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Abstract 35 

Significance: Chronic kidney disease (CKD) can be regarded as a burden of lifestyle 36 

disease that shares common underpinning features and risk factors with the ageing process; 37 

a complex constituted by several adverse components, including chronic inflammation, 38 

oxidative stress, early vascular ageing and cellular senescence.  39 

Recent Advances: A systemic approach to tackle CKD, based on mitigating the associated 40 

inflammatory, cell stress and damage processes, has the potential to attenuate the effects 41 

of CKD, but also pre-empts the development and progression of associated morbidities. In 42 

effect, this will enhance health span and compress the period of morbidity. 43 

Pharmacological, nutritional and potentially lifestyle-based interventions are promising 44 

therapeutic avenues to achieve such a goal.  45 

Critical Issues: In the present review, currents concepts of inflammation and oxidative 46 

damage as key pathomechanisms in CKD are addressed. In particular, potential beneficial 47 

but also adverse effects of different systemic interventions in patients with CKD are 48 

discussed.  49 

Future Directions: Senotherapeutics, the NRF2–KEAP1 signaling pathway, the endocrine 50 

klotho axis, inhibitors of the sodium–glucose cotransporter 2 (SGLT2), and live bio-51 

therapeutics have the potential to reduce the burden of CKD and improve quality of life, as 52 

well as morbidity and mortality, in this fragile high-risk patient group.  53 

  54 
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Significance statement 55 

Patients with chronic kidney disease (CKD) and its associated complications show a 56 

dysregulated ageing process, common to the diseaseome of ageing, that includes increased 57 

chronic inflammation, oxidative stress, early vascular ageing and cellular senescence. 58 

Therefore, systemic approaches to tackle CKD are needed to mitigate the inflammatory, 59 

cellular stress and damage processes associated with CKD. Pharmacological, nutritional 60 

and potentially lifestyle-based interventions are promising therapeutic avenues to pre-empt 61 

the development and progression of CKD-associated comorbidities, thereby enhancing 62 

health span and improving quality of life.  63 

  64 
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1) CKD as a public health priority 65 

Chronic kidney disease (CKD) has been defined as “abnormalities of kidney structure or 66 

function, present for >3 months, with implications for health” according to KDIGO 67 

guidelines (94). Patients with CKD are classified using different biomarkers of kidney 68 

function (e.g. estimated glomerular filtration rate (eGFR) and albuminuria as assessed by 69 

albumin-to-creatinine ratio (ACR) (94)), because of their well-established association with 70 

CKD progression to end-stage kidney disease (ESKD) and mortality (55, 119). 71 

Importantly, mortality is extremely high in ESKD patients requiring renal replacement 72 

therapy (RRT) (87, 195). According to a recent ERA-EDTA registry annual report, patients 73 

aged 20-44 years on RRT live only one-third of the expected remaining lifetime of the age-74 

matched general population (107). Compared to the general population, patients with CKD 75 

have a highly accelerated and premature ageing process, a complex constituted by several 76 

adverse components, including vascular disease, chronic inflammation, osteoporosis, 77 

periodontal disease, depression, sarcopenia and other maladies (34) (Figure 1). Early 78 

vascular ageing (EVA) in particular, resulting in increased arterial stiffness and endothelial 79 

dysfunction, is thought to be a crucial patho-mechanism linking CKD with mortality. Thus, 80 

several biomarkers of inflammation and endothelial dysfunction are associated with greater 81 

arterial stiffness even in apparently healthy adults (221). Furthermore, oxidative stress is 82 

also associated with endothelial dysfunction through different mechanisms (150, 244, 249). 83 

Collectively, there is a vicious cycle comprising oxidative stress, inflammation, CKD, and 84 

premature cardiovascular disease (CVD) (169). As a consequence, therapeutic aims for 85 

reducing EVA and CVD mortality in CKD should include control of inflammation, 86 

reduction of oxidative stress, and improvement of endothelial dysfunction (31) (Figure 2). 87 
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It has also been reported that patients with asymptomatic proteinuria exhibit low-grade 88 

inflammation linked to endothelial dysfunction (158). As EVA in CKD can be both a cause 89 

and a consequence of the underlying renal disease, factors contributing to this pro-90 

senescence milieu are important potential treatment options in the uremic milieu. In this 91 

review, we summarize current concepts of inflammation and oxidative stress in CKD as 92 

crucial pathophysiological mechanisms of the uremic phenotype and provide a perspective 93 

on possible future treatment options for treating all three components, i.e. CKD, 94 

inflammation, and oxidative stress.  95 

  96 
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2) The many facets of CKD 97 

The main role of the kidney is to maintain the homeostatic balance of a variety of solutes 98 

in the blood and to excrete undesirable components. This activity comes at a significant 99 

metabolic cost: the kidney and the heart have the highest specific resting metabolic rate of 100 

all major organs, roughly twice higher than that of brain or liver (232). In order to carry 101 

out their function, the kidneys are highly vascularized and receive roughly a quarter of the 102 

cardiac output (139). In addition, the health of the vasculature and the integrity of the 103 

endothelium are also crucial for the proper function of the kidney and its ability to filter 104 

the blood (245). It is therefore unsurprising that the kidney is an especially vulnerable target 105 

for the homeostatic imbalances that accompany CKD: chronic inflammation, oxidative 106 

stress, EVA, and accumulation of uremic toxins (31, 33). Oxidative stress stands out as a 107 

major contributor to many adverse facets of CKD (Figures 1, 2, and 3) and will be discussed 108 

in detail below. 109 

 110 

2.1) Chronic inflammation  111 

Inflammation is an essential response mechanism that allows the body to cope with a 112 

variety of external (e.g. pathogens) and internal (e.g. damaged or cancerous cells) threats 113 

(8). In acute inflammation, a triggering stimulus leads to an inflammatory response 114 

involving (i) the release of cytokines and chemokines, most notably interleukins (IL)-1 and 115 

IL-6, interferon gamma (IFN-γ), and tumor necrosis factor (TNF) that drive both a 116 

localized and a systemic response; (ii) the recruitment and proliferation of immune cells, 117 

particularly macrophages and neutrophils; (iii) the eventual clearing of the threat, followed 118 

by a return to baseline and tissue repair (8). However, if clearing fails, or the inflammatory 119 
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response cannot be switched off, the resulting chronic inflammation leads to tissue 120 

dysfunction and damage, including fibrosis, stem cell depletion, and increased cellular 121 

senescence (8, 188). Indeed, chronic inflammation is bi-directionally linked to CKD (26). 122 

On the one hand, the uremic milieu drives uremic inflammation, which shares common 123 

features with the chronic low-grade inflammation associated with ageing, known as 124 

“inflammageing”; on the other hand, chronic systemic inflammation leads to dysfunction 125 

in the kidneys and can further precipitate fibrosis and the progression of CKD (92, 139, 126 

208). At the same time, uremic inflammation has been mechanistically associated with 127 

premature ageing, contributing to processes such as telomere attrition, mitochondrial 128 

dysfunction, and dysregulated nutrient sensing (102). In a large proportion of patients with 129 

advanced CKD, a systemic inflammatory response is detectable, and the prevalence 130 

increases with the progression of CKD stage (26, 102). At the same time, certain 131 

components of the immune system, particularly the adaptive immune system, are impaired 132 

in a process resembling immunosenescence (42, 127). ESKD patients have lower relative 133 

abundance of lymphoid cells, and their T and B cells are more prone to activation-induced 134 

apoptosis (127). 135 

A plethora of mechanisms are involved in CKD-related immune disruption. 136 

Increased blood concentration of several cytokines and inflammatory markers, such as IL-137 

1, IL-6 and C-reactive protein (CRP), mostly released by endothelial cells and circulating 138 

monocytes, is associated with CKD (26, 139). This is due both to limited clearance and 139 

increased production of these solutes, which can result from factors such as endothelial 140 

dysfunction, oxidative stress, increased cellular senescence, greater permeability of the 141 

lining of the gastrointestinal tract (periodontitis and gut dysbiosis are co-morbidities in 142 
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CKD), calcium (Ca++) phosphate (Pi) overload, sodium accumulation in tissues, and 143 

buildup of uremic toxins in the blood (26, 42). The large endothelial surface of the highly 144 

vascularised kidneys makes them particularly sensitive to local pro-inflammatory effects 145 

