

Ebert, T., Neytchev, O., Witasp, A., Kublickiene, K., Stenvinkel, P. and Shiels, P. (2021) Inflammation and oxidative stress in CKD and dialysis patients. *Antioxidants and Redox Signaling*, (doi: <u>10.1089/ars.2020.8184</u>).

This is the Author Accepted Manuscript.

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/242796/

Deposited on: 02 June 2021

 $Enlighten-Research \ publications \ by \ members \ of \ the \ University \ of \ Glasgow \ \underline{http://eprints.gla.ac.uk}$

1		
2	FORUM REVIEW ARTICLE	
3	Inflammatio	on and oxidative stress in CKD and dialysis patients
4 5		
6	R	unning Head: Inflammation and oxidative stress in CKD
7	I.	anning field. Inflating and oxidative stress in Citiz
8		
9	Thomas Ebert ^{1#*}	⁶ , Ognian Neytchev ^{2#} , Anna Witasp ¹ , Karolina Kublickiene ¹ , Peter
10 11		Stenvinkel ^{1#} , Paul G. Shiels ^{2#}
11 12		
13 14	1. Karolinska Insti	tutet, Department of Clinical Science, Intervention and Technology,
15	Division of Renal Medicine, Stockholm, Sweden	
16	2: University of Glasgow, Wolfson Wohl Cancer Research Centre, College of Medical,	
17 18	Veterinary & Li	fe Sciences, Institute of Cancer Sciences, Glasgow, U.K.
18 19		
20	[#] These authors equa	ally contributed to this work
21	*Corresponding aut	hor
22 23		
24		
25		
26 27	Corresponding author:	Thomas Ebert, M.D., Mailing address: Blickagången 16,
28		SE-141 57 Huddinge, Sweden. Phone: +46-70-2265335
29		E-mail: <u>Thomas.ebert@ki.se</u>
30		ORCID ID: 0000-0003-1683-9276
31	Word count text:	8008
32	Keywords:	Ageing; Allostatic load; Chronic kidney disease; End-stage kidney
33		disease; Inflammation; Oxidative stress, Premature ageing;
34		Senescence; Uremic toxins.

35 Abstract

Significance: Chronic kidney disease (CKD) can be regarded as a burden of lifestyle
disease that shares common underpinning features and risk factors with the ageing process;
a complex constituted by several adverse components, including chronic inflammation,
oxidative stress, early vascular ageing and cellular senescence.

40 Recent Advances: A systemic approach to tackle CKD, based on mitigating the associated 41 inflammatory, cell stress and damage processes, has the potential to attenuate the effects 42 of CKD, but also pre-empts the development and progression of associated morbidities. In 43 effect, this will enhance health span and compress the period of morbidity. 44 Pharmacological, nutritional and potentially lifestyle-based interventions are promising 45 therapeutic avenues to achieve such a goal.

46 Critical Issues: In the present review, currents concepts of inflammation and oxidative 47 damage as key pathomechanisms in CKD are addressed. In particular, potential beneficial 48 but also adverse effects of different systemic interventions in patients with CKD are 49 discussed.

50 **Future Directions:** Senotherapeutics, the NRF2–KEAP1 signaling pathway, the endocrine 51 klotho axis, inhibitors of the sodium–glucose cotransporter 2 (SGLT2), and live bio-52 therapeutics have the potential to reduce the burden of CKD and improve quality of life, as 53 well as morbidity and mortality, in this fragile high-risk patient group.

55 Significance statement

56 Patients with chronic kidney disease (CKD) and its associated complications show a dysregulated ageing process, common to the diseaseome of ageing, that includes increased 57 58 chronic inflammation, oxidative stress, early vascular ageing and cellular senescence. 59 Therefore, systemic approaches to tackle CKD are needed to mitigate the inflammatory, 60 cellular stress and damage processes associated with CKD. Pharmacological, nutritional and potentially lifestyle-based interventions are promising therapeutic avenues to pre-empt 61 the development and progression of CKD-associated comorbidities, thereby enhancing 62 63 health span and improving quality of life.

65 1) CKD as a public health priority

Chronic kidney disease (CKD) has been defined as "abnormalities of kidney structure or 66 function, present for >3 months, with implications for health" according to KDIGO 67 guidelines (94). Patients with CKD are classified using different biomarkers of kidney 68 69 function (e.g. estimated glomerular filtration rate (eGFR) and albuminuria as assessed by 70 albumin-to-creatinine ratio (ACR) (94)), because of their well-established association with 71 CKD progression to end-stage kidney disease (ESKD) and mortality (55, 119). 72 Importantly, mortality is extremely high in ESKD patients requiring renal replacement 73 therapy (RRT) (87, 195). According to a recent ERA-EDTA registry annual report, patients 74 aged 20-44 years on RRT live only one-third of the expected remaining lifetime of the age-75 matched general population (107). Compared to the general population, patients with CKD 76 have a highly accelerated and premature ageing process, a complex constituted by several 77 adverse components, including vascular disease, chronic inflammation, osteoporosis, 78 periodontal disease, depression, sarcopenia and other maladies (34) (Figure 1). Early 79 vascular ageing (EVA) in particular, resulting in increased arterial stiffness and endothelial 80 dysfunction, is thought to be a crucial patho-mechanism linking CKD with mortality. Thus, 81 several biomarkers of inflammation and endothelial dysfunction are associated with greater 82 arterial stiffness even in apparently healthy adults (221). Furthermore, oxidative stress is 83 also associated with endothelial dysfunction through different mechanisms (150, 244, 249). 84 Collectively, there is a vicious cycle comprising oxidative stress, inflammation, CKD, and 85 premature cardiovascular disease (CVD) (169). As a consequence, therapeutic aims for 86 reducing EVA and CVD mortality in CKD should include control of inflammation, 87 reduction of oxidative stress, and improvement of endothelial dysfunction (31) (Figure 2).

88 It has also been reported that patients with asymptomatic proteinuria exhibit low-grade inflammation linked to endothelial dysfunction (158). As EVA in CKD can be both a cause 89 90 and a consequence of the underlying renal disease, factors contributing to this pro-91 senescence milieu are important potential treatment options in the uremic milieu. In this 92 review, we summarize current concepts of inflammation and oxidative stress in CKD as 93 crucial pathophysiological mechanisms of the uremic phenotype and provide a perspective on possible future treatment options for treating all three components, i.e. CKD, 94 95 inflammation, and oxidative stress.

97 2) The many facets of CKD

98 The main role of the kidney is to maintain the homeostatic balance of a variety of solutes 99 in the blood and to excrete undesirable components. This activity comes at a significant 100 metabolic cost: the kidney and the heart have the highest specific resting metabolic rate of 101 all major organs, roughly twice higher than that of brain or liver (232). In order to carry 102 out their function, the kidneys are highly vascularized and receive roughly a quarter of the 103 cardiac output (139). In addition, the health of the vasculature and the integrity of the 104 endothelium are also crucial for the proper function of the kidney and its ability to filter 105 the blood (245). It is therefore unsurprising that the kidney is an especially vulnerable target 106 for the homeostatic imbalances that accompany CKD: chronic inflammation, oxidative 107 stress, EVA, and accumulation of uremic toxins (31, 33). Oxidative stress stands out as a 108 major contributor to many adverse facets of CKD (Figures 1, 2, and 3) and will be discussed 109 in detail below.

110

111 <u>2.1) Chronic inflammation</u>

112 Inflammation is an essential response mechanism that allows the body to cope with a 113 variety of external (e.g. pathogens) and internal (e.g. damaged or cancerous cells) threats 114 (8). In acute inflammation, a triggering stimulus leads to an inflammatory response 115 involving (i) the release of cytokines and chemokines, most notably interleukins (IL)-1 and IL-6, interferon gamma (IFN- γ), and tumor necrosis factor (TNF) that drive both a 116 117 localized and a systemic response; (ii) the recruitment and proliferation of immune cells, 118 particularly macrophages and neutrophils; (iii) the eventual clearing of the threat, followed 119 by a return to baseline and tissue repair (8). However, if clearing fails, or the inflammatory

120 response cannot be switched off, the resulting chronic inflammation leads to tissue 121 dysfunction and damage, including fibrosis, stem cell depletion, and increased cellular 122 senescence (8, 188). Indeed, chronic inflammation is bi-directionally linked to CKD (26). 123 On the one hand, the uremic milieu drives uremic inflammation, which shares common 124 features with the chronic low-grade inflammation associated with ageing, known as 125 "inflammageing"; on the other hand, chronic systemic inflammation leads to dysfunction 126 in the kidneys and can further precipitate fibrosis and the progression of CKD (92, 139, 127 208). At the same time, uremic inflammation has been mechanistically associated with 128 premature ageing, contributing to processes such as telomere attrition, mitochondrial 129 dysfunction, and dysregulated nutrient sensing (102). In a large proportion of patients with 130 advanced CKD, a systemic inflammatory response is detectable, and the prevalence 131 increases with the progression of CKD stage (26, 102). At the same time, certain 132 components of the immune system, particularly the adaptive immune system, are impaired 133 in a process resembling immunosenescence (42, 127). ESKD patients have lower relative 134 abundance of lymphoid cells, and their T and B cells are more prone to activation-induced 135 apoptosis (127).

A plethora of mechanisms are involved in CKD-related immune disruption. Increased blood concentration of several cytokines and inflammatory markers, such as IL-138 1, IL-6 and C-reactive protein (CRP), mostly released by endothelial cells and circulating monocytes, is associated with CKD (26, 139). This is due both to limited clearance and increased production of these solutes, which can result from factors such as endothelial dysfunction, oxidative stress, increased cellular senescence, greater permeability of the lining of the gastrointestinal tract (periodontitis and gut dysbiosis are co-morbidities in

143 CKD), calcium (Ca^{++}) phosphate (P_i) overload, sodium accumulation in tissues, and 144 buildup of uremic toxins in the blood (26, 42). The large endothelial surface of the highly 145 vascularised kidneys makes them particularly sensitive to local pro-inflammatory effects 146 (139). Endothelial activation can impair local vasodilatory ability, increase reactive oxygen 147 species (ROS) production, and exacerbate the already physiologically hypoxic state of the 148 renal medulla (139). The nuclear factor- κB (NF- κB) deserves a special mention in the 149 context of inflammation as a key activator of the upregulated uremic inflammatory 150 response and known to be sensitive to activation by increased ROS levels (102) and 151 mitochondrial dysfunction (24). NF-kB is also responsive to inflammatory cytokines, 152 generating a potential positive feedback loop that can sustain inflammation over time (102). 153 The NLRP3 inflammasome also plays an important role as signaling nexus for the 154 activation of NF-kB, responding to such stimuli as increased ROS, release of mitochondrial 155 DNA (mtDNA), extracellular ATP, and more (139). Further direct effects of inflammation 156 on oxidative stress are discussed in the 'Oxidative stress' section below. An increase in 157 advanced glycation end-products (AGEs) can also up-regulate NLRP3 and NF-kB by 158 binding to the AGE receptor (RAGE), thus contributing to CKD progression (243). 159 Interestingly, the central nervous system has recently been shown to play an inhibitory role 160 in the inflammatory response via a reflex mediated by the vagus nerve (10).

It is worth noting that dialysis treatment fails to adequately remove solutes of the size of most cytokines and is therefore unable to fully correct the pro-inflammatory uremic milieu (26). In addition, dialysis itself has a pro-inflammatory effect (123). This is due to a variety of factors: technical, such as vascular access and limited biocompatibility of the membranes and surfaces (44), as well as microbial, such as contamination of dialysis

166 solutions or catheters with either live microorganisms or with microbial components 167 (including the highly pro-inflammatory endotoxins) (102, 123). Better clinical practice and 168 the use of improved materials can, to a degree, reduce this pro-inflammatory effect (42, 169 59). Novel approaches that improve anti-oxidant defenses can also be helpful. For instance, 170 it has been recently shown that vitamin E-loaded membrane dialysers may contribute to 171 reducing the signs of inflammageing associated with dialysis (180).

