

dataset from the River Danube, showing that the species is present from late spring until 

autumn in the temperate zone (Belcher and Swale 1978;  Chang and Steinberg 1988; Kiss and 

Nausch 1988; Steinberg et al. 1987). Moreover, its proportion in total phytoplankton 

abundance and biomass increased during our long-term investigation in the River Danube, 

parallel with a gradual increase of water temperature. In the light of these data, we predict that 

the geographic and/or seasonal range of S. potamos will expand with the warming of surface 

waters in response to global climate change.  

 

Methods 

 

Environmental sampling and analysis: Since 1979, weekly samples for regular 

phytoplankton analyses were taken from the River Danube at Göd (riv. km 1669), Central 

Hungary. Half-litre dipped samples were taken from the main current, 20–30 cm below the 

water surface and preserved in Lugol’s iodine solution. Quantitative investigations were made 

by inverted microscope (Olympus IX70 and Opton invertoscope D) according to the 

Utermöhl (1958) method.  

 To establish the biomass (wet weight) in each sample, the diameter (d) and the length 

(l) of the pervalvar axis of S. potamos specimens (n=50) were measured (to calculate the cell 

volume: r2*π*l; r=d/2) and multipled by cell number (Utermöhl 1958). In samples containing 

less than 1000 ind. mL
-1

, fewer than 50 specimens were measured. The biovolume was 

converted into carbon content according to Menden-Deuer and Lessard (2000). 

 Environmental parameters: Samples were taken from the upper 20 cm of the water. 

Water temperature (T) was measured in situ with a WTW multiline portable meter. Total 
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suspended solids (TSS) concentration was determined gravimetrically (Eaton et al. 2005). The 

pore size of the membrane filter was 0.45 m. Ammonium (NH4
+
) was measured according to 

the ISO 7150-1:1984. Nitrate (NO3
-
) was measured by the sodium salicylate method 

(Vijayasarathy 2011). Orthophosphate (SRP) was measured according to the Eaton et al. 

(2005) by the ammonium molybdate method. Chemical oxygen demand (CODps) was 

determined with the acidic potassium permanganate method (ISO 8467 1993). Chlorophyll-a 

concentration (chl-a) was determined spectrophotometrically, after extraction with hot 

methanol (Iwamura et al. 1970). Water discharge (WD) data were provided by the General 

Directorate of Water Management.  

 Morphological analysis of Skeletonema potamos: The samples taken from the River 

Danube (in parallel with quantitative phytoplankton analysis) were fixed with formaldehyde, 

and treated with cold H2O2 and HCl (CEN 2003), washed in distilled water, filtered through a 

3 m-mesh polycarbonate membrane, fixed on SEM stubs, coated with gold-palladium and 

investigated with a Hitachi S-2600N scanning electron microscope. Subsamples of the treated 

material were also used for TEM analysis; a TESLA BS500 transmission electron microscope 

was used for this purpose. 

 DNA analysis: For DNA analyses, living samples were collected from three locations: 

(1) the River Danube at Göd, Hungary (47
o
40’51”N 19

o
7’33”E), in June 2011, (2) the River 

Tisza at Tiszaújváros, Hungary (47
o
54’32”N 21

o
4’45”E), in August 2012.  

From the River Danube, S.  potamos cells (around 20 two-celled chains) were isolated 

using micropipette under inverted microscope (Olympus IX70) and transferred into sterile 100 

μL TE buffer (10mM Tris, 1 mM Na2-EDTA, pH=8). Taking into account the advantage 

derived from the fragility of the weakly-silicified frustules of Skeletonema, the isolated cells 

were only centrifuged at 20,000 g for 5 min that could release DNA from the cells. 50 μL 

pellet was used for the polymerase chain reaction. Because of the low number of the cells and 
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the consequently low concentration of extracted DNA, polymerase chain reaction (PCR) was 

applied in seminested design or a second PCR was performed with the same primers. 

Skeletonema potamos was rare in the River Tisza samples, so total community DNA 

was extracted from a field sample. The sample was mixed with lysis buffer (10mM Tris, 1 

mM Na2-EDTA, 200mM NaCl, 0.02% SDS, pH=8), frozen at –20 
o
C for 30 min, heated at 95 

o
C for 10 min, then centrifuged at 14000g for 10 min. Proteins were digested with Proteinase 

K (recombinant, Fermentas) at 56 
o
C for 3 h. DNA was then isolated using the DNeasy® 

Plant Mini Kit (Qiagen). 

Publicly available Skeletonema sequences were used to design primers for PCR 

amplification and sequencing of nuclear SSU and partial LSU ribosomal DNA genes as well 

as plastid rbcL and psbC genes (Table 1). Priming sites were determined using NCBI Primer-

BLAST (Ye et al. 2012), and theoretical melting temperature and the possibility of dimer 

formation was explored using Integrated DNA Technologies Oligo Analyzer.  