(139). Endothelial activation can impair local vasodilatory ability, increase reactive oxygen 146 

species (ROS) production, and exacerbate the already physiologically hypoxic state of the 147 

renal medulla (139). The nuclear factor-κB (NF-κB) deserves a special mention in the 148 

context of inflammation as a key activator of the upregulated uremic inflammatory 149 

response and known to be sensitive to activation by increased ROS levels (102) and 150 

mitochondrial dysfunction (24). NF-κB is also responsive to inflammatory cytokines, 151 

generating a potential positive feedback loop that can sustain inflammation over time (102). 152 

The NLRP3 inflammasome also plays an important role as signaling nexus for the 153 

activation of NF-κB, responding to such stimuli as increased ROS, release of mitochondrial 154 

DNA (mtDNA), extracellular ATP, and more (139). Further direct effects of inflammation 155 

on oxidative stress are discussed in the ‘Oxidative stress’ section below. An increase in 156 

advanced glycation end-products (AGEs) can also up-regulate NLRP3 and NF-κB by 157 

binding to the AGE receptor (RAGE), thus contributing to CKD progression (243). 158 

Interestingly, the central nervous system has recently been shown to play an inhibitory role 159 

in the inflammatory response via a reflex mediated by the vagus nerve (10).  160 

It is worth noting that dialysis treatment fails to adequately remove solutes of the 161 

size of most cytokines and is therefore unable to fully correct the pro-inflammatory uremic 162 

milieu (26). In addition, dialysis itself has a pro-inflammatory effect (123). This is due to 163 

a variety of factors: technical, such as vascular access and limited biocompatibility of the 164 

membranes and surfaces (44), as well as microbial, such as contamination of dialysis 165 
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solutions or catheters with either live microorganisms or with microbial components 166 

(including the highly pro-inflammatory endotoxins) (102, 123). Better clinical practice and 167 

the use of improved materials can, to a degree, reduce this pro-inflammatory effect (42, 168 

59). Novel approaches that improve anti-oxidant defenses can also be helpful. For instance, 169 

it has been recently shown that vitamin E-loaded membrane dialysers may contribute to 170 

reducing the signs of inflammageing associated with dialysis (180). 171 

 172 

2.2) Oxidative stress 173 

Oxidative stress is another prominent feature of CKD (Figures 1 and 3); the high 174 

metabolic rate of the kidney makes this organ particularly sensitive to oxidative stress and 175 

can exacerbate oxidative damage, along with impaired circulation, inflammation, fibrosis 176 

and proteinuria (74). In general, an antioxidant defense prevents the accumulation of ROS 177 

and reactive nitrogen species (RNS). However, when there is an imbalance between 178 

generation of oxidant compounds and antioxidant defense mechanisms, oxidative damage 179 

occurs (168). At a systemic level, oxidative stress can contribute to renal dysfunction, 180 

vascular diseases, alteration in immune system, metabolic complications, and anemia 181 

(Figure 1) (123). Patients on dialysis have a markedly increased oxidative stress compared 182 

to CKD patients not on RRT due to increased ROS formation and reduced anti-oxidant 183 

defenses (61, 167). As the primary site of redox biochemistry and ROS production, 184 

mitochondria are a natural target for ROS damage, with consequences that include mtDNA 185 

damage, reduction of mitochondrial mass, disruption of the mitochondrial membrane 186 

integrity, leakage of ROS and pro-apoptotic factors, as well as loss of membrane potential, 187 

possibly impairing the cell’s energetic metabolism or leading to cell death (Figure 3) (187, 188 
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210). Dysfunctional mitochondria are major drivers of the intermediate inflammatory 189 

phenotype that drives premature ageing in CKD and other burden of lifestyle diseases 190 

(196). Thus, Galvan et al. (64) have demonstrated significantly increased mitochondrial 191 

ROS in the kidneys of mice with diabetic CKD, compared to glucose tolerant control mice, 192 

using an innovative in vivo approach. As mitochondria regulate major cellular processes, 193 

such as cell proliferation and differentiation, as well as cell death (209), ROS production 194 

by damaged mitochondria can induce cell death and inflammation (209). Indeed, 195 

mitochondrial dysfunction and reduced levels of PGC-1α, the master regulator of 196 

mitochondrial biogenesis, are strongly linked to CKD (19, 54). In addition, a retrograde 197 

signaling pathway allows dysfunctional mitochondria to induce specific gene expression 198 

changes in the nucleus (131).  199 

Apart from mitochondrial dysfunction, peroxisomes, i.e. intracellular organelles that 200 

contribute to redox homeostasis (225), also become dysfunctional in several models of 201 

acute kidney injury and CKD (Figure 3) (209, 225); and Vasko et al (225) have recently 202 

proposed a dysregulated mitochondria–peroxisome axis as an important mediator of 203 

cellular redox homeostasis. Collectively, diminished antioxidant defense capacity (e.g. in 204 

peroxisomes) in combination with increased mitochondria ROS lead to a disturbed redox 205 

homeostasis in CKD (Figure 3).  206 

In addition, mitochondria are closely connected to the endoplasmic reticulum (ER) 207 

(175). As ER stress, as well as mitochondrial dysfunction, are both linked to an increased 208 

activation of pro-inflammatory NF-κB signaling (102, 209), the ER-mitochondrial axis 209 

(175) might also be involved in an impaired redox homeostasis in CKD (Figure 3).  210 
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The cellular metabolic and redox homeostasis crucially depends on the pyridine 211 

nucleotides NAD+/NADH and NADP+/NADPH (Figure 3) (71, 166). Evidence of a 212 

defective cellular redox status in CKD has been reported by Canestrari et al. (14) in red 213 

blood cells (RBC). In more detail, NADPH in RBC was significantly decreased, whereas 214 

RBC oxidized glutathione, i.e. glutathione disulphide, was increased in patients with 215 

ESKD compared to controls (14). In contrast, RBC glutathione (GSH) levels were 216 

unchanged in patients with CKD and controls (14). Importantly, hemodialysis (HD) further 217 

increased RBC oxidized glutathione levels indicating that not only reduced renal function 218 

per se but also dialysis impairs cellular redox homeostasis in RBC (14). Mechanistically, 219 

protein expression and activity of GSH-S-transferase in RBC is increased in ESKD patients 220 

compared to control subjects (14, 63), most likely through uremic retention solutes/uremic 221 

toxins (63). Translationally, intensified daily vs. conventional HD lowered distinct uremic 222 

retention solutes, thereby improving redox status in ESKD (62). It should be noted that 223 

most of the studies investigating cellular redox status focus on RBC. However, 224 

accumulating evidence indicates that redox homeostasis in CKD is also impaired in other 225 

organs/cell types, including muscle (15), endothelial cells, and aortic smooth muscle cells 226 

(173). 227 

Besides GSH metabolism, NAD+ levels are reduced in CKD due to an impaired 228 

biosynthesis and augmented consumption (Figure 3) (71, 166). Interestingly, the 229 

transcriptional coactivator PGC-1α promotes NAD+ biosynthesis via the de novo pathway 230 

(Figure 3) (217). Importantly, NAD+ is also a substrate for the sirtuin family of enzymes 231 

that mediate processes including metabolic flux and epigenetic regulation (71). 232 

Furthermore, NADPH oxidase (NOX) enzymes are one of the major sources of ROS 233 
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besides mitochondria, and their activity in kidney and vascular endothelium can impair 234 

blood flow, reduce NO synthesis, and cause hyperhomocysteinemia and kidney damage 235 

(109, 229). 236 

Whereas there is convincing evidence that oxidative stress induces inflammation, the 237 

evidence of adverse effects of a pro-inflammatory milieu on oxidative stress is less strong. 238 

In a uremic environment, peripheral blood mononuclear cells are activated and show a 239 

proinflammatory expression signature (251). Infiltrating leukocytes in the kidney can not 240 

only release large amounts of proinflammatory cytokines, but also contribute to a 241 

respiratory burst by promoting myeloperoxidase-enhanced production of superoxide (74, 242 