172

173 <u>2.2) Oxidative stress</u>

174 Oxidative stress is another prominent feature of CKD (Figures 1 and 3); the high 175 metabolic rate of the kidney makes this organ particularly sensitive to oxidative stress and 176 can exacerbate oxidative damage, along with impaired circulation, inflammation, fibrosis 177 and proteinuria (74). In general, an antioxidant defense prevents the accumulation of ROS 178 and reactive nitrogen species (RNS). However, when there is an imbalance between 179 generation of oxidant compounds and antioxidant defense mechanisms, oxidative damage 180 occurs (168). At a systemic level, oxidative stress can contribute to renal dysfunction, 181 vascular diseases, alteration in immune system, metabolic complications, and anemia 182 (Figure 1) (123). Patients on dialysis have a markedly increased oxidative stress compared 183 to CKD patients not on RRT due to increased ROS formation and reduced anti-oxidant 184 defenses (61, 167). As the primary site of redox biochemistry and ROS production, 185 mitochondria are a natural target for ROS damage, with consequences that include mtDNA damage, reduction of mitochondrial mass, disruption of the mitochondrial membrane 186 187 integrity, leakage of ROS and pro-apoptotic factors, as well as loss of membrane potential, 188 possibly impairing the cell's energetic metabolism or leading to cell death (Figure 3) (187,

189 210). Dysfunctional mitochondria are major drivers of the intermediate inflammatory 190 phenotype that drives premature ageing in CKD and other burden of lifestyle diseases 191 (196). Thus, Galvan et al. (64) have demonstrated significantly increased mitochondrial 192 ROS in the kidneys of mice with diabetic CKD, compared to glucose tolerant control mice, 193 using an innovative *in vivo* approach. As mitochondria regulate major cellular processes, 194 such as cell proliferation and differentiation, as well as cell death (209), ROS production 195 by damaged mitochondria can induce cell death and inflammation (209). Indeed, mitochondrial dysfunction and reduced levels of PGC-1a, the master regulator of 196 197 mitochondrial biogenesis, are strongly linked to CKD (19, 54). In addition, a retrograde 198 signaling pathway allows dysfunctional mitochondria to induce specific gene expression 199 changes in the nucleus (131).

Apart from mitochondrial dysfunction, peroxisomes, i.e. intracellular organelles that contribute to redox homeostasis (225), also become dysfunctional in several models of acute kidney injury and CKD (Figure 3) (209, 225); and Vasko et al (225) have recently proposed a dysregulated mitochondria–peroxisome axis as an important mediator of cellular redox homeostasis. Collectively, diminished antioxidant defense capacity (e.g. in peroxisomes) in combination with increased mitochondria ROS lead to a disturbed redox homeostasis in CKD (Figure 3).

In addition, mitochondria are closely connected to the endoplasmic reticulum (ER) (175). As ER stress, as well as mitochondrial dysfunction, are both linked to an increased activation of pro-inflammatory NF- κ B signaling (102, 209), the ER-mitochondrial axis (175) might also be involved in an impaired redox homeostasis in CKD (Figure 3).

211 The cellular metabolic and redox homeostasis crucially depends on the pyridine 212 nucleotides NAD⁺/NADH and NADP⁺/NADPH (Figure 3) (71, 166). Evidence of a 213 defective cellular redox status in CKD has been reported by Canestrari et al. (14) in red 214 blood cells (RBC). In more detail, NADPH in RBC was significantly decreased, whereas RBC oxidized glutathione, i.e. glutathione disulphide, was increased in patients with 215 216 ESKD compared to controls (14). In contrast, RBC glutathione (GSH) levels were 217 unchanged in patients with CKD and controls (14). Importantly, hemodialysis (HD) further 218 increased RBC oxidized glutathione levels indicating that not only reduced renal function 219 per se but also dialysis impairs cellular redox homeostasis in RBC (14). Mechanistically, 220 protein expression and activity of GSH-S-transferase in RBC is increased in ESKD patients 221 compared to control subjects (14, 63), most likely through uremic retention solutes/uremic 222 toxins (63). Translationally, intensified daily vs. conventional HD lowered distinct uremic 223 retention solutes, thereby improving redox status in ESKD (62). It should be noted that 224 most of the studies investigating cellular redox status focus on RBC. However, 225 accumulating evidence indicates that redox homeostasis in CKD is also impaired in other 226 organs/cell types, including muscle (15), endothelial cells, and aortic smooth muscle cells 227 (173).

Besides GSH metabolism, NAD⁺ levels are reduced in CKD due to an impaired biosynthesis and augmented consumption (Figure 3) (71, 166). Interestingly, the transcriptional coactivator PGC-1 α promotes NAD+ biosynthesis via the *de novo* pathway (Figure 3) (217). Importantly, NAD⁺ is also a substrate for the sirtuin family of enzymes that mediate processes including metabolic flux and epigenetic regulation (71). Furthermore, NADPH oxidase (NOX) enzymes are one of the major sources of ROS

besides mitochondria, and their activity in kidney and vascular endothelium can impair
blood flow, reduce NO synthesis, and cause hyperhomocysteinemia and kidney damage
(109, 229).

Whereas there is convincing evidence that oxidative stress induces inflammation, the evidence of adverse effects of a pro-inflammatory milieu on oxidative stress is less strong. In a uremic environment, peripheral blood mononuclear cells are activated and show a proinflammatory expression signature (251). Infiltrating leukocytes in the kidney can not only release large amounts of proinflammatory cytokines, but also contribute to a respiratory burst by promoting myeloperoxidase-enhanced production of superoxide (74, 168, 178).

244 Hypoxia is another factor that is bi-directionally linked to both increased inflammation 245 and oxidative stress in CKD. Thus, hypoxia induces inflammation by several mechanisms 246 but, conversely, inflamed tissue can also become hypoxic (45). Similarly, oxidative stress 247 and hypoxia contribute to each other, most likely through uremic toxins (159) and 248 mitochondrial dysfunction (76). It is interesting to note in this context that sodium–glucose 249 cotransporter 2 (SGLT2) inhibitors (179) and the hypoxia-inducible factor-stabilizing 250 Roxadustat (also known as FG-4592) (122) exert beneficial renal effects at least in part via 251 attenuating renal hypoxia.

While a certain level of ROS and RNS is unavoidable and has a physiological protective role, the elevated production of ROS and RNS, paired with the lower anti-oxidant defense observed in CKD, leads to a redox imbalance and a toxic amount of oxidative stress (33, 36, 74). Due to their high reactivity, ROS can damage a variety of macromolecules, including DNA, proteins and lipids, as well as cell organelles (Figure 3) (109).

257 DNA damage is of particular concern due to the potential long-term consequences of 258 telomere attrition, DNA mutations, epigenetic dysregulation, and DNA damage signaling 259 (131, 160). Among the four bases found in DNA, guanine (G) is the one most sensitive to 260 oxidation (165); oxidation products of G such as 8-hydroxydeoxyguanosine (8-OH-dG) 261 and 8-oxodeoxyguanosine (8-oxo-dG) are the most common oxidative DNA lesions, as 262 well as established biomarkers of oxidative DNA damage (Figure 3) (123). 8-OH-dG has 263 been associated with mortality in CKD and with carcinogenesis (35, 123), and both 8-OH-264 dG and 8-oxo-dG are increased in dialysis patients (177, 240). Importantly, 8-oxo-dG pairs 265 preferentially with adenine, rather than cytosine, providing this DNA lesion an additional potential mutagenic mechanism beyond the general DNA damage response (DDR) (177). 266 267 Interestingly, the stacked G repeats found in telomeric regions are even more sensitive to 268 oxidation and may thus act as a redox-sensitive alarm system through which oxidative 269 stress can cause accelerated telomere attrition and cellular senescence (Figure 3) (131). 270 Given that mitochondria have reduced protection and DNA repair mechanisms compared 271 to the nucleus, mtDNA is particularly exposed to oxidative damage (19, 177). Indeed, 8-272 oxo-dG lesions have been shown to be twice as numerous in mtDNA compared to nuclear DNA (91). In accordance with these data, Fazzini et al. have recently demonstrated that 273 274 mtDNA copy number, as a marker of mitochondrial dysfunction and oxidative stress, is an 275 independent predictor for all-cause mortality in 4812 patients from the German Chronic 276 Kidney Disease study (50).

Oxidative stress can damage proteins and lipids through a variety of mechanisms, including ROS, RNS, reactive carbonyl species (RCS), and through the action of reducing sugars, generating a diverse class of compounds that can be categorized as advanced 280 oxidation protein products (AOPPs), AGEs, and advanced lipoxidation end-products 281 (ALEs) (Figure 3) (59, 226). AGEs in the extracellular matrix (ECM) can impair tissue 282 function, in the case of the vasculature contributing to vascular stiffening and the 283 progression of CVD (102, 218). AGEs can be recognized by the advanced glycation end 284 products receptor 1 (AGER1), RAGE, and soluble RAGE (sRAGE) (201). AGER1 285 mediates AGE detoxification and exerts an anti-oxidant and anti-inflammatory role, 286 sRAGE acts as a decoy for RAGE, while full-length RAGE activates a number of 287 downstream pro-oxidative and pro-inflammatory effects (201). Diabetes, CKD, and 288 inflammatory diseases have been shown to down-regulate AGER1 and up-regulate RAGE, 289 potentially exacerbating inflammation and oxidative stress (201, 206, 227).

290 Tyr, Cys and Met residues are particularly prone to oxidation, but other residues such 291 as Lys, Arg, Thr, and His are also susceptible (59, 226). Several oxidation products, 292 including oxidated Tyr and the lipid peroxidation products malondialdehyde (MDA) and 293 F2-isoprostanes, have been found to be increased in the plasma of dialysis patients (33, 59, 294 123). In more detail, lipid peroxidation contributes to cellular damage and tissue 295 degeneration in CKD. Metabolites, including 4-hydroxy-2-nonenal (HNE), MDA, and F2-296 isoprostanes, are end-products from the oxidation of unsaturated fatty acids or arachidonic 297 acid and can react with the above-mentioned amino acid residues of proteins, thereby 298 creating ALEs (Figure 3) (53). Several of these lipid peroxidation metabolites have been 299 classified as uremic toxins (38) and show direct adverse effects in CKD. As an example, 300 arachidonic acid-based F2-isoprostane is not only associated with markers of renal function 301 and being increased in HD (67) but also dose-dependently reduces GFR and renal plasma 302 flow in rats (207). Furthermore, F2-isoprostane is associated with markers of inflammation (67) and directly contributes to an adverse vascular phenotype similar to the clinical
challenges observed in patients with CKD. Indeed, this metabolite induces vascular smooth
muscle cell (VSMC) vasoconstriction (58), as well as endothelial dysfunction (248) *in vitro*. Importantly, the causal effects of lipid peroxidation radicals on renal function have
recently been demonstrated by Kruger et al. (110) who have shown that lipid radicals
directly impair podocyte motility and cytoskeletal structure through redox-sensitive RhoA
signaling (Figure 3).

310 As in the case of inflammation, dialysis not only fails to fully correct the oxidative stress 311 associated with CKD, but in fact contributes to it through biocompatibility issues and fluid 312 contamination risk (59). Renal transplantation, on the other hand, appears to correct both 313 the pro-inflammatory and the pro-oxidant status (59, 192). Of particular interest in the 314 context of CKD is albumin, a key plasma protein that is often depleted in the uremic milieu 315 and regarded as a key part of the plasma's anti-oxidant defense, with roles that include 316 plasma thiol and homocysteine (Hcy) homeostasis, Cys and GSH metabolism, and binding 317 of plasma solutes (59, 164). Oxidative damage can modify the Cys-34 residue of albumin 318 and impair the functionality of this protein (164).

The body possesses a range of protective mechanisms that can counteract oxidative stress through enzymatic and nonenzymatic anti-oxidants, but these mechanisms are often impaired in CKD (33). The list of anti-oxidant enzymes includes superoxide dismutase (SOD), catalase, and others regulated by an anti-oxidant response element (ARE) (33). The NRF2-KEAP1 axis is a key player in managing the anti-oxidant response that is downregulated in CKD (197). In the presence of oxidative stress, the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is released from kelch like ECH-associated

326 protein 1 (KEAP1), translocates to the nucleus, and acts as transcription factor regulating 327 the expression of >300 ARE-containing genes involved in cellular stress and damage repair 328 (197, 200). Glyoxalase-1, the main enzyme responsible for detoxification of methylglyoxal 329 and other AGEs, contains an ARE, but the extent to which it may be regulated by NRF2 is 330 still a matter of debate (136, 218). Some important non-enzymatic anti-oxidants include 331 GSH, as well as a range of dietary compounds or elements including vitamin C, E, 332 polyphenols, zinc and selenium (33). Being fat-soluble, vitamin E is particularly important 333 in the prevention of lipid peroxidation, and supplementation has shown positive results in 334 CKD patients (167). A deficiency in dietary anti-oxidants has been reported in CKD 335 patients (33).