 The four genes were amplified and sequenced with primers listed in Table 1. For PCR 

design see Supplementary table 2. For 28S rDNA and psbC of the Danube sample, the PCR 

reaction mixture contained 200 mM of each deoxynucleoside triphosphate (Fermentas), 1 U 

of Taq DNA Polymerase (Fermentas, Vilnius, Lithuania), 1X Taq buffer with (NH4)2SO4 

(Fermentas), 2 mM MgCl2 (Fermentas), 0.325 μM of each primer, 0.1 mg/μL BSA 

(Fermentas) and 1-3 μL template in a total volume of 25 μL. For all other reactions the 

mixture contained 1.25 U DreamTaq
TM 

DNA Polymerase (Thermo Scientific),  200 mM of 

each deoxynucleoside triphosphate (Fermentas), 1X DreamTaq Buffer (Thermo Scientific), 

0.325 μM of each primer, 1-3 μL template in a total volume of 25 μL. PCR amplifications 

used the following cycles: initial denaturation at 98
 o

C for 3 min, 32 cycles at 94
 o
C for 1 min, 

52–63
 o
C (the exact annealing temperature for each primer pair was determined by gradient 

PCR, see Supplementary Material Table S2) for 30 sec, 72 
o
C for 1.5 min, and a final 
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extension at 72 
o
C for 10 min. Sequencing reactions and capillary electrophoreses were 

performed by Biomi Ltd. All nucleotide sequences are available from the 

DDBJ/EMBL/GenBank databases under accession numbers KF621297–KF621302. 

Sequences were compared to those ones (accession numbers KJ081744–KJ081747) that were 

provided by Andrew J. Alverson. These were acquired from a sample taken from Missouri 

River, United States (38
o
46’42”N 90

o
28’48”W) in 2012.  

 Phylogenetic analysis: The final sequences were assembled from overlapping 

sequence fragments. Sequences were downloaded from GenBank from the studies of 

Alverson and Kolnick (2005), Sarno et al. (2005, 2007), Alverson et al. (2007), Kooistra et al. 

(2008), Alverson (2014) and one 18S rDNA (accession number AB728775.1, Yamada et al. 

unpublished) and one 28S rDNA sequence (accession number AB728772.1, Yamada et al. 

(2013). For all accession numbers see Supplementary Table S3 and Supplementary Material 

Figs S3, S4. Sequences were aligned with ClustalW implemented in MEGA 5.05 (Tamura et 

al. 2011). “Find best DNA models” option in this software was used to determinate the most 

appropriate model for DNA sequence evolution of each gene partition (models are 

summarized in Table 2). Bayesian analyses were run on datasets individually and in 

combination. Posterior probability of distribution was estimated using Metropolis-coupled 

Markov Chain Monte Carlo (MCMC) as implemented in MrBayes 3.2 (Ronquist et al. 2012). 

Default priors were used for all analyses. 

 Statistical analyses: To investigate the role of local environmental effects in the River 

Danube, we used only warmer period (May–October) data, because the occurrence of S. 

potamos is restricted to this period in the River Danube. As total phytoplankton abundance 

and biomass showed a decreasing trend in the last decades (Verasztó et al. 2010) and the same 

is true for the absolute abundance and biomass of S. potamos, we used the relative abundances 

of the species in our analysis. To normalise residuals, we transformed chlorophyll-a data by 
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cubic root and water discharge, TSS and NH4
+
 by square root. We built a PCA model for the 

trophic variables of NH4
+
, NO3

-
, SRP, CODps and chl-a. We used PCA 1 and PCA 2 axes in 

the subsequent analyses as proxies for trophic state and nutrient availability. We fitted linear 

mixed-effects models on relative S. potamos abundance and biomass in the package "nlme" in 

R (Pinheiro et al. 2013; R Development Core Team 2010), wherein water discharge, 

temperature, TSS, PCA 1 and PCA 2 axes were fixed effects, and year and month were 

random effects. 

The world distribution map of S. potamos was prepared by using the ESRI ArcInfo 9.3 

GIS program based on sites listed in Supplementary Material Table S1. 
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Table 1. Primers used in this study. 
1
 Primers used in the first PCR. 

2
 Primers used in the 

nested PCR. 
s
 Primers used as sequencing primers. 

Name Marker Sequence (5’ to 3’) Original reference 
Sk-50F

1 
Sk-600F

2,s 
Sk-900F

s 
Sk-1550R

1,2,s 

Sk-1850R
1,2,s 

Sk-28S-15F
1 

Sk-28S-120F
2,s 

Sk-28S-860R
s 

Sk-28S-1250R
1,2,s 

psbC_F
1 

 