168, 178).  243 

Hypoxia is another factor that is bi-directionally linked to both increased inflammation 244 

and oxidative stress in CKD. Thus, hypoxia induces inflammation by several mechanisms 245 

but, conversely, inflamed tissue can also become hypoxic (45). Similarly, oxidative stress 246 

and hypoxia contribute to each other, most likely through uremic toxins (159) and 247 

mitochondrial dysfunction (76). It is interesting to note in this context that sodium–glucose 248 

cotransporter 2 (SGLT2) inhibitors (179) and the hypoxia-inducible factor-stabilizing 249 

Roxadustat (also known as FG-4592) (122) exert beneficial renal effects at least in part via 250 

attenuating renal hypoxia. 251 

While a certain level of ROS and RNS is unavoidable and has a physiological protective 252 

role, the elevated production of ROS and RNS, paired with the lower anti-oxidant defense 253 

observed in CKD, leads to a redox imbalance and a toxic amount of oxidative stress (33, 254 

36, 74). Due to their high reactivity, ROS can damage a variety of macromolecules, 255 

including DNA, proteins and lipids, as well as cell organelles (Figure 3) (109).  256 
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DNA damage is of particular concern due to the potential long-term consequences of 257 

telomere attrition, DNA mutations, epigenetic dysregulation, and DNA damage signaling 258 

(131, 160). Among the four bases found in DNA, guanine (G) is the one most sensitive to 259 

oxidation (165); oxidation products of G such as 8-hydroxydeoxyguanosine (8-OH-dG) 260 

and 8-oxodeoxyguanosine (8-oxo-dG) are the most common oxidative DNA lesions, as 261 

well as established biomarkers of oxidative DNA damage (Figure 3) (123). 8-OH-dG has 262 

been associated with mortality in CKD and with carcinogenesis (35, 123), and both 8-OH-263 

dG and 8-oxo-dG are increased in dialysis patients (177, 240). Importantly, 8-oxo-dG pairs 264 

preferentially with adenine, rather than cytosine, providing this DNA lesion an additional 265 

potential mutagenic mechanism beyond the general DNA damage response (DDR) (177). 266 

Interestingly, the stacked G repeats found in telomeric regions are even more sensitive to 267 

oxidation and may thus act as a redox-sensitive alarm system through which oxidative 268 

stress can cause accelerated telomere attrition and cellular senescence (Figure 3) (131). 269 

Given that mitochondria have reduced protection and DNA repair mechanisms compared 270 

to the nucleus, mtDNA is particularly exposed to oxidative damage (19, 177). Indeed, 8-271 

oxo-dG lesions have been shown to be twice as numerous in mtDNA compared to nuclear 272 

DNA (91). In accordance with these data, Fazzini et al. have recently demonstrated that 273 

mtDNA copy number, as a marker of mitochondrial dysfunction and oxidative stress, is an 274 

independent predictor for all-cause mortality in 4812 patients from the German Chronic 275 

Kidney Disease study (50). 276 

Oxidative stress can damage proteins and lipids through a variety of mechanisms, 277 

including ROS, RNS, reactive carbonyl species (RCS), and through the action of reducing 278 

sugars, generating a diverse class of compounds that can be categorized as advanced 279 
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oxidation protein products (AOPPs), AGEs, and advanced lipoxidation end-products 280 

(ALEs) (Figure 3) (59, 226). AGEs in the extracellular matrix (ECM) can impair tissue 281 

function, in the case of the vasculature contributing to vascular stiffening and the 282 

progression of CVD (102, 218). AGEs can be recognized by the advanced glycation end 283 

products receptor 1 (AGER1), RAGE, and soluble RAGE (sRAGE) (201). AGER1 284 

mediates AGE detoxification and exerts an anti-oxidant and anti-inflammatory role, 285 

sRAGE acts as a decoy for RAGE, while full-length RAGE activates a number of 286 

downstream pro-oxidative and pro-inflammatory effects (201). Diabetes, CKD, and 287 

inflammatory diseases have been shown to down-regulate AGER1 and up-regulate RAGE, 288 

potentially exacerbating inflammation and oxidative stress (201, 206, 227). 289 

Tyr, Cys and Met residues are particularly prone to oxidation, but other residues such 290 

as Lys, Arg, Thr, and His are also susceptible (59, 226). Several oxidation products, 291 

including oxidated Tyr and the lipid peroxidation products malondialdehyde (MDA) and 292 

F2-isoprostanes, have been found to be increased in the plasma of dialysis patients (33, 59, 293 

123). In more detail, lipid peroxidation contributes to cellular damage and tissue 294 

degeneration in CKD. Metabolites, including 4-hydroxy-2-nonenal (HNE), MDA, and F2-295 

isoprostanes, are end-products from the oxidation of unsaturated fatty acids or arachidonic 296 

acid and can react with the above-mentioned amino acid residues of proteins, thereby 297 

creating ALEs (Figure 3) (53). Several of these lipid peroxidation metabolites have been 298 

classified as uremic toxins (38) and show direct adverse effects in CKD. As an example, 299 

arachidonic acid-based F2-isoprostane is not only associated with markers of renal function 300 

and being increased in HD (67) but also dose-dependently reduces GFR and renal plasma 301 

flow in rats (207). Furthermore, F2-isoprostane is associated with markers of inflammation 302 
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(67) and directly contributes to an adverse vascular phenotype similar to the clinical 303 

challenges observed in patients with CKD. Indeed, this metabolite induces vascular smooth 304 

muscle cell (VSMC) vasoconstriction (58), as well as endothelial dysfunction (248) in 305 

vitro. Importantly, the causal effects of lipid peroxidation radicals on renal function have 306 

recently been demonstrated by Kruger et al. (110) who have shown that lipid radicals 307 

directly impair podocyte motility and cytoskeletal structure through redox-sensitive RhoA 308 

signaling (Figure 3).  309 

As in the case of inflammation, dialysis not only fails to fully correct the oxidative stress 310 

associated with CKD, but in fact contributes to it through biocompatibility issues and fluid 311 

contamination risk (59). Renal transplantation, on the other hand, appears to correct both 312 

the pro-inflammatory and the pro-oxidant status (59, 192). Of particular interest in the 313 

context of CKD is albumin, a key plasma protein that is often depleted in the uremic milieu 314 

and regarded as a key part of the plasma’s anti-oxidant defense, with roles that include 315 

plasma thiol and homocysteine (Hcy) homeostasis, Cys and GSH metabolism, and binding 316 

of plasma solutes (59, 164). Oxidative damage can modify the Cys-34 residue of albumin 317 

and impair the functionality of this protein (164). 318 

The body possesses a range of protective mechanisms that can counteract oxidative 319 

stress through enzymatic and nonenzymatic anti-oxidants, but these mechanisms are often 320 

impaired in CKD (33). The list of anti-oxidant enzymes includes superoxide dismutase 321 

(SOD), catalase, and others regulated by an anti-oxidant response element (ARE) (33). The 322 

NRF2-KEAP1 axis is a key player in managing the anti-oxidant response that is down-323 

regulated in CKD (197). In the presence of oxidative stress, the transcription factor nuclear 324 

factor erythroid 2-related factor 2 (NRF2) is released from kelch like ECH-associated 325 
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protein 1 (KEAP1), translocates to the nucleus, and acts as transcription factor regulating 326 

the expression of >300 ARE-containing genes involved in cellular stress and damage repair 327 

(197, 200). Glyoxalase-1, the main enzyme responsible for detoxification of methylglyoxal 328 

and other AGEs, contains an ARE, but the extent to which it may be regulated by NRF2 is 329 

still a matter of debate (136, 218). Some important non-enzymatic anti-oxidants include 330 

GSH, as well as a range of dietary compounds or elements including vitamin C, E, 331 

polyphenols, zinc and selenium (33). Being fat-soluble, vitamin E is particularly important 332 

in the prevention of lipid peroxidation, and supplementation has shown positive results in 333 