336

337 <u>2.3) Early vascular ageing</u>

338 Early vascular ageing is a prominent feature of CKD that is associated with increased 339 cardiovascular risk (199). Its causes have not been fully elucidated, but the existing evidence points to a key role for calcification driven by Ca⁺⁺ and P_i homeostasis in the 340 blood, as well as inflammation and allostatic load (186). Physiological levels or Ca⁺⁺ and 341 342 P_i are sufficiently high to induce spontaneous precipitation of calcium phosphate; however, 343 this process is normally prevented by plasma proteins, primarily fetuin A, that bind 344 crystallization nuclei into calciprotein particles (CPP) and prevent their growth (112). In 345 CKD, however, the plasma concentration of P_i is increased due to dysregulation of the klotho-fibroblast growth factor 23 pathway that is responsible for P_i excretion and 346 347 homeostasis (113). At the same time, fetuin A levels drops due to persistent inflammation, 348 leading to a loss of the major protective mechanism (12, 102, 142). As a result, CPP's accumulate and are taken up by VSMC causing stress, cellular senescence, and a shift
towards an osteogenic phenotype. This, in turn, leads to increased deposition of crystals in
the extracellular matrix and eventually media calcification and vascular stiffness (102,
230). Vascular endothelial cells also play a role in EVA. It has been shown that uremic
serum induces ER stress and up-regulation of the pro-inflammatory NF-κB signaling in
endothelial cells (102).

355

356 <u>2.4) Cellular senescence</u>

357 One major contributing factor to the accumulation of damage within the vascular system 358 is cellular senescence, a state of permanent growth arrest of the cell that can be caused by 359 a number of triggers, including oxidative stress, telomere erosion, persistent DNA damage 360 signaling and oncogene activation (22). The transition into a senescent state is mediated by the p53/p21 and/or the p16/pRb pathways (22). Senescent cells are metabolically active, 361 362 but physiologically non-contributory (193). They contain damage foci and are essentially 363 pre-cancerous; however, they are resistant to apoptosis and survive by up-regulating a 364 number of senescent cell anti-apoptotic pathways (SCAPs) (193). This feature enables 365 senescent cells to survive some insults that would normally kill "healthy" cells (97). At the same time, this creates a "vulnerability" that allows specific killing of senescent cells 366 367 through the use of senolytic compounds, as discussed below (193). Senescent cells exhibit 368 a senescence-associated secretory phenotype (SASP) and release a range of factors, 369 including pro-inflammatory cytokines and matrix metalloproteinases that increase 370 inflammation, damage the ECM and induce senescence in other cells, either through the 371 NF- κ B pathway or via a paracrine mechanism (172, 193) that generates a non-cell372 autonomous pro-senescence effect. Senescent cells are normally cleared by the immune 373 system, but this process is not perfect and, as organisms age, they tend to accumulate in the body, though they remain a minority of the cells even at a very old age (9). However, 374 375 due to the SASP, senescent cells play an important role in tissue dysfunction and 376 accelerated ageing associated with CKD (34). In patients with advanced CKD, immune-377 senescence markers are increased and a low relative telomere length is associated with 378 mortality (27), especially in dialysis patients (16, 27). Indeed, a number of experiments in 379 which senescent cells were cleared, or added in animal models, points to a causal link between cellular senescence and a number of features of ageing (6, 7, 97). Recent 380 381 preliminary evidence suggests that senescent cell clearance may also be beneficial in 382 humans (73).

383

384 <u>2.5) Uremic toxins and their effects on the kidneys and vascular function</u>

385 In advanced CKD, several organic compounds that accumulate in the body (219) produce 386 an adverse response to the biological system (222). In recent years, a large number of such 387 compounds, i.e. uremic toxins, has been identified and subsequently categorized into small 388 water-soluble molecules, protein-bound molecules and middle molecules (38, 138, 223). 389 For a variety of these uremic toxins, adverse cardiometabolic associations have been 390 described with the most convincing clinical implications for the protein-bound uremic 391 toxins indoxyl sulfate (IS) and p-cresyl sulfate (PCS). Both these toxins increase CpG 392 hypermethylation and decrease mRNA and protein expression of the ageing-associated 393 klotho gene in proximal tubule epithelial cells (204). Furthermore, they induce oxidative 394 stress by a variety of mechanisms, including increased NADPH oxidase activity and ROS

395 production (234), but also a reduced anti-oxidative activity, i.e. reduced superoxide 396 scavenging activity in the kidneys (157) or levels of anti-oxidants (43). Moreover, although 397 IS and PCS have been shown to reduce mitochondrial mass by mitophagy (205), it should 398 be noted that several other uremic toxins also attenuate mitochondrial function in human 399 conditionally immortalized renal proximal tubule epithelial cells in vitro (143). In keeping 400 with such a postulate, i.e. IS mediates pro-senescent effects through the induction of ROS 401 (190), the anti-oxidant N-acetylcysteine inhibits IS-induced activation of p53 in vitro (190). 402 Besides these progeric effects on the kidney, uremic toxins also affect vascular 403 function in CKD (154). Furthermore, IS induces protein expression of p53, p21, and 404 senescence-associated β -galactosidase (SA- β -gal) also in human aortic VSMC in vitro and 405 N-acetylcysteine suppresses IS-induced effects (141). Furthermore, AST-120, which 406 adsorbs uremic toxins and their precursors within the gastrointestinal tract (4), reduces the 407 expression of these senescence and oxidative stress markers in the area of aortic 408 calcification in uremic rats (141). Uremic toxins further impair vascular function through 409 endothelium-dependent effects (153). Thus, IS significantly increases ROS production in 410 human umbilical vein endothelial cells (HUVEC) in vitro (85, 161) were it enhances IL-1β-411 induced oxidative stress. Both N-acetylcysteine and apocynin pretreatment inhibit the 412 additive adverse effects of IS and IL-1 β (183). Furthermore, oxidative stress and uremic 413 toxins up-regulate microRNA-92a in endothelial cells resulting in endothelial dysfunction 414 and atherosclerosis (182). These data are further supported by a translational study using 415 AST-120 in CKD patients, which demonstrated improved endothelial function as assessed by flow-mediated endothelium-dependent vasodilatation (247). 416

417 Besides these studies, predominantly investigating protein-bound molecules, larger 418 middle molecules, as well as small water-soluble compounds, could also significantly 419 contribute to the development of CKD complications by mediating a pro-inflammatory and 420 oxidative stress phenotype. Using an innovative scoring system, middle molecules and 421 small water-soluble compounds scored lower for their toxicity and overall experimental 422 and clinical evidence compared to protein-bound molecules (224). Among the most 423 relevant members of both groups were asymmetric dimethylarginine (ADMA), 424 trimethylamine (TMA)-N-oxide (TMAO), uric acid, as well as β 2-microglobulin, ghrelin, 425 and parathyroid hormone (224). As an example, ADMA is related to an inflammatory (228) 426 and oxidative stress (236) phenotype and associates with an adverse outcome in patients 427 with CKD (128). Middle molecules, such as pro-inflammatory cytokines, adipokines, and 428 other hormones (224), also contribute to increased inflammation and oxidative stress, as 429 well as other cardiometabolic risk factors (39). Whereas small water-soluble compounds 430 can be removed by dialysis (224), dialytic removal of middle molecules is more difficult 431 in conventional hemodialysis (164). Importantly, different dialysis strategies, for instance 432 using protein-leaking dialyzers removing also larger middle molecules, can decrease 433 markers of inflammation and oxidative stress compared to standard dialyzers (60), 434 supporting the hypothesis that the full spectrum of uremic toxins can contribute to oxidative 435 stress and pro-senescent phenotype in both kidneys and the vascular system with most 436 pronounced effects for protein-bound toxins. Thus, inhibition of uremic toxins is a potential 437 treatment option in CKD potentially attenuating cardiovascular morbidity and mortality.

438 **3) CKD and allostatic load**

439 Individual trajectories of age-related health and disease progression are affected by inter-440 individual differences in exposomes (i.e. physical and social environment, psychological, 441 lifestyle and nutritional risk factors acting independently, cumulatively, or synergistically 442 with an individual's genome and epigenome over their life course). The 'burden of wear 443 and tear' is manifest as both physiological and molecular allostatic (over)load (Figure 4). 444 Maintenance of physiological homeostasis in the face of allostasis, thus becomes 445 increasingly difficult as uremic toxins accumulate in the course of CKD (186). 446 Consequently, CKD can be viewed as a burden of lifestyle disease that is part of a 447 "diseasome of ageing" (156) that shares common underpinning features and risk factors 448 with the ageing process. In addition to chronic inflammation, oxidative stress and EVA, 449 both the ageing process and CKD are also associated with sarcopenia, frailty, cognitive 450 dysfunction, diminished NRF2 expression and an altered gut microbiome (103, 186, 189, 451 197). The interplay between the exposome and the genome is thus mediated via the 452 epigenetic landscape of ageing and reflected in changes in gene expression (186). In 453 particular, changes in the methylome (i.e. DNA methylation) are of particular interest, as 454 they provide a direct mechanistic link between the foodome (i.e. individual diet, its 455 composition and the chemical structure of the ingredients), the gut microbiome, and the 456 epigenome (130, 186).

457

458 <u>3.1) The role of the gut microbiome</u>

459 Maintenance of the methylome depends on a limited natural synthetic capacity for 460 generating methyl donor metabolites, supplemented by the acquisition of methyl donor

461 metabolites and cofactors of the one-carbon metabolic pathway, such as choline and 462 betaine, through diet and the microbial metabolic activity in the gut (132). The gut 463 microbiota has gained significant attention in recent years and is increasingly seen as a 464 "supplementary organ" with complex interactions with the rest of the body, relevant for 465 health and disease (139). A range of gut microbes can metabolize compounds to (i) betaine 466 that feeds into methyl donor group production and (ii) to generate TMA, which in turn gets 467 oxidized by the liver into TMAO (186). TMAO has been shown to have pro-atherogenic 468 and pro-inflammatory properties and may play a central role in inflammageing, age-related 469 epigenetic changes, as well as CKD and CVD (41, 100, 140). Another microbial gut 470 metabolite of note is butyrate, which has been shown to inhibit histone deacetylases 471 involved in the regulation of chromatin (51). Epigenetic dysregulation is also a hallmark 472 of ageing and CKD (188).

473 A relatively novel finding is the association of CKD with intestinal dysbiosis and 474 increased gut permeability, which can increase the leakage of bacterial DNA, endotoxins, 475 and potentially whole microorganisms into the bloodstream (102, 137, 184). The gut 476 microbiome has been shown to play an important role also in directly interacting with the 477 immune system (118). In particular, loss of anti-inflammatory taxa may contribute to the 478 increase in inflammation associated with CKD (25). Alkyl catechols, produced by certain 479 bacteria from plant phenolic compounds, can up-regulate NRF2 and thus may also play a 480 role in improving anti-oxidant defenses and provide increased resilience in CKD patients 481 (197).

483 **4) Novel treatment approaches**

484 As the landscape for potential therapies directed against the aforementioned mechanisms 485 is broad, we have selected five groups of therapies for discussing potential treatment 486 options (Figure 5). Thus, senotherapeutics are discussed as senescence is closely related to 487 oxidative stress and inflammation (22). NRF2 is an attractive treatment target controlling 488 oxidative stress and inflammation in many burden of lifestyle diseases, including CKD 489 (28). We further present kidney-secreted klotho as a potential renal target for the treatment 490 of inflammation (124, 252), oxidative stress (96), and premature ageing (115) in CKD. 491 Moreover, we describe SGLT2 inhibitors as one of the most interesting and already 492 approved pharmaceutical compounds for CKD and associated complications. Finally, live 493 biotherapeutics are discussed with special emphasis on the foodome and gut microbiome 494 (130).

495

496 <u>4.1) Senotherapeutics</u>

497 The prominent involvement of cellular senescence in CKD suggests that drugs that can 498 target senescent cells, termed senotherapeutics, can be a novel treatment avenue for CKD. 499 It is worth noting here that the body can tolerate a certain amount of senescent cells without 500 apparent harm (73, 211). It is only above a certain threshold that cellular senescence 501 becomes a problem (73). Therefore, even if senotherapies do not get rid of all senescent 502 cells, as long as they can provide sufficient clearance to bring the senescent load below the 503 critical threshold, they have a chance of providing a meaningful benefit (73). Indeed, 504 several studies have shown benefits of senotherapy after a clearance of approximately 30% 505 of the senescent cell population (73).

Recent times has seen the development of the field of Geroscience, which champions the translational aspects of research on ageing. The development of senotherapies falls under its aegis. This includes development of (i) senolytics - compounds that selectively kill senescent cells. Examples include repositioned drugs such as Dasatinib, typically used in combination with alkyl-catechols such as Quercitin, which remove the apoptotic block in senescent cells; and (ii) senostatics or senomorphics, that suppress the SASP without killing the senescent cells themselves (57, 73, 171).