Sk-psbC90F
2,s 

Sk-psbC890R
s 

psbC_R
1,2,s 

 

rbcL66F
1,s 

Sk-rbcL90F
1,2,s 

Sk-rbcL400F
s 

Sk-rbcL975R
s 

Sk-rbcL1210R
1,2,s 

dp7R
1,s 

18S rRNA gene 
18S rRNA gene 
18S rRNA gene 
18S rRNA gene 
18S rRNA gene 
28S rRNA gene 
28S rRNA gene 
28S rRNA gene 
28S rRNA gene 
psbC 
 

psbC 
psbC 
psbC 
 

rbcL 
rbcL 
rbcL 
rbcL 
rbcL 
rbcL 

CATGTGTAAGTATAAGATACTT  
AAATCCCTTATCGAGTATCA  
TTGGTTTGCGAGTCAAAGTA  
TCTCGGCCAAGGTTATAT  
TACGGAAACCTTGTTACGACTTCA 
CTAGATTTGGTAGGTGCACTT 
CCGGAATGAATGTACCTCATCTAT 
CTGTTACTTTCATTACGCATATCAGT 
AACCTTCATTCGACGCCAG  
ACAGGTTTCGCTTGGTGGAGTGG 
 

TTTTGGGCTGGTGCAATGATCTT 
TTGCACCTAAACGTTGATCACG 
CACGACCAGAATGCCACCAGT 
 

TTAAGGAGAAATAAATGTCTCAATCTG 
TGTGATTTATTTGAAGAAGCTT 
ATTAACTCTCAACCATTCATGC 
CAACATCATCACCTAAATAGTG 
GCTGTATCTGTAGAAGTATAGTCGA 
AAGCAACCTTGTGTAAGTCTC 

This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
Alverson et al. (2007), 

modified 
This study 
This study 
Alverson et al. (2007), 

modified 
Alverson et al. (2007) 
This study 
This study 
This study 
This study 
Daugbjerg and Andersen 

(1997), modified 
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Table 2. Substitution models suggested by MEGA5 Find best DNA/protein models function. 

T93 represents Tamura and Nei’ 1993 model, K2 Kimura’s two-parameter model, GTR the 

generalised time-reversible model (for more information on these substitution models see 

references listed in the third column). Letter G means gamma distributions among sites, letter 

I means that a proportion of invariable sites was assumed. 

 
Marker Clade Substitution model Reference for substitution model 
18S rDNA Thalassiosirales T92+G+I Tamura (1992) 
28S rDNA Thalassiosirales TN93+G+I Tamura and Nei (1993) 
rbcL Thalassiosirales GTR+G+I Tavaré (1986) 
psbC Thalassiosirales GTR+G+I Tavaré (1986) 
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Table 3. Long-term minimum and maximum values of May-October means of the measured 

environmental parameters. The corresponding years are given in parentheses.  

 

 Minimum (year) Maximum (year) 

WD (m
3
/L) 1375.88 (2011) 2880.41 (1999) 

T (
o
C) 14.88 (1984) 19.55 (2008) 

chl-a (μg/L) 13.58 (2008) 88.52 (1986) 

CODps (mg/L) 3.01 (2007) 17.70 (1979) 

NH3-NH4-N 

(mg/L) 

0.03 (2009) 0.42 (1992) 

NO3-N (mg/L) 1.28 (1992) 2.07 (1987) 

PO4 (μg/L) 8.20 (2005) 88.99 (1989) 

TSS (mg/L) 11.72 (2003) 55.76 (1987) 
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Figure legends 

Figure 1. A: LM-, B-D: TEM-, E-H: SEM micrographs of Skeletonema potamos from River 

Danube (A-F) and from River Tisza (G,H); rimoportula arrowed; scale: 2 µm (B-G), 2.5 µm 

(H) and 10 µm (A).  

 

Figure 2. Bayesian inferred phylogenetic tree based on 18S and 28S rDNA, rbcL, psbC 

sequences of species belonging to order Thalassiosirales. Ditylum brightwellii, Bellerochea 

malleus and Lithiodesmium undulatum are outgroups. Sequences investigated in this study are 

indicated by underlining.  For substitution models see Table 2. Generic abbreviations are: 

Bacterosira (B.), Bellerochea (Be.), Cyclostephanos (Cs.), Cyclotella (Cy.), Detonula (D.), 

Discostella (Di.), Ditylum (Dt.), Lauderia (La.), Lithodesmium (Li.), Minidiscus (M.), 

Porosira (P.), Shionodiscus (Sh.), Skeletonema (Sk.), Stephanodiscus (S.), Thalassiosira (T.) 

 

Figure 3. Map of Skeletonema potamos worldwide distribution (for coordinates and 

references see Supplementary Material Table S1 and Supplementary Material: references). 

Arrow indicates the type locality of Weber’s (1970) description. 

 

Figure 4. Box plot of long-term distribution in proportion of Skeletonema potamos in total 

phytoplankton abundance (A) and in total phytoplankton biomass (B), the mean water 

temperature (C) and mean water discharge (D) from May to October from 1979 to 2012. 

Water temperature data from the years 2004 and 2012; relative abundance and biomass data 

from the year 1999 are missing. The boxes represent 50% of the distribution of the values, the 

bottom of each boxes shows the first quartile, the top shows the third quartile, the black lines 

within the boxes show the median values, the dots show the outliers. Grey lines show the 

fitted linear models. 
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http://ees.elsevier.com/protis/download.aspx?id=19081&guid=d6af326c-4217-4ac7-8d81-67e6b3df0a0e&scheme=1


Page 41 of 42

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 4c
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