CKD patients (167). A deficiency in dietary anti-oxidants has been reported in CKD 334 

patients (33). 335 

 336 

2.3) Early vascular ageing 337 

Early vascular ageing is a prominent feature of CKD that is associated with increased 338 

cardiovascular risk (199). Its causes have not been fully elucidated, but the existing 339 

evidence points to a key role for calcification driven by Ca++ and Pi homeostasis in the 340 

blood, as well as inflammation and allostatic load (186). Physiological levels or Ca++ and 341 

Pi are sufficiently high to induce spontaneous precipitation of calcium phosphate; however, 342 

this process is normally prevented by plasma proteins, primarily fetuin A, that bind 343 

crystallization nuclei into calciprotein particles (CPP) and prevent their growth (112). In 344 

CKD, however, the plasma concentration of Pi is increased due to dysregulation of the 345 

klotho-fibroblast growth factor 23 pathway that is responsible for Pi excretion and 346 

homeostasis (113). At the same time, fetuin A levels drops due to persistent inflammation, 347 

leading to a loss of the major protective mechanism (12, 102, 142). As a result, CPP´s 348 
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accumulate and are taken up by VSMC causing stress, cellular senescence, and a shift 349 

towards an osteogenic phenotype. This, in turn, leads to increased deposition of crystals in 350 

the extracellular matrix and eventually media calcification and vascular stiffness (102, 351 

230). Vascular endothelial cells also play a role in EVA. It has been shown that uremic 352 

serum induces ER stress and up-regulation of the pro-inflammatory NF-κB signaling in 353 

endothelial cells (102). 354 

 355 

2.4) Cellular senescence 356 

One major contributing factor to the accumulation of damage within the vascular system 357 

is cellular senescence, a state of permanent growth arrest of the cell that can be caused by 358 

a number of triggers, including oxidative stress, telomere erosion, persistent DNA damage 359 

signaling and oncogene activation (22). The transition into a senescent state is mediated by 360 

the p53/p21 and/or the p16/pRb pathways (22). Senescent cells are metabolically active, 361 

but physiologically non-contributory (193). They contain damage foci and are essentially 362 

pre-cancerous; however, they are resistant to apoptosis and survive by up-regulating a 363 

number of senescent cell anti-apoptotic pathways (SCAPs) (193). This feature enables 364 

senescent cells to survive some insults that would normally kill “healthy” cells (97). At the 365 

same time, this creates a “vulnerability” that allows specific killing of senescent cells 366 

through the use of senolytic compounds, as discussed below (193). Senescent cells exhibit 367 

a senescence-associated secretory phenotype (SASP) and release a range of factors, 368 

including pro-inflammatory cytokines and matrix metalloproteinases that increase 369 

inflammation, damage the ECM and induce senescence in other cells, either through the 370 

NF-κB pathway or via a paracrine mechanism (172, 193) that generates a non-cell-371 
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autonomous pro-senescence effect. Senescent cells are normally cleared by the immune 372 

system, but this process is not perfect and, as organisms age, they tend to accumulate in 373 

the body, though they remain a minority of the cells even at a very old age (9). However, 374 

due to the SASP, senescent cells play an important role in tissue dysfunction and 375 

accelerated ageing associated with CKD (34). In patients with advanced CKD, immune-376 

senescence markers are increased and a low relative telomere length is associated with 377 

mortality (27), especially in dialysis patients (16, 27). Indeed, a number of experiments in 378 

which senescent cells were cleared, or added in animal models, points to a causal link 379 

between cellular senescence and a number of features of ageing (6, 7, 97). Recent 380 

preliminary evidence suggests that senescent cell clearance may also be beneficial in 381 

humans (73).  382 

 383 

2.5) Uremic toxins and their effects on the kidneys and vascular function  384 

In advanced CKD, several organic compounds that accumulate in the body (219) produce 385 

an adverse response to the biological system (222). In recent years, a large number of such 386 

compounds, i.e. uremic toxins, has been identified and subsequently categorized into small 387 

water-soluble molecules, protein-bound molecules and middle molecules (38, 138, 223). 388 

For a variety of these uremic toxins, adverse cardiometabolic associations have been 389 

described with the most convincing clinical implications for the protein-bound uremic 390 

toxins indoxyl sulfate (IS) and p-cresyl sulfate (PCS). Both these toxins increase CpG 391 

hypermethylation and decrease mRNA and protein expression of the ageing-associated 392 

klotho gene in proximal tubule epithelial cells (204). Furthermore, they induce oxidative 393 

stress by a variety of mechanisms, including increased NADPH oxidase activity and ROS 394 
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production (234), but also a reduced anti-oxidative activity, i.e. reduced superoxide 395 

scavenging activity in the kidneys (157) or levels of anti-oxidants (43). Moreover, although 396 

IS and PCS have been shown to reduce mitochondrial mass by mitophagy (205), it should 397 

be noted that several other uremic toxins also attenuate mitochondrial function in human 398 

conditionally immortalized renal proximal tubule epithelial cells in vitro (143). In keeping 399 

with such a postulate, i.e. IS mediates pro-senescent effects through the induction of ROS 400 

(190), the anti-oxidant N-acetylcysteine inhibits IS-induced activation of p53 in vitro (190).  401 

Besides these progeric effects on the kidney, uremic toxins also affect vascular 402 

function in CKD (154). Furthermore, IS induces protein expression of p53, p21, and 403 

senescence-associated β-galactosidase (SA-β-gal) also in human aortic VSMC in vitro and 404 

N-acetylcysteine suppresses IS-induced effects (141). Furthermore, AST-120, which 405 

adsorbs uremic toxins and their precursors within the gastrointestinal tract (4), reduces the 406 

expression of these senescence and oxidative stress markers in the area of aortic 407 

calcification in uremic rats (141). Uremic toxins further impair vascular function through 408 

endothelium-dependent effects (153). Thus, IS significantly increases ROS production in 409 

human umbilical vein endothelial cells (HUVEC) in vitro (85, 161) were it enhances IL-1β-410 

induced oxidative stress. Both N-acetylcysteine and apocynin pretreatment inhibit the 411 

additive adverse effects of IS and IL-1β (183). Furthermore, oxidative stress and uremic 412 

toxins up-regulate microRNA-92a in endothelial cells resulting in endothelial dysfunction 413 

and atherosclerosis (182). These data are further supported by a translational study using 414 

AST-120 in CKD patients, which demonstrated improved endothelial function as assessed 415 

by flow-mediated endothelium-dependent vasodilatation (247).  416 
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Besides these studies, predominantly investigating protein-bound molecules, larger 417 

middle molecules, as well as small water-soluble compounds, could also significantly 418 

contribute to the development of CKD complications by mediating a pro-inflammatory and 419 

oxidative stress phenotype. Using an innovative scoring system, middle molecules and 420 

small water-soluble compounds scored lower for their toxicity and overall experimental 421 

and clinical evidence compared to protein-bound molecules (224). Among the most 422 

relevant members of both groups were asymmetric dimethylarginine (ADMA), 423 

trimethylamine (TMA)-N-oxide (TMAO), uric acid, as well as β2-microglobulin, ghrelin, 424 

and parathyroid hormone (224). As an example, ADMA is related to an inflammatory (228) 425 

and oxidative stress (236) phenotype and associates with an adverse outcome in patients 426 

with CKD (128). Middle molecules, such as pro-inflammatory cytokines, adipokines, and 427 

other hormones (224), also contribute to increased inflammation and oxidative stress, as 428 

well as other cardiometabolic risk factors (39). Whereas small water-soluble compounds 429 

can be removed by dialysis (224), dialytic removal of middle molecules is more difficult 430 

in conventional hemodialysis (164). Importantly, different dialysis strategies, for instance 431 

using protein-leaking dialyzers removing also larger middle molecules, can decrease 432 

markers of inflammation and oxidative stress compared to standard dialyzers (60), 433 

supporting the hypothesis that the full spectrum of uremic toxins can contribute to oxidative 434 

stress and pro-senescent phenotype in both kidneys and the vascular system with most 435 

pronounced effects for protein-bound toxins. Thus, inhibition of uremic toxins is a potential 436 

treatment option in CKD potentially attenuating cardiovascular morbidity and mortality.  437 
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3) CKD and allostatic load 438 