513 The development of serotherapeutics, and in particular senolytics, is exciting. They 514 have clearly demonstrated significant health benefits in pre-clinical – and, recently, 515 possibly clinical – models (6, 7, 73, 90, 97). Due to the immaturity of the field, however, 516 several caveats need noting, though it must be stressed that these do not preclude 517 translational use of senotherapeutic agents, which would appear churlish based on pre-518 clinical data. Firstly, when and where to use these agents in the life course. Antagonistic 519 pleiotropy (237) is a concept that is pertinent in this respect, as it stipulates that what is 520 good for you in old age is not necessarily good for you at a younger age and vice versa. 521 Cellular senescence firmly falls under its umbrella, being onco-protective in old age, but 522 undesirable when young as it reduces physical capability (186). The long-term effects of 523 senotherapeutics applied under normative conditions for ageing and in disease thus need 524 to be established. Secondly, another concern is that their use may in the longer-term lead 525 to depletion of the body's regenerative capacity and or contribute to adverse changes in the epigenetic landscape, both of which are hallmarks of ageing. Thirdly, different 526 527 senotherapeutic agents have different levels of efficacy in different cell types, making it 528 unclear which treatment – or combination of treatments – would be best suited as a therapy

in the context of age-related multi-morbidity, or to treat dysfunction in a multi-cell typeorgan such as the kidney.

531

532 4.2) <u>NRF2</u>

533 The NRF2 system may provide a targeted node for intervention that is common to the range 534 of morbidities manifesting within the diseasome of ageing (197). More specifically, NRF2 535 expression is low in several burden of lifestyle diseases, including autoimmune (e.g. 536 multiple sclerosis), respiratory (e.g. smoking-related lung emphysema), gastrointestinal 537 (e.g. primary biliary cholangitis), metabolic (e.g. insulin resistance and non-alcoholic 538 steatohepatitis), and neurodegenerative (e.g. Huntington disease) (29, 197). NRF2 and its 539 repressor KEAP1 are key regulators of cellular stress and damage defenses and therefore 540 represent potential treatment options for a wide range of disease states. In CKD, single 541 nucleotide polymorphism studies of the NRF2-coding NFE2L2 gene have revealed a link 542 with outcome (191). Furthermore, in addition to its beneficial effects on components of 543 metabolic syndrome (241), NRF2 is also associated with attenuated risk for progression of 544 diabetic kidney disease (DKD) (89) and to be in the center of inflammation- and 545 metabolism-related pathways for CKD (134).

Mechanistically, NRF2 can induce the generation of NADPH and the expression of anti-oxidant enzymes through the ARE in the promoter regions of target genes (29). Thus, an NRF2-mediated anti-oxidant response is activated in human CKD glomeruli that are under increased oxidative stress (89). Interestingly, higher levels of oxidative stress and damage, as assessed by 8-oxo-dG staining, were evident in glomeruli of NRF2-deficient mice compared to wild-type controls (89). Besides its anti-oxidative response, NRF2 exerts

552 direct and indirect anti-inflammatory effects through the inhibition of NF- κ B signaling 553 (214) and pro-inflammatory cytokines, e.g. IL-1b and IL-6 (99). Moreover, ER stress, 554 which can activate a maladaptive unfolded protein response (UPR) potentially affecting 555 different renal pathologies (84), is directly linked to NRF2. Thus, ER stress induces nuclear 556 translocation and DNA-binding activity of NRF2, as well as NRF2-dependent gene 557 expression in 3T3-L1 adipocytes in a protein kinase RNA-like ER kinase (PERK)-558 dependent fashion (30), i.e. one of the major adaptive UPR pathways (83). Importantly, 559 these findings were also validated in human kidney 2 (HK-2) tubular epithelial cells (20). 560 NRF2 nuclear translocation is further mediated by ER-produced H₂O₂ during ER oxidative protein folding, which in turn is related to intracellular Ca⁺⁺ homeostasis (66). As ER stress 561 562 also directly causes premature senescence (125, 126), NRF2 hypothetically can link tissue 563 dysfunction and premature aging in CKD, not only through anti-oxidative effects, but also by affecting cell organelle stress/crosstalk. In addition, autophagy as one of the key 564 565 mechanisms for clearance of mis-folded proteins (32), is also bi-directionally linked to 566 NRF2 through the adaptor protein p62 (88). Thus, the NRF2 inducer sulforaphane exerts 567 beneficial renal effects in a model of obesity-related glomerulopathy with higher potency 568 compared to the conventional anti-oxidant N-acetylcysteine (129). Lu et al. (129) have 569 demonstrated that on top of the well-established anti-oxidative effects, NRF2 enhances 570 markers of autophagy in podocytes (129), a finding similar to data obtained in pancreatic 571 islets (121) and cardiomyocytes (231). By way of contrast, when autophagy is diminished 572 in adjocytes, the adaptor protein p62 accumulates and acts as an endogenous inducer of 573 NRF2 (13) by competing for NRF2 binding to KEAP1 (101). It needs to be pointed out 574 that chronic activation of autophagy can also have deleterious effects. Thus, induction of p62 expression and subsequent NRF2 might stimulate tumor growth (82, 235). Indeed,
NRF2 is related to cancer progression, metastasis, as well as resistance to chemo- and
radiotherapy (174).

578 Keeping the aforementioned issues in mind, NRF2-based treatment could be one 579 option to reduce the chronic burden of lifestyle diseases and particular CKD by attenuating 580 persistent inflammation, oxidative stress, as well as ER stress and autophagy. Several targets for NRF2 activation have recently been summarized including both pharmacologic 581 582 and nutriceutical compounds (29). Bardoxolone is one of the most promising 583 pharmacological candidates with positive renal outcome data in a phase 2 trial in patients 584 with DKD (162). Using a closely related bardoxolone analog in rodents, NRF2 treatment 585 has been shown to improve redox balance, mitochondrial function, and to suppress 586 inflammation (144). However, previous treatment approaches for patients with DKD using 587 bardoxolone have been terminated (250) due to an excess of heart failure hospitalizations 588 in the bardoxolone group. Interestingly, *post-hoc* analyses have recently demonstrated that 589 bardoxolone users were significantly less likely to develop a composite renal endpoint (23). 590 Thus, the question remains whether bardoxolone exerts positive effects on renal function 591 in carefully selected patients without signs of heart failure, which is presently being 592 investigated in randomized controlled trials (21). Besides pharmacological compounds 593 (29), nutritional NRF2 modulators have been described (197), and distinct nutritional 594 components can modulate NRF2 especially in CKD (46). Among others, the alkyl-595 catechols sulforaphane (inter alia derived from broccoli) and curcumin (inter alia derived 596 from turmeric plant) appear to be the most attractive candidates (46, 197). Few studies have 597 investigated the effects of nutritional NRF2 modulators in human burden of lifestyle

diseases (111), such as CKD (17, 18). Importantly, curcumin's effects to decrease renal fibrosis, inflammation, and oxidative stress (2, 3) have been already validated in several small randomized controlled trials in CKD (2) and HD (3) patients. Taken together, NRF2 is a promising candidate for the treatment of inflammation, oxidative stress, and related disturbances, including ER stress and autophagy, in numerous chronic burden of lifestyle diseases, including CKD, and several pharmacological and non-pharmacological treatment options are already available.

605

606 <u>4.3) Klotho</u>

607 Klotho is a single-pass transmembrane protein predominantly expressed in the kidneys that 608 regulates ageing and morbidity (114). Klotho-deficient mice display increased renal 609 inflammation (124, 252), oxidative stress (96), a senescent phenotype (124), decreased 610 autophagy (185), as well as a premature ageing (115) - a condition resembling the 611 deleterious features of CKD. As patients and animals with CKD have decreased protein 612 levels of klotho in the plasma, urine, and the kidneys (79), targeting klotho is a promising 613 approach for the prevention of progression, complications, and the premature ageing 614 processes in renal dysfunction (78).

Like NRF2, klotho expression in CKD can be targeted by different approaches, either by increasing endogenous klotho expression or direct administration of exogenous klotho (253). From a practical perspective, this might be achieved from an epigenetic approach via demethylation of the klotho promoter and/or associated histone deacetylation to loosen the local chromatin configuration (149, 253). In this context, it is notable that IS and PCS directly induce hypermethylation of the Klotho gene (149, 204). Furthermore, 621 several drugs, already approved for the treatment of other diseases frequently observed in 622 CKD, up-regulate klotho expression (253). However, and in contrast to extensive studies 623 in rodents, human data for klotho-based treatment approaches are lacking. While no human 624 study to date has investigated distinct klotho therapies, including administration of 625 exogenous klotho on CKD (254), several clinical trials on endogenous klotho inducers have 626 been published. The peroxisome proliferator-activated receptor γ agonist pioglitazone, for 627 example, increases renal klotho expression and reduces oxidative stress (242). Thus, 628 thiazolidinedione treatment, i.e. pioglitazone, in patients with CKD reduces markers of 629 renal dysfunction possibly by affecting oxidative stress, inflammation, and other CKD-630 associated maladies (reviewed in (176)). Furthermore, several vitamin D analogs induce 631 the expression of klotho in distinct tissues, as well as increase urinary and serum klotho 632 levels (117, 170). Conversely, vitamin D deficiency is associated with increased oxidative 633 stress, inflammation, and cellular senescence (i.e. "inflammageing" (56)) (52) and vitamin 634 D supplementation improves markers of oxidative stress according to a recent systematic 635 review and meta-analysis (181). However, data from studies in patients with CKD show 636 conflicting results of vitamin D receptor activators and their effects on markers of oxidative 637 stress (86, 213, 216). Moreover, statins have been observed to increase klotho mRNA 638 expression (146) and further data suggest that statins (246) reduce oxidative stress in 639 experimental cyclosporine nephropathy via modulation of klotho. However, in patients 640 with CKD statin treatment, as part of an anti-oxidative therapy, does not induce circulating 641 klotho compared to placebo (1) and atorvastatin treatment does not reduce oxidative stress 642 (49). Randomized controlled trials indicate that the effects of statins on mortality in CKD 643 are also independent of inflammation (108, 202), suggesting that the beneficial renal 644 effects of statins on klotho observed in rodents do not translate in increased systemic klotho 645 and oxidative stress in humans. In addition, activation of the nuclear androgen receptor (e.g. by testosterone) increases renal klotho gene expression (77). Direct administration of 646 647 exogenous soluble klotho is another option to increase circulating klotho levels, which has 648 been reported to exert renoprotective effects in rats with AKI (80) and mice progressing 649 from AKI to CKD (185). In conclusion, animal and human data on endogenous klotho 650 inducers show contradicting results for *renal* compared to systemic oxidative stress and 651 inflammation in CKD.

652

653 <u>4.4) SGLT2 inhibitors / Other approaches</u>

654 SGLT2 inhibitors were introduced as a new class of glucose-lowering medication, and the 655 first members received their EMA- and/or FDA-approval in 2012/2013. SGLT2 inhibitors induce glucosuria by different mechanisms, but particularly through reduced tubular 656 657 reabsorption of glucose (37). With respect to effects in CKD, data from randomized 658 controlled CVD outcome trials have shown beneficial renal effects for empagliflozin (233), 659 dapagliflozin (239) and canagliflozin (147). Since a recent renal outcome trial with a pre-660 specified primary renal endpoint has confirmed these findings (163), SGLT2 inhibitors are 661 considered as a novel therapy for CKD due to type 2 diabetes reducing the risk of dialysis, 662 transplantation or death and protecting against AKI (148). Potential mechanisms through 663 which SGLT2 inhibitors improve renal function include beneficial hemodynamic, vascular, metabolic, anti-oxidative, inflammatory, hypoxic and diuretic effects (69). 664 665 Although hemodynamic changes due to altered tubulo-glomerular feedback (95) are often 666 believed to be a key mechanism of SGLT2 inhibitors, inflammation and oxidative stress,

667 as well as renal hypoxia, could also play major roles. Indeed, recent data suggests that SGLT2 inhibitors protect kidney function through improvement of renal hypoxia (72, 179). 668 As hyperglycemia causes tubular senescence via a SGLT2- and p21-dependent pathway in 669 670 the type 1 diabetic kidney (98), the effects of SGLT2 inhibitors on kidney senescence, 671 SASP and NRF2 expression need to be tested. Human studies suggest that SGLT2 672 inhibitors reduce circulating markers of inflammation and improve the adipocytokine 673 profile (11). As several adipose tissue-secreted cytokines are associated with inflammatory 674 markers in CKD (40, 75, 104, 105, 151), Bonnet and Scheen (11) have suggested that 675 SGLT2 inhibitors act on adipose tissue, as well as on distinct other organs, to reduce 676 systemic inflammation. Regarding *renal* inflammation, data are limited to rodent studies 677 (11, 93), where the SGLT2 inhibitor empagliflozin reduced renal inflammation in mouse 678 models of DKD (65, 152, 220). SGLT2 inhibitors have also improved *renal* oxidative stress in several rodent models of DKD. In more detail, different SGLT2 inhibitors reduced 679 680 oxidative stress in diabetic rats (152, 155) or mice (68, 212) by improved anti-oxidant 681 enzyme activities (155), suppression of the AGE/RAGE-axis (152), as well as decreased 682 production of ROS and Nox4 expression (68, 212). It should be noted however, that these 683 effects of SGLT2 inhibitors on rodent DKD cannot specifically determine the cause of 684 reduced inflammation/oxidative stress. Thus, a direct effect could still be possible. In 685 contrast, they might also be the result of secondary improvements due to lower body 686 weight, improved hyperglycemia, and other effects. It also has to be pointed out that there 687 is a lack of rodent models of DKD replicating the main features of human DKD (5) and 688 there is a huge difference in the renal phenotype, e.g. on albuminuria, between standard 689 diabetic mouse models compared to accelerated models (106, 215). This is congruent with 690 a general feature of laboratory studies, where the rodents employed are metabolically 691 morbid and lacking appropriate features of either human pathogenesis or normative ageing 692 (120, 133, 156). A biomimetic approach identifying wild animals that during evolution in 693 extreme environments have developed mechanisms that protect them against ageing, CKD 694 and metabolic dysfunctions may yield important additive clues (135, 198). Therefore, 695 carefully matched animal experiments are needed to verify the results excluding secondary 696 effects. If such pleiotropic effects, i.e. independent of metabolic and hemodynamic 697 changes, can be confirmed, SGLT2 inhibitors can be a treatment target for other CKD 698 causes than just DKD – a concept being currently investigated for example in the EMPA-699 KIDNEY study (70).

700

701 <u>4.5) Live biotherapeutics</u>

702 Multiple studies have linked gut dysbiosis and CKD (102, 194). CKD patients often display 703 reduced microbial diversity, though this finding is not always consistent between studies, 704 accompanied by a decrease in bacteria producing short-chain fatty acids (SCFA) from fiber 705 and an increase in bacteria that produce uremic toxins such as TMAO, IS, and PCS (139, 706 194). Possible biotherapeutic treatment strategies for CKD include dietary therapy, 707 prebiotics (ingredients that stimulate the growth of a desired microorganisms), probiotics 708 (live microorganisms), synbiotics (combining both prebiotics and probiotics), as well as 709 host and bacterial enzyme inhibition (48). However, given the dietary restrictions, 710 therapies, and frequent comorbidities found in CKD patients, further studies may be 711 warranted to identify specific causal links and therapeutic options (116, 194). For instance, 712 potassium and phosphorus intake are restricted in CKD patients due to the increased risk

of adverse outcomes, but these restrictions also limit fruit and vegetable intake and affect
the gut microbiome (116). Nevertheless, a number of studies have found beneficial effects
in CKD patients for a range of diets, most notably a Mediterranean or a vegetarian diet
(139).

717 Perhaps in part due to the limits of current knowledge, studies with probiotics and 718 prebiotics have produced inconsistent results (194). Increasing microbial SCFA production 719 has been proposed as a possible therapeutic intervention (81). SCFA regulate immunity, 720 blood pressure and glucose metabolism; to be involved in the health of colonic epithelial 721 cells, signal transduction, epigenetic maintenance and autophagy; and to ameliorate kidney 722 dysfunction (81, 116, 238). Alternatively, decreasing the intestinal production of uremic 723 toxins can also be a valid approach (194), and studies have shown some efficacy using 724 synbiotics or prebiotics (139, 238).

One enzymatic approach has focused on acarbose, an inhibitor of α -glucosidase 725 726 that limits the hydrolysis of polysaccharides and oligosaccharides in the intestine, 727 stimulating the growth of saccharolytic bacteria, reducing the production of p-cresol (145). 728 Indeed, studies in healthy volunteers indicate that acarbose may shift gut microbial 729 metabolism away from proteolytic fermentation and towards saccharolytic fermentation 730 (47). Importantly, acarbose therapy is also associated with experimental longevity (203). 731 Another strategy under investigation is the use of 3, 3-dimethyl-1-butanol (DMB), an 732 inhibitor of microbial TMA production, that has led to decreased levels of TMAO in the 733 blood and reduced atherosclerotic lesion development (145).

734

735 **5**) Conclusions

736 Increasing healthcare costs in patients with CKD, overall detrimental outcomes, and 737 deficiency of optimal treatments, including organ donation, place a tremendous pressure 738 on healthcare providers, scientists, and patients and their families per se. Innovative 739 therapeutics based on the identification of selective injury targets might serve to develop 740 precision medicine to optimize healthcare costs, disease monitoring, targeted interventions, 741 as well as outcomes, including patients' quality of life. In this review, we view CKD as a 742 burden of lifestyle disease, underpinned by a dysregulated ageing process common to the 743 "diseaseome of ageing". A systemic approach to tackle CKD, based on attenuating the 744 associated inflammatory, cell stress, mitochondrial dysfunction and damage processes, has 745 the potential to mitigate the effects of CKD, but also pre-empt the development and 746 progression of associated morbidities. In effect, this will enhance health span and compress 747 the period of morbidity. Pharmacological, as well as nutritional and potentially lifestyle-748 based, interventions are promising therapeutic avenues to achieve such a goal.

750 Figure legends

751

752 Figure 1. M

753 The main effects of oxidative stress on the damage of different organs and 754 functions in chronic kidney disease (CKD). CKD and its complex 755 comorbidities are crucially connected through oxidative stress. Thus, increased 756 renal oxidative stress contributes by several mechanisms to CKD progression, 757 thereby causing end-stage kidney disease (ESKD) and associated 758 complications. Oxidative stress further induces early vascular ageing (EVA) 759 and its major components, i.e. increased arterial stiffness and endothelial 760 dysfunction, linking EVA with cardiovascular (CV) morbidity and mortality. 761 Oxidative stress also gives rise to a pro-inflammatory milieu and its associated 762 complications. In addition, oxidative stress is associated with metabolic 763 disturbances contributing to cardiometabolic and CV complications. Oxidative 764 stress further contributes to anemia and its sequelae. EPO, Erythropoietin; 765 NLRP3, NLR family pyrin domain containing 3; NRF2, Nuclear factor 766 erythroid 2-related factor 2.

767

CKD and its pathophysiological consequences. Patients with CKD 768 Figure 2. 769 experience complications through different key patho-mechanisms including 770 oxidative stress, uremic toxins and inflammation, that are interrelated. These 771 pivotal features of impaired renal function contribute to an adverse phenotype 772 of patients with CKD, which in turn correspond to CKD progression, as well 773 as increased morality. Renal replacement therapy, e.g. dialysis treatment, can 774 influence both the key patho-mechanisms and the deleterious CKD phenotype 775 in a beneficial (i.e. inhibitory [green]) or adverse (i.e. stimulating [red]) 776 fashion. CV, Cardiovascular.

777

Figure 3. Processes of protein, lipid, DNA, and cell organelle damage, as well as
 impaired cellular redox in CKD. The redox imbalance in CKD due to
 increased oxidative stress and decreased anti-oxidant defenses leads to protein,

781 lipid, DNA, as well as cell organelle damage. Protein damage, either by 782 advanced oxidation protein products (AOPPs), advanced glycation end-783 products (AGEs) or advanced lipoxidation end-products (ALE's), contributes 784 to structural renal defects, as well as pro-inflammatory and pro-oxidative 785 effects both in the kidneys and systemically. Lipid damage as a consequence 786 of increased concentrations of metabolites from the oxidation of unsaturated 787 fatty acids, e.g. 4-hydroxy-2-nonenal (HNE), malondialdehyde (MDA); or 788 arachidonic acid (F2-isoPs [F2-isoprostanes]), directly induces adverse 789 changes in renal hemodynamics but can also react with the amino acid residues 790 of proteins, thereby creating ALE's that can signal through redox-sensitive 791 RhoA. DNA damage in the nucleus and in mitochondria (mtDNA) occurs 792 through oxidation of guanine (G) with oxidation products of G such as 8-793 hydroxydeoxyguanosine (8-OH-dG) and 8-oxodeoxyguanosine (8-oxo-dG). 794 DNA damage is further associated with cellular senescence. Several cell 795 organelles are damaged in CKD and uremic environment. Thus, the 796 endoplasmatic reticulum (ER) in CKD is dysfunctional. Furthermore, 797 peroxisomes, cellular organelles with redox function, are also dysfunctional in 798 CKD. Moreover, mitochondria in patients with CKD show reduced mass, 799 integrity, and function. Nicotinamide adenine dinucleotide (NAD+) can 800 attenuate protein, DNA, and organelle damage but is depleted in CKD due to 801 impaired biosynthesis and augmented consumption. The PPARy co-activator 802 1α (PGC- 1α) improves mitochondrial biogenesis, as well as increases NAD 803 biosynthesis through the *de novo* pathway. By phosphorylation, NAD+ further 804 contributes to the cellular redox state through NADP+ and its conversion to 805 NADPH in the pentose phosphate pathway. NADPH is then further linked to 806 glutathione (GSH)/glutathione disulfide (GSSG) metabolism, crucially 807 contributing to the anti-oxidant defense. Beneficial (green) or adverse (red) 808 effects are depicted by arrows.

809

Figure 4. Allostatic load in health and disease. The presence of stress generated by the
external environment and the internal milieu causes allostasis. The associated

812accrual of 'wear and tear' results in an allostatic load. The body adjusts its813physiology to compensate for this in order to maintain physiological814homeostasis. However, over time the allostatic load will accrue to a point of815allostatic overload when physiological homeostasis becomes dysregulated and816pathology can arise, unless a therapeutic intervention reestablishes817homeostasis.

818

819 Figure 5. Novel treatment concepts for inflammation and oxidative stress for the 820 reduction of CKD complications. A) Senotherapeutics act by clearing or 821 mitigating the effects of senescent cells and suppressing the SASP, thus 822 counteracting ageing and reducing inflammation. **B**) Activation of the 823 transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) in CKD 824 reduces renal inflammation and oxidative stress and improves the pro-825 senescent milieu in CKD. By these renal, as well as similar systemic, effects 826 NRF2 can potentially reduce CKD progression and complications. C) 827 Endogenous or exogenous activation of klotho improves renal inflammation and oxidative stress. Klotho further improves the vascular phenotype, i.e. 828 829 calcification and renal ageing. D) Inhibitors of the sodium-glucose cotransporter 2 (SGLT2) increase glucosuria and improve metabolic function, 830 831 e.g. reducing body weight, blood glucose, blood pressure. Besides these 832 glucosuria-related effects, SGLT2 inhibition reduces renal inflammation, 833 hypoxia, and oxidative stress. Furthermore, SGLT2 inhibitors directly induce 834 beneficial hemodynamic changes through tubuloglomerular feedback and 835 improve renal vascular function. E) Live biotherapeutics can reduce 836 inflammation caused by gut dysbiosis and reinstate a healthier metabolism in 837 the gut, reducing the production of uremic toxins and increasing the production 838 of health-promoting metabolites.

840 **Declaration of interest**

841 Peter Stenvinkel serves on scientific advisory boards of Baxter, Reata, and Astra Zeneca.

842 Ognian Neytchev is funded by a research award to Paul Shiels from Constant Pharma

- 843 (Mass. USA). Thomas Ebert has served as a consultant for Sanofi-Aventis, as well as on a
- 844 scientific advisory board of Boehringer Ingelheim Pharma. The other authors of this
- 845 manuscript have nothing to declare.

846 Funding

847 TE was supported by a Novo Nordisk postdoctoral fellowship run in partnership with 848 Karolinska Institutet, Stockholm, Sweden, a Karolinska Institutet Research Foundation 849 grant, as well as by the EFSD Mentorship Programme supported by AstraZeneca. AW, 850 KK, PS, and TE were further supported by Njurfonden (Swedish Kidney Foundation). PS 851 was supported by the Swedish Heart and Lung Foundation (No 20160384), as well as the 852 Strategic Research Programme in Diabetes at Karolinska Institutet (Swedish Research 853 Council grant No 2009-1068). KK received other grants from the Swedish Research Council (No 2018–00932). PGS is supported by awards from 4D Pharma and Constant 854 855 Pharma.

856 Author contributions

- 857 T.E., O.N., P.S., and P.G.S. wrote the manuscript and researched literature. A.W. and K.K.
- 858 contributed to the discussion and reviewed/edited the manuscript.