Individual trajectories of age-related health and disease progression are affected by inter-439 

individual differences in exposomes (i.e. physical and social environment, psychological, 440 

lifestyle and nutritional risk factors acting independently, cumulatively, or synergistically 441 

with an individual’s genome and epigenome over their life course). The ’burden of wear 442 

and tear’ is manifest as both physiological and molecular allostatic (over)load (Figure 4). 443 

Maintenance of physiological homeostasis in the face of allostasis, thus becomes 444 

increasingly difficult as uremic toxins accumulate in the course of CKD (186). 445 

Consequently, CKD can be viewed as a burden of lifestyle disease that is part of a 446 

“diseasome of ageing” (156) that shares common underpinning features and risk factors 447 

with the ageing process. In addition to chronic inflammation, oxidative stress and EVA, 448 

both the ageing process and CKD are also associated with sarcopenia, frailty, cognitive 449 

dysfunction, diminished NRF2 expression and an altered gut microbiome (103, 186, 189, 450 

197). The interplay between the exposome and the genome is thus mediated via the 451 

epigenetic landscape of ageing and reflected in changes in gene expression (186). In 452 

particular, changes in the methylome (i.e. DNA methylation) are of particular interest, as 453 

they provide a direct mechanistic link between the foodome (i.e. individual diet, its 454 

composition and the chemical structure of the ingredients), the gut microbiome, and the 455 

epigenome (130, 186).  456 

 457 

3.1) The role of the gut microbiome 458 

Maintenance of the methylome depends on a limited natural synthetic capacity for 459 

generating methyl donor metabolites, supplemented by the acquisition of methyl donor 460 
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metabolites and cofactors of the one-carbon metabolic pathway, such as choline and 461 

betaine, through diet and the microbial metabolic activity in the gut (132). The gut 462 

microbiota has gained significant attention in recent years and is increasingly seen as a 463 

“supplementary organ” with complex interactions with the rest of the body, relevant for 464 

health and disease (139). A range of gut microbes can metabolize compounds to (i) betaine 465 

that feeds into methyl donor group production and (ii) to generate TMA, which in turn gets 466 

oxidized by the liver into TMAO (186). TMAO has been shown to have pro-atherogenic 467 

and pro-inflammatory properties and may play a central role in inflammageing, age-related 468 

epigenetic changes, as well as CKD and CVD (41, 100, 140). Another microbial gut 469 

metabolite of note is butyrate, which has been shown to inhibit histone deacetylases 470 

involved in the regulation of chromatin (51). Epigenetic dysregulation is also a hallmark 471 

of ageing and CKD (188). 472 

A relatively novel finding is the association of CKD with intestinal dysbiosis and 473 

increased gut permeability, which can increase the leakage of bacterial DNA, endotoxins, 474 

and potentially whole microorganisms into the bloodstream (102, 137, 184). The gut 475 

microbiome has been shown to play an important role also in directly interacting with the 476 

immune system (118). In particular, loss of anti-inflammatory taxa may contribute to the 477 

increase in inflammation associated with CKD (25). Alkyl catechols, produced by certain 478 

bacteria from plant phenolic compounds, can up-regulate NRF2 and thus may also play a 479 

role in improving anti-oxidant defenses and provide increased resilience in CKD patients 480 

(197). 481 

  482 
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4) Novel treatment approaches 483 

As the landscape for potential therapies directed against the aforementioned mechanisms 484 

is broad, we have selected five groups of therapies for discussing potential treatment 485 

options (Figure 5). Thus, senotherapeutics are discussed as senescence is closely related to 486 

oxidative stress and inflammation (22). NRF2 is an attractive treatment target controlling 487 

oxidative stress and inflammation in many burden of lifestyle diseases, including CKD 488 

(28). We further present kidney-secreted klotho as a potential renal target for the treatment 489 

of inflammation (124, 252), oxidative stress (96), and premature ageing (115) in CKD. 490 

Moreover, we describe SGLT2 inhibitors as one of the most interesting and already 491 

approved pharmaceutical compounds for CKD and associated complications. Finally, live 492 

biotherapeutics are discussed with special emphasis on the foodome and gut microbiome 493 

(130). 494 

 495 

4.1) Senotherapeutics 496 

The prominent involvement of cellular senescence in CKD suggests that drugs that can 497 

target senescent cells, termed senotherapeutics, can be a novel treatment avenue for CKD. 498 

It is worth noting here that the body can tolerate a certain amount of senescent cells without 499 

apparent harm (73, 211). It is only above a certain threshold that cellular senescence 500 

becomes a problem (73). Therefore, even if senotherapies do not get rid of all senescent 501 

cells, as long as they can provide sufficient clearance to bring the senescent load below the 502 

critical threshold, they have a chance of providing a meaningful benefit (73). Indeed, 503 

several studies have shown benefits of senotherapy after a clearance of approximately 30% 504 

of the senescent cell population (73). 505 
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Recent times has seen the development of the field of Geroscience, which 506 

champions the translational aspects of research on ageing. The development of 507 

senotherapies falls under its aegis. This includes development of (i) senolytics - compounds 508 

that selectively kill senescent cells. Examples include repositioned drugs such as Dasatinib, 509 

typically used in combination with alkyl-catechols such as Quercitin, which remove the 510 

apoptotic block in senescent cells; and (ii) senostatics or senomorphics, that suppress the 511 

SASP without killing the senescent cells themselves (57, 73, 171). 512 

The development of serotherapeutics, and in particular senolytics, is exciting. They 513 

have clearly demonstrated significant health benefits in pre-clinical – and, recently, 514 

possibly clinical – models (6, 7, 73, 90, 97). Due to the immaturity of the field, however, 515 

several caveats need noting, though it must be stressed that these do not preclude 516 

translational use of senotherapeutic agents, which would appear churlish based on pre-517 

clinical data. Firstly, when and where to use these agents in the life course. Antagonistic 518 

pleiotropy (237) is a concept that is pertinent in this respect, as it stipulates that what is 519 

good for you in old age is not necessarily good for you at a younger age and vice versa. 520 

Cellular senescence firmly falls under its umbrella, being onco-protective in old age, but 521 

undesirable when young as it reduces physical capability (186). The long-term effects of 522 

senotherapeutics applied under normative conditions for ageing and in disease thus need 523 

to be established. Secondly, another concern is that their use may in the longer-term lead 524 

to depletion of the body’s regenerative capacity and or contribute to adverse changes in the 525 

epigenetic landscape, both of which are hallmarks of ageing. Thirdly, different 526 

senotherapeutic agents have different levels of efficacy in different cell types, making it 527 

unclear which treatment – or combination of treatments – would be best suited as a therapy 528 
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in the context of age-related multi-morbidity, or to treat dysfunction in a multi-cell type 529 

organ such as the kidney.  530 

 531 

4.2) NRF2 532 

The NRF2 system may provide a targeted node for intervention that is common to the range 533 

of morbidities manifesting within the diseasome of ageing (197). More specifically, NRF2 534 

expression is low in several burden of lifestyle diseases, including autoimmune (e.g. 535 

multiple sclerosis), respiratory (e.g. smoking-related lung emphysema), gastrointestinal 536 

(e.g. primary biliary cholangitis), metabolic (e.g. insulin resistance and non-alcoholic 537 

steatohepatitis), and neurodegenerative (e.g. Huntington disease) (29, 197). NRF2 and its 538 

repressor KEAP1 are key regulators of cellular stress and damage defenses and therefore 539 

represent potential treatment options for a wide range of disease states. In CKD, single 540 

nucleotide polymorphism studies of the NRF2-coding NFE2L2 gene have revealed a link 541 

with outcome (191). Furthermore, in addition to its beneficial effects on components of 542 

metabolic syndrome (241), NRF2 is also associated with attenuated risk for progression of 543 

diabetic kidney disease (DKD) (89) and to be in the center of inflammation- and 544 

metabolism-related pathways for CKD (134).  545 

Mechanistically, NRF2 can induce the generation of NADPH and the expression of 546 

anti-oxidant enzymes through the ARE in the promoter regions of target genes (29). Thus, 547 

an NRF2-mediated anti-oxidant response is activated in human CKD glomeruli that are 548 

under increased oxidative stress (89). Interestingly, higher levels of oxidative stress and 549 

damage, as assessed by 8-oxo-dG staining, were evident in glomeruli of NRF2-deficient 550 

mice compared to wild-type controls (89). Besides its anti-oxidative response, NRF2 exerts 551 
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direct and indirect anti-inflammatory effects through the inhibition of NF-κB signaling 552 