859 List of abbreviations

860	8-OH-dG	8-hydroxydeoxyguanosine
861	8-oxo-dG	8-oxodeoxyguanosine
862	ACR	Albumin-to-creatinine ratio
863	ADMA	Asymmetric dimethylarginine
864	AGE	Advanced glycation end-products
865	ALE	Advanced lipoxidation end-products
866	AOPP	Advanced oxidation protein products
867	ARE	Anti-oxidant response element
868	CKD	Chronic kidney disease
869	СРР	Calciprotein particles
870	CRP	C-reactive protein
871	CVD	Cardiovascular disease
872	DDR	DNA damage response
873	DKD	Diabetic kidney disease
874	DMB	3, 3-dimethyl-1-butanol
875	ECM	Extracellular matrix
876	eGFR	estimated glomerular filtration rate
877	ER	Endoplasmic reticulum
878	ESKD	End-stage kidney disease
879	EVA	Early vascular ageing
880	HDL	High-density lipoprotein
881	IFN-γ	Interferon gamma

882	IL	Interleukin
883	IS	Indoxyl sulfate
884	KEAP1	Kelch like ECH-associated protein 1
885	MDA	Malondialdehyde
886	mtDNA	Mitochondrial DNA
887	NF-κB	Nuclear factor-ĸB
888	NRF2	Nuclear factor erythroid 2-related factor 2
889	PCS	p-cresyl sulfate
890	RAGE	AGE receptor
891	RBC	Red blood cells
892	RCS	Reactive carbonyl species
893	RNS	Reactive nitrogen species
894	ROS	Reactive oxygen species
895	RRT	Renal replacement therapy
896	SASP	Senescence-associated secretory phenotype
897	SCAP	Senescent cell anti-apoptotic pathway
898	SCFA	Short-chain fatty acids
899	SGLT2	Sodium–glucose cotransporter 2
900	TMAO	Trimethylamine (TMA)-N-oxide
901	TNF	Tumor necrosis factor
902	VSMC	Vascular smooth muscle cells
903		

904 **References**

- Adema AY, Ittersum FJ van, Hoenderop JG, Borst MH de, Nanayakkara PW, Wee PMT, Heijboer
 AC, Vervloet MG, and Consortium N. Reduction of Oxidative Stress in Chronic Kidney Disease
 Does Not Increase Circulating α-Klotho Concentrations, *PLOS ONE* 11: e0144121, 2016.
- 907 Does Not Increase Circulating α-Klotho Concentrations. *PLOS ONE* 11: e0144121, 2016.
 908 2. de Almeida Alvarenga L, Leal V de O, Borges NA, Silva de Aguiar A, Faxén-Irving G, Stenvinkel
 909 P, Lindholm B, and Mafra D. Curcumin A promising nutritional strategy for chronic kidney
- 910 disease patients. *Journal of Functional Foods* 40: 715–721, 2018.
- Alvarenga L, Salarolli R, Cardozo LFMF, Santos RS, de Brito JS, Kemp JA, Reis D, de Paiva BR, Stenvinkel P, Lindholm B, Fouque D, and Mafra D. Impact of curcumin supplementation on expression of inflammatory transcription factors in hemodialysis patients: A pilot randomized, double-blind, controlled study. *Clinical Nutrition*, 2020.
- 4. Asai M, Kumakura S, and Kikuchi M. Review of the efficacy of AST-120 (KREMEZIN®) on renal function in chronic kidney disease patients. *Ren Fail* 41: 47–56, 2019.
- 917 5. Azushima K, Gurley SB, and Coffman TM. Modelling diabetic nephropathy in mice. *Nature*918 *Reviews Nephrology* 14: 48–56, 2017.
- Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB,
 Verzosa GC, Pezeshki A, Khazaie K, Miller JD, and Deursen JM van. Naturally occurring p16
 Ink4a -positive cells shorten healthy lifespan. *Nature* 530: 184–189, 2016.
- 922 7. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, Sluis B van de, Kirkland JL, and
 923 Deursen JM van. Clearance of p16 Ink4a -positive senescent cells delays ageing-associated
 924 disorders. *Nature* 479: 232–236, 2011.
- 8. Bennett JM, Reeves G, Billman GE, and Sturmberg JP. Inflammation–Nature's Way to Efficiently
 Respond to All Types of Challenges: Implications for Understanding and Managing "the Epidemic"
 of Chronic Diseases. *Front Med* 5, 2018.
- 928
 9. Biran A, Zada L, Karam PA, Vadai E, Roitman L, Ovadya Y, Porat Z, and Krizhanovsky V.
 929 Quantitative identification of senescent cells in aging and disease. *Aging Cell* 16: 661–671, 2017.
- Bonaz B, Sinniger V, and Pellissier S. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. *The Journal of Physiology* 594: 5781–5790, 2016.
- Bonnet F and Scheen AJ. Effects of SGLT2 inhibitors on systemic and tissue low-grade
 inflammation: The potential contribution to diabetes complications and cardiovascular disease.
 Diabetes & Metabolism 44: 457–464, 2018.
- Caglar K, Yilmaz MI, Saglam M, Cakir E, Kilic S, Sonmez A, Eyileten T, Yenicesu M, Oguz Y, Tasar M, Vural A, Ikizler TA, Stenvinkel P, and Lindholm B. Serum Fetuin-A Concentration and Endothelial Dysfunction in Chronic Kidney Disease. *NEC* 108: c233–c240, 2008.
- Cai J, Pires KM, Ferhat M, Chaurasia B, Buffolo MA, Smalling R, Sargsyan A, Atkinson DL,
 Summers SA, Graham TE, and Boudina S. Autophagy Ablation in Adipocytes Induces Insulin
 Resistance and Reveals Roles for Lipid Peroxide and Nrf2 Signaling in Adipose-Liver Crosstalk. *Cell Reports* 25: 1708-1717.e5, 2018.
- 14. Canestrari F, Galli F, Giorgini A, Albertini MC, Galiotta P, Pascucci M, and Bossù M. Erythrocyte
 Redox State in Uremic Anemia: Effects of Hemodialysis and Relevance of Glutathione
 Metabolism. *AHA* 91: 187–193, 1994.
- 15. Cappellari GG, Semolic A, Ruozi G, Vinci P, Guarnieri G, Bortolotti F, Barbetta D, Zanetti M,
 Giacca M, and Barazzoni R. Unacylated ghrelin normalizes skeletal muscle oxidative stress and
 prevents muscle catabolism by enhancing tissue mitophagy in experimental chronic kidney disease.
 The FASEB Journal 31: 5159–5171, 2017.
- Carrero JJ, Stenvinkel P, Fellström B, Qureshi AR, Lamb K, Heimbürger O, Bárány P,
 Radhakrishnan K, Lindholm B, Soveri I, Nordfors L, and Shiels PG. Telomere attrition is
 associated with inflammation, low fetuin-A levels and high mortality in prevalent haemodialysis
 patients. *Journal of Internal Medicine* 263: 302–312, 2008.
- 17. Castilla P, Dávalos A, Teruel JL, Cerrato F, Fernández-Lucas M, Merino JL, Sánchez-Martín CC,
 Ortuño J, and Lasunción MA. Comparative effects of dietary supplementation with red grape juice
 and vitamin E on production of superoxide by circulating neutrophil NADPH oxidase in
 hemodialysis patients. *Am J Clin Nutr* 87: 1053–1061, 2008.

958 959	18.	Castilla P, Echarri R, Dávalos A, Cerrato F, Ortega H, Teruel JL, Lucas MF, Gómez-Coronado D, Ortuño J, and Lasunción MA. Concentrated red grape juice exerts antioxidant, hypolipidemic, and
960 961		antiinflammatory effects in both hemodialysis patients and healthy subjects. <i>Am J Clin Nutr</i> 84: 252–262, 2006.
962 963	19.	Che R, Yuan Y, Huang S, and Zhang A. Mitochondrial dysfunction in the pathophysiology of renal diseases. <i>American Journal of Physiology-Renal Physiology</i> 306: F367–F378, 2013.
964	20.	Cheng F-Y, Lee Y-H, Hsu Y-H, Chiu I-J, Chiu Y-J, Lin Y-F, and Chiu H-W. Promising therapeutic
965		effect of thapsigargin nanoparticles on chronic kidney disease through the activation of Nrf2 and
966		FoxO1. aging 11: 9875–9892, 2019.
967	21.	Chertow GM, Appel GB, Andreoli S, Bangalore S, Block GA, Chapman AB, Chin MP, Gibson
968		KL, Goldsberry A, Iijima K, Inker LA, Knebelmann B, Mariani LH, Meyer CJ, Nozu K, O'Grady
969 970		M, Silva AL, Stenvinkel P, Torra R, Warady BA, and Pergola PE. Study Design and Baseline
970 971		Characteristics of the CARDINAL Trial: A Phase 3 Study of Bardoxolone Methyl in Patients with Alport Syndrome. <i>AJN</i> : 1–10, 2021.
972	22.	Childs BG, Durik M, Baker DJ, and van Deursen JM. Cellular senescence in aging and age-related
973	22.	disease: from mechanisms to therapy. <i>Nat Med</i> 21: 1424–1435, 2015.
974	23.	Chin MP, Bakris GL, Block GA, Chertow GM, Goldsberry A, Inker LA, Heerspink HJL, O'Grady
975		M, Pergola PE, Wanner C, Warnock DG, and Meyer CJ. Bardoxolone Methyl Improves Kidney
976		Function in Patients with Chronic Kidney Disease Stage 4 and Type 2 Diabetes: Post-Hoc Analyses
977		from Bardoxolone Methyl Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes
978		Study. <i>AJN</i> 47: 40–47, 2018.
979	24.	Chung KW, Dhillon P, Huang S, Sheng X, Shrestha R, Qiu C, Kaufman BA, Park J, Pei L, Baur J,
980 981		Palmer M, and Susztak K. Mitochondrial Damage and Activation of the STING Pathway Lead to Renal Inflammation and Fibrosis. <i>Cell Metabolism</i> 30: 784-799.e5, 2019.
982	25.	Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, Harris HMB, Coakley M,
983	25.	Lakshminarayanan B, O'Sullivan O, Fitzgerald GF, Deane J, O'Connor M, Harnedy N, O'Connor
984		K, O'Mahony D, Sinderen D van, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP,
985		Shanahan F, Hill C, Ross RP, and O'Toole PW. Gut microbiota composition correlates with diet
986		and health in the elderly. Nature 488: 178–184, 2012.
987	26.	Cobo G, Lindholm B, and Stenvinkel P. Chronic inflammation in end-stage renal disease and
988		dialysis. Nephrol Dial Transplant 33: iii35-iii40, 2018.
989	27.	Crépin T, Legendre M, Carron C, Vachey C, Courivaud C, Rebibou J-M, Ferrand C, Laheurte C,
990 991		Vauchy C, Gaiffe E, Saas P, Ducloux D, and Bamoulid J. Uraemia-induced immune senescence and clinical outcomes in chronic kidney disease patients. <i>Nephrol Dial Transplant</i> 35: 624–632,
991 992		2020.
993	28.	Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, León R, López MG,
994	20.	Oliva B, Pajares M, Rojo AI, Robledinos-Antón N, Valverde AM, Guney E, and Schmidt HHHW.
995		Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine
996		Approach. <i>Pharmacol Rev</i> 70: 348–383, 2018.
997	29.	Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S,
998		Levonen A-L, Kensler TW, and Dinkova-Kostova AT. Therapeutic targeting of the NRF2 and
999	20	KEAP1 partnership in chronic diseases. <i>Nat Rev Drug Discov</i> 18: 295–317, 2019.
1000 1001	30.	Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, and Diehl JA. Nrf2 Is a Direct PERK Substrate and Effector of PERK-Dependent Cell Survival. <i>Molecular and Cellular Biology</i> 23:
1001		7198–7209, 2003.
1002	31.	Cunha PG, Boutouyrie P, Nilsson PM, and Laurent S. Early Vascular Ageing (EVA): Definitions
1004	51.	and Clinical Applicability. <i>Curr Hypertens Rev</i> 13: 8–15, 2017.
1005	32.	Cybulsky AV. Endoplasmic reticulum stress, the unfolded protein response and autophagy in
1006		kidney diseases. Nature Reviews Nephrology 13: 681–696, 2017.
1007	33.	Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, and Bammens B. Oxidative stress in
1008		chronic kidney disease. Pediatr Nephrol 34: 975–991, 2019.
1009	34.	Dai L, Qureshi AR, Witasp A, Lindholm B, and Stenvinkel P. Early Vascular Ageing and Cellular
1010		Senescence in Chronic Kidney Disease. <i>Computational and Structural Biotechnology Journal</i> 17:
$1011 \\ 1012$	35.	721–729, 2019. Dai L, Watanabe M, Qureshi AR, Mukai H, Machowska A, Heimbürger O, Barany P, Lindholm B,
1012	55.	and Stanuinkal D. Sarum & hydroxydaaxyguanasina, a marker of avidatiya DNA damaga is

1013 and Stenvinkel P. Serum 8-hydroxydeoxyguanosine, a marker of oxidative DNA damage, is

1014		associated with mortality independent of inflammation in chronic kidney disease. European
1015		Journal of Internal Medicine 68: 60–65, 2019.
1016	36.	D'Apolito M, Du X, Pisanelli D, Pettoello-Mantovani M, Campanozzi A, Giacco F, Maffione AB,
1017		Colia AL, Brownlee M, and Giardino I. Urea-induced ROS cause endothelial dysfunction in
1018		chronic renal failure. Atherosclerosis 239: 393–400, 2015.
1019	37.	DeFronzo RA, Norton L, and Abdul-Ghani M. Renal, metabolic and cardiovascular considerations
1020		of SGLT2 inhibition. Nat Rev Nephrol 13: 11–26, 2017.
1021	38.	Duranton F, Cohen G, Smet RD, Rodriguez M, Jankowski J, Vanholder R, Argiles A, and on behalf
1022		of the European Uremic Toxin Work. Normal and Pathologic Concentrations of Uremic Toxins.
1023		JASN 23: 1258–1270, 2012.
1024	39.	Ebert T, Gebhardt C, Scholz M, Wohland T, Schleinitz D, Fasshauer M, Blüher M, Stumvoll M,
1025		Kovacs P, and Tönjes A. Relationship Between 12 Adipocytokines and Distinct Components of the
1026		Metabolic Syndrome. J Clin Endocrinol Metab 103: 1015–1023, 2018.
1027	40.	Ebert T, Hopf LM, Wurst U, Bachmann A, Kralisch S, Lössner U, Platz M, Kratzsch J, Stolzenburg
1028		JU, Dietel A, Grisk O, Beige J, Anders M, Bast I, Klöting N, Blüher M, Stumvoll M, and Fasshauer
1029		M. Circulating adipocyte fatty acid binding protein is increased in chronic and acute renal
1030		dysfunction. Nutrition, Metabolism and Cardiovascular Diseases 24: 1027–1034, 2014.
1031	41.	Ebert T, Painer J, Bergman P, Qureshi AR, Giroud S, Stalder G, Kublickiene K, Göritz F, Vetter S,
1032		Bieber C, Fröbert O, Arnemo JM, Zedrosser A, Redtenbacher I, Shiels PG, Johnson RJ, and
1033		Stenvinkel P. Insights in the regulation of trimetylamine N-oxide production using a comparative
1034		biomimetic approach suggest a metabolic switch in hibernating bears. Scientific Reports 10: 20323,
1035		2020.
1036	42.	Ebert T, Pawelzik S-C, Witasp A, Arefin S, Hobson S, Kublickiene K, Shiels PG, Bäck M, and
1037		Stenvinkel P. Inflammation and Premature Ageing in Chronic Kidney Disease. Toxins 12: 227,
1038		2020.
1039	43.	Edamatsu T, Fujieda A, and Itoh Y. Phenyl sulfate, indoxyl sulfate and p-cresyl sulfate decrease
1040		glutathione level to render cells vulnerable to oxidative stress in renal tubular cells. PLOS ONE 13:
1041		e0193342, 2018.
1042	44.	Ekdahl KN, Soveri I, Hilborn J, Fellström B, and Nilsson B. Cardiovascular disease in
1043		haemodialysis: role of the intravascular innate immune system. Nature Reviews Nephrology 13:
1044		285–296, 2017.
1045	45.	Eltzschig HK and Carmeliet P. Hypoxia and inflammation. N Engl J Med 364: 656–665, 2011.
1046	46.	Esgalhado M, Stenvinkel P, and Mafra D. Nonpharmacologic Strategies to Modulate Nuclear
1047		Factor Erythroid 2-related Factor 2 Pathway in Chronic Kidney Disease. Journal of Renal Nutrition
1048		27: 282–291, 2017.
1049	47.	Evenepoel P, Bammens B, Verbeke K, and Vanrenterghem Y. Acarbose treatment lowers
1050		generation and serum concentrations of the protein-bound solute p-cresol: A pilot study. <i>Kidney</i>
1051	10	International 70: 192–198, 2006.
1052	48.	Evenepoel P, Poesen R, and Meijers B. The gut-kidney axis. <i>Pediatr Nephrol</i> 32: 2005–2014, 2017
1053	40	
1054	49.	Fassett RG, Robertson IK, Ball MJ, Geraghty DP, and Coombes JS. Effects of atorvastatin on
1055	50	oxidative stress in chronic kidney disease. <i>Nephrology</i> 20: 697–705, 2015.
1056 1057	50.	Fazzini F, Lamina C, Fendt L, Schultheiss UT, Kotsis F, Hicks AA, Meiselbach H, Weissensteiner
1057		H, Forer L, Krane V, Eckardt K-U, Köttgen A, Kronenberg F, Eckardt K-U, Meiselbach H,
1058		Schneider M, Dienemann T, Prokosch H-U, Bärthlein B, Beck A, Ganslandt T, Reis A, Ekici AB,
1059		Avendaño S, Becker-Grosspitsch D, Alberth-Schmidt U, Hausknecht B, Zitzmann R, Weigel A,
1060		Walz G, Köttgen A, Schultheiß U, Kotsis F, Meder S, Mitsch E, Reinhard U, Floege J, Schlieper G, Saritas T, Ernst S, Beaujean N, Schaeffner E, Baid-Agrawal S, Theisen K, Haller H, Menne J, Zeier
1061		M, Sommerer C, Woitke R, Wolf G, Busch M, Fuß R, Sitter T, Blank C, Wanner C, Krane V,
1062		Börner-Klein A, Bauer B, Kronenberg F, Raschenberger J, Kollerits B, Forer L, Schönherr S,
1063		Weissensteiner H, Oefner P, Gronwald W, Zacharias H, Schmid M, and Nadal J. Mitochondrial
1064		DNA copy number is associated with mortality and infections in a large cohort of patients with
1065		chronic kidney disease. <i>Kidney International</i> 96: 480–488, 2019.
1060	51.	Fellows R, Denizot J, Stellato C, Cuomo A, Jain P, Stoyanova E, Balázsi S, Hajnády Z, Liebert A,
1067	51.	Kazakevych J, Blackburn H, Corrêa RO, Fachi JL, Sato FT, Ribeiro WR, Ferreira CM, Perée H,
1068		Spagnuolo M, Mattiuz R, Matolcsi C, Guedes J, Clark J, Veldhoen M, Bonaldi T, Vinolo MAR,
1007		Spugnuolo M, Mauluz K, Maulusi C, Gucues J, Clark J, Velulioch M, Dollardi T, Villolo MAK,

1070		and Varga-Weisz P. Microbiota derived short chain fatty acids promote histone crotonylation in the
1071		colon through histone deacetylases. Nat Commun 9: 1–15, 2018.
1072	52.	Ferri E, Casati M, Cesari M, Vitale G, and Arosio B. Vitamin D in physiological and pathological
1073		aging: Lesson from centenarians. Rev Endocr Metab Disord 20: 273-282, 2019.
1074	53.	Florens N, Calzada C, Lyasko E, Juillard L, and Soulage CO. Modified Lipids and Lipoproteins in
1075		Chronic Kidney Disease: A New Class of Uremic Toxins. Toxins 8: 376, 2016.
1076	54.	Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, Monsalve M, Ramos AM,
1077		Sanchez-Niño MD, Ruiz-Ortega M, Ortiz A, and Sanz AB. The Role of PGC-1a and Mitochondrial
1078		Biogenesis in Kidney Diseases. Biomolecules 10: 347, 2020.
1079	55.	Fox CS, Matsushita K, Woodward M, Bilo HJ, Chalmers J, Heerspink HJL, Lee BJ, Perkins RM,
1080		Rossing P, Sairenchi T, Tonelli M, Vassalotti JA, Yamagishi K, Coresh J, de Jong PE, Wen C-P,
1081		and Nelson RG. Associations of kidney disease measures with mortality and end-stage renal disease
1082		in individuals with and without diabetes: a meta-analysis. <i>The Lancet</i> 380: 1662–1673, 2012.
1083	56.	Franceschi C, Garagnani P, Parini P, Giuliani C, and Santoro A. Inflammaging: a new immune-
1084		metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14: 576–590, 2018.
1085	57.	Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y, Brooks RW, Grassi D, Gregg
1086		SQ, Stripay JL, Dorronsoro A, Corbo L, Tang P, Bukata C, Ring N, Giacca M, Li X, Tchkonia T,
1087		Kirkland JL, Niedernhofer LJ, and Robbins PD. Identification of HSP90 inhibitors as a novel class
1088		of senolytics. Nat Commun 8: 1–14, 2017.
1089	58.	Fukunaga M, Makita N, Roberts LJ, Morrow JD, Takahashi K, and Badr KF. Evidence for the
1090		existence of F2-isoprostane receptors on rat vascular smooth muscle cells. American Journal of
1091		Physiology-Cell Physiology 264: C1619–C1624, 1993.
1092	59.	Galli F. Protein damage and inflammation in uraemia and dialysis patients. Nephrol Dial
1093		<i>Transplant</i> 22: v20–v36, 2007.
1094	60.	Galli F, Benedetti S, Floridi A, Canestrari F, Piroddi M, Buoncristiani E, and Buoncristiani U.
1095		Glycoxidation and inflammatory markers in patients on treatment with PMMA-based protein-
1096		leaking dialyzers. Kidney International 67: 750–759, 2005.
1097	61.	Galli F, Floridi A, and Buoncristiani U. Oxidant Stress in Hemodialysis Patients. Hemodialysis
1098		Technology 137: 371–378, 2002.
1099	62.	Galli F, Piroddi M, Bartolini D, Ciffolilli S, Buoncristiani E, Ricci G, and Buoncristiani U. Blood
1100		thiol status and erythrocyte glutathione-S-transferase in chronic kidney disease patients on
1101		treatment with frequent (daily) hemodialysis. Free Radical Research 48: 273–281, 2014.
1102	63.	Galli F, Rovidati S, Benedetti S, Buoncristiani U, Covarelli C, Floridi A, and Canestrari F.
1103		Overexpression of Erythrocyte Glutathione S-Transferase in Uremia and Dialysis. <i>Clin Chem</i> 45:
1104		1781–1788, 1999.
1105	64.	Galvan DL, Badal SS, Long J, Chang BH, Schumacker PT, Overbeek PA, and Danesh FR. Real-
1106		time in vivo mitochondrial redox assessment confirms enhanced mitochondrial reactive oxygen
1107		species in diabetic nephropathy. <i>Kidney International</i> 92: 1282–1287, 2017.
1108	65.	Gembardt F, Bartaun C, Jarzebska N, Mayoux E, Todorov VT, Hohenstein B, and Hugo C. The
1109		SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob
1110		type 2 diabetic mice with and without hypertension. American Journal of Physiology-Renal
1111		Physiology 307: F317–F325, 2014.
1112	66.	Granatiero V, Konrad C, Bredvik K, Manfredi G, and Kawamata H. Nrf2 signaling links ER
1113		oxidative protein folding and calcium homeostasis in health and disease. <i>Life Science Alliance</i> 2,
1114		
1115	67.	Handelman GJ, Walter MF, Adhikarla R, Gross J, Dallal GE, Levin NW, and Blumberg JB.
1116		Elevated plasma F2-isoprostanes in patients on long-term hemodialysis. <i>Kidney International</i> 59:
1117	60	1960–1966, 2001.
1118	68.	Hatanaka T, Ogawa D, Tachibana H, Eguchi J, Inoue T, Yamada H, Takei K, Makino H, and Wada
1119		J. Inhibition of SGLT2 alleviates diabetic nephropathy by suppressing high glucose-induced
1120	<u> </u>	oxidative stress in type 1 diabetic mice. <i>Pharmacology Research & Perspectives</i> 4: e00239, 2016.
1121	69.	Heerspink HJL, Kosiborod M, Inzucchi SE, and Cherney DZI. Renoprotective effects of sodium-
1122	70	glucose cotransporter-2 inhibitors. <i>Kidney International</i> 94: 26–39, 2018.
1123	70.	Herrington WG, Preiss D, Haynes R, von Eynatten M, Staplin N, Hauske SJ, George JT, Green JB,
1124		Landray MJ, Baigent C, and Wanner C. The potential for improving cardio-renal outcomes by