(214) and pro-inflammatory cytokines, e.g. IL-1b and IL-6 (99). Moreover, ER stress, 553 

which can activate a maladaptive unfolded protein response (UPR) potentially affecting 554 

different renal pathologies (84), is directly linked to NRF2. Thus, ER stress induces nuclear 555 

translocation and DNA-binding activity of NRF2, as well as NRF2-dependent gene 556 

expression in 3T3-L1 adipocytes in a protein kinase RNA-like ER kinase (PERK)-557 

dependent fashion (30), i.e. one of the major adaptive UPR pathways (83). Importantly, 558 

these findings were also validated in human kidney 2 (HK-2) tubular epithelial cells (20). 559 

NRF2 nuclear translocation is further mediated by ER-produced H2O2 during ER oxidative 560 

protein folding, which in turn is related to intracellular Ca++ homeostasis (66). As ER stress 561 

also directly causes premature senescence (125, 126), NRF2 hypothetically can link tissue 562 

dysfunction and premature aging in CKD, not only through anti-oxidative effects, but also 563 

by affecting cell organelle stress/crosstalk. In addition, autophagy as one of the key 564 

mechanisms for clearance of mis-folded proteins (32), is also bi-directionally linked to 565 

NRF2 through the adaptor protein p62 (88). Thus, the NRF2 inducer sulforaphane exerts 566 

beneficial renal effects in a model of obesity-related glomerulopathy with higher potency 567 

compared to the conventional anti-oxidant N-acetylcysteine (129). Lu et al. (129) have 568 

demonstrated that on top of the well-established anti-oxidative effects, NRF2 enhances 569 

markers of autophagy in podocytes (129), a finding similar to data obtained in pancreatic 570 

islets (121) and cardiomyocytes (231). By way of contrast, when autophagy is diminished 571 

in adipocytes, the adaptor protein p62 accumulates and acts as an endogenous inducer of 572 

NRF2 (13) by competing for NRF2 binding to KEAP1 (101). It needs to be pointed out 573 

that chronic activation of autophagy can also have deleterious effects. Thus, induction of 574 
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p62 expression and subsequent NRF2 might stimulate tumor growth (82, 235). Indeed, 575 

NRF2 is related to cancer progression, metastasis, as well as resistance to chemo- and 576 

radiotherapy (174). 577 

Keeping the aforementioned issues in mind, NRF2-based treatment could be one 578 

option to reduce the chronic burden of lifestyle diseases and particular CKD by attenuating 579 

persistent inflammation, oxidative stress, as well as ER stress and autophagy. Several 580 

targets for NRF2 activation have recently been summarized including both pharmacologic 581 

and nutriceutical compounds (29). Bardoxolone is one of the most promising 582 

pharmacological candidates with positive renal outcome data in a phase 2 trial in patients 583 

with DKD (162). Using a closely related bardoxolone analog in rodents, NRF2 treatment 584 

has been shown to improve redox balance, mitochondrial function, and to suppress 585 

inflammation (144). However, previous treatment approaches for patients with DKD using 586 

bardoxolone have been terminated (250) due to an excess of heart failure hospitalizations 587 

in the bardoxolone group. Interestingly, post-hoc analyses have recently demonstrated that 588 

bardoxolone users were significantly less likely to develop a composite renal endpoint (23). 589 

Thus, the question remains whether bardoxolone exerts positive effects on renal function 590 

in carefully selected patients without signs of heart failure, which is presently being 591 

investigated in randomized controlled trials (21). Besides pharmacological compounds 592 

(29), nutritional NRF2 modulators have been described (197), and distinct nutritional 593 

components can modulate NRF2 especially in CKD (46). Among others, the alkyl-594 

catechols sulforaphane (inter alia derived from broccoli) and curcumin (inter alia derived 595 

from turmeric plant) appear to be the most attractive candidates (46, 197). Few studies have 596 

investigated the effects of nutritional NRF2 modulators in human burden of lifestyle 597 
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diseases (111), such as CKD (17, 18). Importantly, curcumin’s effects to decrease renal 598 

fibrosis, inflammation, and oxidative stress (2, 3) have been already validated in several 599 

small randomized controlled trials in CKD (2) and HD (3) patients. Taken together, NRF2 600 

is a promising candidate for the treatment of inflammation, oxidative stress, and related 601 

disturbances, including ER stress and autophagy, in numerous chronic burden of lifestyle 602 

diseases, including CKD, and several pharmacological and non-pharmacological treatment 603 

options are already available. 604 

 605 

4.3) Klotho  606 

Klotho is a single-pass transmembrane protein predominantly expressed in the kidneys that 607 

regulates ageing and morbidity (114). Klotho-deficient mice display increased renal 608 

inflammation (124, 252), oxidative stress (96), a senescent phenotype (124), decreased 609 

autophagy (185), as well as a premature ageing (115) – a condition resembling the 610 

deleterious features of CKD. As patients and animals with CKD have decreased protein 611 

levels of klotho in the plasma, urine, and the kidneys (79), targeting klotho is a promising 612 

approach for the prevention of progression, complications, and the premature ageing 613 

processes in renal dysfunction (78).  614 

Like NRF2, klotho expression in CKD can be targeted by different approaches, 615 

either by increasing endogenous klotho expression or direct administration of exogenous 616 

klotho (253). From a practical perspective, this might be achieved from an epigenetic 617 

approach via demethylation of the klotho promoter and/or associated histone deacetylation 618 

to loosen the local chromatin configuration (149, 253). In this context, it is notable that IS 619 

and PCS directly induce hypermethylation of the Klotho gene (149, 204). Furthermore, 620 
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several drugs, already approved for the treatment of other diseases frequently observed in 621 

CKD, up-regulate klotho expression (253). However, and in contrast to extensive studies 622 

in rodents, human data for klotho-based treatment approaches are lacking. While no human 623 

study to date has investigated distinct klotho therapies, including administration of 624 

exogenous klotho on CKD (254), several clinical trials on endogenous klotho inducers have 625 

been published. The peroxisome proliferator-activated receptor γ agonist pioglitazone, for 626 

example, increases renal klotho expression and reduces oxidative stress (242). Thus, 627 

thiazolidinedione treatment, i.e. pioglitazone, in patients with CKD reduces markers of 628 

renal dysfunction possibly by affecting oxidative stress, inflammation, and other CKD-629 

associated maladies (reviewed in (176)). Furthermore, several vitamin D analogs induce 630 

the expression of klotho in distinct tissues, as well as increase urinary and serum klotho 631 

levels (117, 170). Conversely, vitamin D deficiency is associated with increased oxidative 632 

stress, inflammation, and cellular senescence (i.e. “inflammageing” (56)) (52) and vitamin 633 

D supplementation improves markers of oxidative stress according to a recent systematic 634 

review and meta-analysis (181). However, data from studies in patients with CKD show 635 

conflicting results of vitamin D receptor activators and their effects on markers of oxidative 636 

stress (86, 213, 216). Moreover, statins have been observed to increase klotho mRNA 637 

expression (146) and further data suggest that statins (246) reduce oxidative stress in 638 

experimental cyclosporine nephropathy via modulation of klotho. However, in patients 639 

with CKD statin treatment, as part of an anti-oxidative therapy, does not induce circulating 640 

klotho compared to placebo (1) and atorvastatin treatment does not reduce oxidative stress 641 

(49). Randomized controlled trials indicate that the effects of statins on mortality in CKD 642 

are also independent of inflammation (108, 202), suggesting that the beneficial renal 643 
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effects of statins on klotho observed in rodents do not translate in increased systemic klotho 644 

and oxidative stress in humans. In addition, activation of the nuclear androgen receptor 645 

(e.g. by testosterone) increases renal klotho gene expression (77). Direct administration of 646 

exogenous soluble klotho is another option to increase circulating klotho levels, which has 647 

been reported to exert renoprotective effects in rats with AKI (80) and mice progressing 648 

from AKI to CKD (185). In conclusion, animal and human data on endogenous klotho 649 

inducers show contradicting results for renal compared to systemic oxidative stress and 650 

inflammation in CKD.  651 

 652 

4.4) SGLT2 inhibitors / Other approaches 653 

SGLT2 inhibitors were introduced as a new class of glucose-lowering medication, and the 654 

first members received their EMA- and/or FDA-approval in 2012/2013. SGLT2 inhibitors 655 

induce glucosuria by different mechanisms, but particularly through reduced tubular 656 

reabsorption of glucose (37). With respect to effects in CKD, data from randomized 657 

controlled CVD outcome trials have shown beneficial renal effects for empagliflozin (233), 658 

dapagliflozin (239) and canagliflozin (147). Since a recent renal outcome trial with a pre-659 

specified primary renal endpoint has confirmed these findings (163), SGLT2 inhibitors are 660 

considered as a novel therapy for CKD due to type 2 diabetes reducing the risk of dialysis, 661 

transplantation or death and protecting against AKI (148). Potential mechanisms through 662 

which SGLT2 inhibitors improve renal function include beneficial hemodynamic, 663 

vascular, metabolic, anti-oxidative, inflammatory, hypoxic and diuretic effects (69). 664 

Although hemodynamic changes due to altered tubulo-glomerular feedback (95) are often 665 

believed to be a key mechanism of SGLT2 inhibitors, inflammation and oxidative stress, 666 



 

 

31 

 

 

 

as well as renal hypoxia, could also play major roles. Indeed, recent data suggests that 667 

SGLT2 inhibitors protect kidney function through improvement of renal hypoxia (72, 179). 668 

As hyperglycemia causes tubular senescence via a SGLT2- and p21-dependent pathway in 669 

the type 1 diabetic kidney (98), the effects of SGLT2 inhibitors on kidney senescence, 670 

SASP and NRF2 expression need to be tested. Human studies suggest that SGLT2 671 

inhibitors reduce circulating markers of inflammation and improve the adipocytokine 672 

profile (11). As several adipose tissue-secreted cytokines are associated with inflammatory 673 

markers in CKD (40, 75, 104, 105, 151), Bonnet and Scheen (11) have suggested that 674 

SGLT2 inhibitors act on adipose tissue, as well as on distinct other organs, to reduce 675 

systemic inflammation. Regarding renal inflammation, data are limited to rodent studies 676 

(11, 93), where the SGLT2 inhibitor empagliflozin reduced renal inflammation in mouse 677 

models of DKD (65, 152, 220). SGLT2 inhibitors have also improved renal oxidative stress 678 

in several rodent models of DKD. In more detail, different SGLT2 inhibitors reduced 679 

oxidative stress in diabetic rats (152, 155) or mice (68, 212) by improved anti-oxidant 680 

enzyme activities (155), suppression of the AGE/RAGE-axis (152), as well as decreased 681 

production of ROS and Nox4 expression (68, 212). It should be noted however, that these 682 

effects of SGLT2 inhibitors on rodent DKD cannot specifically determine the cause of 683 

reduced inflammation/oxidative stress. Thus, a direct effect could still be possible. In 684 

contrast, they might also be the result of secondary improvements due to lower body 685 

weight, improved hyperglycemia, and other effects. It also has to be pointed out that there 686 

is a lack of rodent models of DKD replicating the main features of human DKD (5) and 687 

there is a huge difference in the renal phenotype, e.g. on albuminuria, between standard 688 

diabetic mouse models compared to accelerated models (106, 215). This is congruent with 689 
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a general feature of laboratory studies, where the rodents employed are metabolically 690 

morbid and lacking appropriate features of either human pathogenesis or normative ageing 691 

(120, 133, 156). A biomimetic approach identifying wild animals that during evolution in 692 

extreme environments have developed mechanisms that protect them against ageing, CKD 693 

and metabolic dysfunctions may yield important additive clues (135, 198). Therefore, 694 

carefully matched animal experiments are needed to verify the results excluding secondary 695 

effects. If such pleiotropic effects, i.e. independent of metabolic and hemodynamic 696 

changes, can be confirmed, SGLT2 inhibitors can be a treatment target for other CKD 697 

causes than just DKD – a concept being currently investigated for example in the EMPA-698 

KIDNEY study (70).  699 

 700 

4.5) Live biotherapeutics  701 

Multiple studies have linked gut dysbiosis and CKD (102, 194). CKD patients often display 702 

reduced microbial diversity, though this finding is not always consistent between studies, 703 

accompanied by a decrease in bacteria producing short-chain fatty acids (SCFA) from fiber 704 

and an increase in bacteria that produce uremic toxins such as TMAO, IS, and PCS (139, 705 

194). Possible biotherapeutic treatment strategies for CKD include dietary therapy, 706 

prebiotics (ingredients that stimulate the growth of a desired microorganisms), probiotics 707 

(live microorganisms), synbiotics (combining both prebiotics and probiotics), as well as 708 

host and bacterial enzyme inhibition (48). However, given the dietary restrictions, 709 

therapies, and frequent comorbidities found in CKD patients, further studies may be 710 

warranted to identify specific causal links and therapeutic options (116, 194). For instance, 711 

potassium and phosphorus intake are restricted in CKD patients due to the increased risk 712 



 

 

33 

 

 

 

of adverse outcomes, but these restrictions also limit fruit and vegetable intake and affect 713 

the gut microbiome (116). Nevertheless, a number of studies have found beneficial effects 714 

in CKD patients for a range of diets, most notably a Mediterranean or a vegetarian diet 715 

(139).  716 

Perhaps in part due to the limits of current knowledge, studies with probiotics and 717 

prebiotics have produced inconsistent results (194). Increasing microbial SCFA production 718 

has been proposed as a possible therapeutic intervention (81). SCFA regulate immunity, 719 

blood pressure and glucose metabolism; to be involved in the health of colonic epithelial 720 

cells, signal transduction, epigenetic maintenance and autophagy; and to ameliorate kidney 721 

dysfunction (81, 116, 238). Alternatively, decreasing the intestinal production of uremic 722 

toxins can also be a valid approach (194), and studies have shown some efficacy using 723 

synbiotics or prebiotics (139, 238). 724 

One enzymatic approach has focused on acarbose, an inhibitor of α-glucosidase 725 

that limits the hydrolysis of polysaccharides and oligosaccharides in the intestine, 726 

stimulating the growth of saccharolytic bacteria, reducing the production of p-cresol (145). 727 

Indeed, studies in healthy volunteers indicate that acarbose may shift gut microbial 728 

metabolism away from proteolytic fermentation and towards saccharolytic fermentation 729 

(47). Importantly, acarbose therapy is also associated with experimental longevity (203). 730 

Another strategy under investigation is the use of 3, 3-dimethyl-1-butanol (DMB), an 731 

inhibitor of microbial TMA production, that has led to decreased levels of TMAO in the 732 

blood and reduced atherosclerotic lesion development (145). 733 

  734 
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5) Conclusions 735 

Increasing healthcare costs in patients with CKD, overall detrimental outcomes, and 736 

deficiency of optimal treatments, including organ donation, place a tremendous pressure 737 

on healthcare providers, scientists, and patients and their families per se. Innovative 738 

therapeutics based on the identification of selective injury targets might serve to develop 739 

precision medicine to optimize healthcare costs, disease monitoring, targeted interventions, 740 

as well as outcomes, including patients’ quality of life. In this review, we view CKD as a 741 

burden of lifestyle disease, underpinned by a dysregulated ageing process common to the 742 

“diseaseome of ageing”. A systemic approach to tackle CKD, based on attenuating the 743 

associated inflammatory, cell stress, mitochondrial dysfunction and damage processes, has 744 

the potential to mitigate the effects of CKD, but also pre-empt the development and 745 

progression of associated morbidities. In effect, this will enhance health span and compress 746 

the period of morbidity. Pharmacological, as well as nutritional and potentially lifestyle-747 

based, interventions are promising therapeutic avenues to achieve such a goal.  748 

  749 
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Figure legends 750 

 751 

Figure 1. M 752 

                   The main effects of oxidative stress on the damage of different organs and 753 

functions in chronic kidney disease (CKD). CKD and its complex 754 

comorbidities are crucially connected through oxidative stress. Thus, increased 755 

renal oxidative stress contributes by several mechanisms to CKD progression, 756 

thereby causing end-stage kidney disease (ESKD) and associated 757 

complications. Oxidative stress further induces early vascular ageing (EVA) 758 

and its major components, i.e. increased arterial stiffness and endothelial 759 

dysfunction, linking EVA with cardiovascular (CV) morbidity and mortality. 760 

Oxidative stress also gives rise to a pro-inflammatory milieu and its associated 761 

complications. In addition, oxidative stress is associated with metabolic 762 

disturbances contributing to cardiometabolic and CV complications. Oxidative 763 

stress further contributes to anemia and its sequelae. EPO, Erythropoietin; 764 

NLRP3, NLR family pyrin domain containing 3; NRF2, Nuclear factor 765 

erythroid 2-related factor 2. 766 

 767 

Figure 2. CKD and its pathophysiological consequences. Patients with CKD 768 

experience complications through different key patho-mechanisms including 769 

oxidative stress, uremic toxins and inflammation, that are interrelated. These 770 

pivotal features of impaired renal function contribute to an adverse phenotype 771 

of patients with CKD, which in turn correspond to CKD progression, as well 772 

as increased morality. Renal replacement therapy, e.g. dialysis treatment, can 773 

influence both the key patho-mechanisms and the deleterious CKD phenotype 774 

in a beneficial (i.e. inhibitory [green]) or adverse (i.e. stimulating [red]) 775 

fashion. CV, Cardiovascular.  776 

 777 

Figure 3. Processes of protein, lipid, DNA, and cell organelle damage, as well as 778 

impaired cellular redox in CKD. The redox imbalance in CKD due to 779 

increased oxidative stress and decreased anti-oxidant defenses leads to protein, 780 
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lipid, DNA, as well as cell organelle damage. Protein damage, either by 781 

advanced oxidation protein products (AOPPs), advanced glycation end-782 

products (AGEs) or advanced lipoxidation end-products (ALE’s), contributes 783 

to structural renal defects, as well as pro-inflammatory and pro-oxidative 784 

effects both in the kidneys and systemically. Lipid damage as a consequence 785 

of increased concentrations of metabolites from the oxidation of unsaturated 786 

fatty acids, e.g. 4-hydroxy-2-nonenal (HNE), malondialdehyde (MDA); or 787 

arachidonic acid (F2-isoPs [F2-isoprostanes]), directly induces adverse 788 

changes in renal hemodynamics but can also react with the amino acid residues 789 

of proteins, thereby creating ALE’s that can signal through redox-sensitive 790 

RhoA. DNA damage in the nucleus and in mitochondria (mtDNA) occurs 791 

through oxidation of guanine (G) with oxidation products of G such as 8-792 

hydroxydeoxyguanosine (8-OH-dG) and 8-oxodeoxyguanosine (8-oxo-dG). 793 

DNA damage is further associated with cellular senescence. Several cell 794 

organelles are damaged in CKD and uremic environment. Thus, the 795 

endoplasmatic reticulum (ER) in CKD is dysfunctional. Furthermore, 796 

peroxisomes, cellular organelles with redox function, are also dysfunctional in 797 

CKD. Moreover, mitochondria in patients with CKD show reduced mass, 798 

integrity, and function. Nicotinamide adenine dinucleotide (NAD+) can 799 

attenuate protein, DNA, and organelle damage but is depleted in CKD due to 800 

impaired biosynthesis and augmented consumption. The PPARγ co-activator 801 

1α (PGC-1α) improves mitochondrial biogenesis, as well as increases NAD 802 

biosynthesis through the de novo pathway. By phosphorylation, NAD+ further 803 

contributes to the cellular redox state through NADP+ and its conversion to 804 

NADPH in the pentose phosphate pathway. NADPH is then further linked to 805 

glutathione (GSH)/glutathione disulfide (GSSG) metabolism, crucially 806 

contributing to the anti-oxidant defense. Beneficial (green) or adverse (red) 807 

effects are depicted by arrows.  808 

 809 

Figure 4. Allostatic load in health and disease. The presence of stress generated by the 810 

external environment and the internal milieu causes allostasis. The associated 811 



 

 

37 

 

 

 

accrual of ‘wear and tear’ results in an allostatic load. The body adjusts its 812 

physiology to compensate for this in order to maintain physiological 813 

homeostasis. However, over time the allostatic load will accrue to a point of 814 

allostatic overload when physiological homeostasis becomes dysregulated and 815 

pathology can arise, unless a therapeutic intervention reestablishes 816 

homeostasis.  817 

  818 

Figure 5. Novel treatment concepts for inflammation and oxidative stress for the 819 

reduction of CKD complications. A) Senotherapeutics act by clearing or 820 

mitigating the effects of senescent cells and suppressing the SASP, thus 821 

counteracting ageing and reducing inflammation. B) Activation of the 822 

transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) in CKD 823 

reduces renal inflammation and oxidative stress and improves the pro-824 

senescent milieu in CKD. By these renal, as well as similar systemic, effects 825 

NRF2 can potentially reduce CKD progression and complications. C) 826 

Endogenous or exogenous activation of klotho improves renal inflammation 827 

and oxidative stress. Klotho further improves the vascular phenotype, i.e. 828 

calcification and renal ageing. D) Inhibitors of the sodium–glucose 829 

cotransporter 2 (SGLT2) increase glucosuria and improve metabolic function, 830 

e.g. reducing body weight, blood glucose, blood pressure. Besides these 831 

glucosuria-related effects, SGLT2 inhibition reduces renal inflammation, 832 

hypoxia, and oxidative stress. Furthermore, SGLT2 inhibitors directly induce 833 

beneficial hemodynamic changes through tubuloglomerular feedback and 834 

improve renal vascular function. E) Live biotherapeutics can reduce 835 

inflammation caused by gut dysbiosis and reinstate a healthier metabolism in 836 

the gut, reducing the production of uremic toxins and increasing the production 837 

of health-promoting metabolites. 838 
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8-OH-dG  8-hydroxydeoxyguanosine  860 

8-oxo-dG  8-oxodeoxyguanosine 861 

ACR  Albumin-to-creatinine ratio 862 

ADMA Asymmetric dimethylarginine  863 

AGE  Advanced glycation end-products 864 

ALE  Advanced lipoxidation end-products 865 

AOPP  Advanced oxidation protein products 866 

ARE  Anti-oxidant response element 867 

CKD   Chronic kidney disease 868 

CPP  Calciprotein particles 869 

CRP  C-reactive protein 870 

CVD  Cardiovascular disease 871 

DDR  DNA damage response 872 

DKD  Diabetic kidney disease 873 

DMB  3, 3-dimethyl-1-butanol 874 

ECM  Extracellular matrix 875 

eGFR  estimated glomerular filtration rate 876 

ER  Endoplasmic reticulum 877 

ESKD  End-stage kidney disease 878 

EVA  Early vascular ageing 879 

HDL  High-density lipoprotein 880 

IFN-γ   Interferon gamma 881 
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IL  Interleukin 882 

IS   Indoxyl sulfate 883 

KEAP1 Kelch like ECH-associated protein 1 884 

MDA  Malondialdehyde 885 

mtDNA Mitochondrial DNA 886 

NF-κB  Nuclear factor-κB 887 

NRF2  Nuclear factor erythroid 2-related factor 2 888 

PCS  p-cresyl sulfate 889 

RAGE  AGE receptor  890 

RBC  Red blood cells 891 

RCS  Reactive carbonyl species 892 

RNS  Reactive nitrogen species 893 

ROS  Reactive oxygen species 894 

RRT  Renal replacement therapy 895 

SASP  Senescence-associated secretory phenotype 896 

SCAP  Senescent cell anti-apoptotic pathway 897 

SCFA  Short-chain fatty acids 898 

SGLT2 Sodium–glucose cotransporter 2 899 

TMAO  Trimethylamine (TMA)-N-oxide 900 

TNF  Tumor necrosis factor 901 

VSMC  Vascular smooth muscle cells 902 
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