1125		sodium-glucose co-transporter-2 inhibition in people with chronic kidney disease: a rationale for
1126		the EMPA-KIDNEY study. Clin Kidney J 11: 749–761, 2018.
1127	71.	Hershberger KA, Martin AS, and Hirschey MD. Role of NAD + and mitochondrial sirtuins in
1128		cardiac and renal diseases. Nature Reviews Nephrology 13: 213–225, 2017.
1129	72.	Hesp AC, Schaub JA, Prasad PV, Vallon V, Laverman GD, Bjornstad P, and van Raalte DH. The
1130		role of renal hypoxia in the pathogenesis of diabetic kidney disease: a promising target for newer
1131		renoprotective agents including SGLT2 inhibitors? Kidney International 98: 579-589, 2020.
1132	73.	Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM,
1133		Jensen MD, Jia Q, Jordan KL, Kellogg TA, Khosla S, Koerber DM, Lagnado AB, Lawson DK,
1134		LeBrasseur NK, Lerman LO, McDonald KM, McKenzie TJ, Passos JF, Pignolo RJ, Pirtskhalava T,
1135		Saadiq IM, Schaefer KK, Textor SC, Victorelli SG, Volkman TL, Xue A, Wentworth MA, Wissler
1136		Gerdes EO, Zhu Y, Tchkonia T, and Kirkland JL. Senolytics decrease senescent cells in humans:
1137		Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic
1138		kidney disease. EBioMedicine 47: 446–456, 2019.
1139	74.	Himmelfarb J, Stenvinkel P, Ikizler TA, and Hakim RM. The elephant in uremia: Oxidant stress as
1140		a unifying concept of cardiovascular disease in uremia. <i>Kidney International</i> 62: 1524–1538, 2002.
1141	75.	Hindricks J, Ebert T, Bachmann A, Kralisch S, Lössner U, Kratzsch J, Stolzenburg J-U, Dietel A,
1142		Beige J, Anders M, Bast I, Blüher M, Stumvoll M, and Fasshauer M. Serum levels of fibroblast
1143		growth factor-21 are increased in chronic and acute renal dysfunction. <i>Clin Endocrinol</i> 80: 918–
1144	76	924, 2014.
1145	76.	Honda T, Hirakawa Y, and Nangaku M. The role of oxidative stress and hypoxia in renal disease.
1146 1147	77	Kidney Res Clin Pract 38: 414–426, 2019.
1147	77.	Hsu S-C, Huang S-M, Lin S-H, Ka S-M, Chen A, Shih M-F, and Hsu Y-J. Testosterone increases renal anti-aging klotho gene expression via the androgen receptor-mediated pathway. <i>Biochem J</i>
1140		464: 221–229, 2014.
1150	78.	Hu MC, Shi M, Gillings N, Flores B, Takahashi M, Kuro-o M, and Moe OW. Recombinant α-
1150	70.	Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and
1151		uremic cardiomyopathy. <i>Kidney International</i> 91: 1104–1114, 2017.
1153	79.	Hu MC, Shi M, Zhang J, Quiñones H, Griffith C, Kuro-o M, and Moe OW. Klotho Deficiency
1154		Causes Vascular Calcification in Chronic Kidney Disease. JASN 22: 124–136, 2011.
1155	80.	Hu M-C, Shi M, Zhang J, Quiñones H, Kuro-o M, and Moe OW. Klotho deficiency is an early
1156		biomarker of renal ischemia-reperfusion injury and its replacement is protective. <i>Kidney</i>
1157		International 78: 1240–1251, 2010.
1158	81.	Huang W, Zhou L, Guo H, Xu Y, and Xu Y. The role of short-chain fatty acids in kidney injury
1159		induced by gut-derived inflammatory response. Metabolism 68: 20-30, 2017.
1160	82.	Ichimura Y, Waguri S, Sou Y, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T,
1161		Fukutomi T, Hoshii T, Hirao A, Takagi K, Mizushima T, Motohashi H, Lee M-S, Yoshimori T,
1162		Tanaka K, Yamamoto M, and Komatsu M. Phosphorylation of p62 Activates the Keap1-Nrf2
1163		Pathway during Selective Autophagy. Molecular Cell 51: 618–631, 2013.
1164	83.	Inagi R, Ishimoto Y, and Nangaku M. Proteostasis in endoplasmic reticulum-new mechanisms in
1165		kidney disease. Nature Reviews Nephrology 10: 369–378, 2014.
1166	84.	Inoue T, Maekawa H, and Inagi R. Organelle crosstalk in the kidney. Kidney International 95:
1167		1318–1325, 2019.
1168	85.	Itoh Y, Ezawa A, Kikuchi K, Tsuruta Y, and Niwa T. Protein-bound uremic toxins in hemodialysis
1169		patients measured by liquid chromatography/tandem mass spectrometry and their effects on
1170	0.5	endothelial ROS production. Anal Bioanal Chem 403: 1841–1850, 2012.
1171	86.	Izquierdo MJ, Cavia M, Muñiz P, de Francisco AL, Arias M, Santos J, and Abaigar P. Paricalcitol
1172		reduces oxidative stress and inflammation in hemodialysis patients. <i>BMC Nephrology</i> 13: 159, 2012
1173	07	2012. Jacon DL de, Greestenderst DC, Jacon KL, Dült PC von Temes LML, Angell D, Cellert F, Finne P.
1174 1175	87.	Jager DJ de, Grootendorst DC, Jager KJ, Dijk PC van, Tomas LMJ, Ansell D, Collart F, Finne P, Heaf IG, Maaster ID, Wetzels IFM, Pasendael FP, and Dekker FW, Cardiovascular and
1175		Heaf JG, Meester JD, Wetzels JFM, Rosendaal FR, and Dekker FW. Cardiovascular and Noncardiovascular Mortality Among Patients Starting Dialysis, <i>IAMA</i> 302: 1782, 1780, 2000
1170	88.	Noncardiovascular Mortality Among Patients Starting Dialysis. <i>JAMA</i> 302: 1782–1789, 2009. Jain A, Lamark T, Sjøttem E, Larsen KB, Awuh JA, Øvervatn A, McMahon M, Hayes JD, and
1177	00.	Johansen T. p62/SQSTM1 Is a Target Gene for Transcription Factor NRF2 and Creates a Positive
1178		Feedback Loop by Inducing Antioxidant Response Element-driven Gene Transcription. J Biol
1180		Chem 285: 22576–22591, 2010.
1100		Chem 203. 22370-22371, 2010.

1181	89.	Jiang T, Huang Z, Lin Y, Zhang Z, Fang D, and Zhang DD. The Protective Role of Nrf2 in
1182		Streptozotocin-Induced Diabetic Nephropathy. Diabetes 59: 850-860, 2010.
1183	90.	Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, Prata L, Masternak
1184		MM, Kritchevsky SB, Musi N, and Kirkland JL. Senolytics in idiopathic pulmonary fibrosis:
1185		Results from a first-in-human, open-label, pilot study. <i>EBioMedicine</i> 40: 554–563, 2019.
1186	91.	Kang D and Hamasaki N. Maintenance of mitochondrial DNA integrity: repair and degradation.
1187	0.2	<i>Curr Genet</i> 41: 311–322, 2002.
1188	92.	Kato S, Chmielewski M, Honda H, Pecoits-Filho R, Matsuo S, Yuzawa Y, Tranaeus A, Stenvinkel
1189		P, and Lindholm B. Aspects of Immune Dysfunction in End-stage Renal Disease. <i>CJASN</i> 3: 1526–
1190	02	1533, 2008.
1191	93.	Kawanami D, Matoba K, Takeda Y, Nagai Y, Akamine T, Yokota T, Sango K, and Utsunomiya K.
1192 1193		SGLT2 Inhibitors as a Therapeutic Option for Diabetic Nephropathy. <i>International Journal of</i>
1195	04	Molecular Sciences 18: 1083, 2017.
1194 1195	94.	KDIGO. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Diagona Kidney International Superlamenta 2: 1, 150, 2012
1195	05	Kidney Disease. <i>Kidney International Supplements</i> 3: 1–150, 2013.
1190	95.	Kidokoro Kengo, Cherney David Z.I., Bozovic Andrea, Nagasu Hajime, Satoh Minoru, Kanda
1197		Eiichiro, Sasaki Tamaki, and Kashihara Naoki. Evaluation of Glomerular Hemodynamic Function
1198	96.	by Empagliflozin in Diabetic Mice Using In Vivo Imaging. <i>Circulation</i> 140: 303–315, 2019. Kimura T, Shiizaki K, Akimoto T, Shinzato T, Shimizu T, Kurosawa A, Kubo T, Nanmoku K,
1200	90.	Kuro-o M, and Yagisawa T. The impact of preserved Klotho gene expression on antioxidative
1200		stress activity in healthy kidney. American Journal of Physiology-Renal Physiology 315: F345–
1201		F352, 2018.
1202	97.	Kirkland JL and Tchkonia T. Cellular Senescence: A Translational Perspective. <i>EBioMedicine</i> 21:
1203	91.	21–28, 2017.
1204	98.	Kitada K, Nakano D, Ohsaki H, Hitomi H, Minamino T, Yatabe J, Felder RA, Mori H, Masaki T,
1205	<i>J</i> 0.	Kobori H, and Nishiyama A. Hyperglycemia causes cellular senescence via a SGLT2- and p21-
1200		dependent pathway in proximal tubules in the early stage of diabetic nephropathy. <i>Journal of</i>
1207		Diabetes and its Complications 28: 604–611, 2014.
1209	99.	Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, Tanaka N, Moriguchi
1210	<i>,,,</i> ,	T, Motohashi H, Nakayama K, and Yamamoto M. Nrf2 suppresses macrophage inflammatory
1211		response by blocking proinflammatory cytokine transcription. <i>Nature Communications</i> 7: 11624,
1212		2016.
1213	100.	Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith
1214		JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang
1215		WHW, Bushman FD, Lusis AJ, and Hazen SL. Intestinal microbiota metabolism of 1 -carnitine, a
1216		nutrient in red meat, promotes atherosclerosis. Nat Med 19: 576-585, 2013.
1217	101.	Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou Y-S, Ueno I,
1218		Sakamoto A, Tong KI, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi
1219		H, Tanaka K, and Yamamoto M. The selective autophagy substrate p62 activates the stress
1220		responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology 12: 213-
1221		223, 2010.
1222	102.	Kooman JP, Dekker MJ, Usvyat LA, Kotanko P, van der Sande FM, Schalkwijk CG, Shiels PG,
1223		and Stenvinkel P. Inflammation and premature aging in advanced chronic kidney disease. American
1224		Journal of Physiology-Renal Physiology 313: F938–F950, 2017.
1225	103.	Kooman JP, Kotanko P, Schols AMWJ, Shiels PG, and Stenvinkel P. Chronic kidney disease and
1226		premature ageing. Nat Rev Nephrol 10: 732-742, 2014.
1227	104.	Kralisch S, Hoffmann A, Klöting N, Bachmann A, Kratzsch J, Blüher M, Zhang M-Z, Harris RC,
1228		Stumvoll M, Fasshauer M, and Ebert T. The novel adipokine/hepatokine fetuin B in severe human
1229		and murine diabetic kidney disease. Diabetes & Metabolism 43: 465-468, 2017.
1230	105.	Kralisch S, Hoffmann A, Klöting N, Bachmann A, Kratzsch J, Stolzenburg J-U, Dietel A, Beige J,
1231		Anders M, Bast I, Blüher M, Zhang M-Z, Harris RC, Stumvoll M, Fasshauer M, and Ebert T.
1232	105	FSTL3 is increased in renal dysfunction. <i>Nephrol Dial Transplant</i> 32: 1637–1644, 2017.
1233	106.	Kralisch S, Hoffmann A, Klöting N, Frille A, Kuhn H, Nowicki M, Paeschke S, Bachmann A,
1234		Blüher M, Zhang M-Z, Harris RC, Stumvoll M, Fasshauer M, and Ebert T. The brown fat-secreted
1235		adipokine neuregulin 4 is decreased in human and murine chronic kidney disease. <i>European</i>
1236		Journal of Endocrinology 181: 151–159, 2019.

1237	107.	Kramer A, Pippias M, Noordzij M, Stel VS, Andrusev AM, Aparicio-Madre MI, Arribas Monzón
1238	107.	FE, Åsberg A, Barbullushi M, Beltrán P, Bonthuis M, Caskey FJ, Castro de la Nuez P, Cernevskis
1230		H, De Meester J, Finne P, Golan E, Heaf JG, Hemmelder MH, Ioannou K, Kantaria N, Komissarov
1239		K, Korejwo G, Kramar R, Lassalle M, Lopot F, Macário F, Mackinnon B, Pálsson R, Pechter Ü,
1240		Piñera VC, Santiuste de Pablos C, Segarra-Medrano A, Seyahi N, Slon Roblero MF, Stojceva-
1241		
1242		Taneva O, Vazelov E, Winzeler R, Ziginskiene E, Massy Z, and Jager KJ. The European Renal
		Association – European Dialysis and Transplant Association (ERA-EDTA) Registry Annual Report
1244	100	2016: a summary. <i>Clin Kidney J</i> 12: 702–720, 2019.
1245	108.	Krane V and Wanner C. Statins, inflammation and kidney disease. <i>Nat Rev Nephrol</i> 7: 385–397,
1246		2011.
1247	109.	Krata N, Zagożdżon R, Foroncewicz B, and Mucha K. Oxidative Stress in Kidney Diseases: The
1248		Cause or the Consequence? Arch Immunol Ther Exp 66: 211–220, 2018.
1249	110.	Kruger C, Burke SJ, Collier JJ, Nguyen T-T, Salbaum JM, and Stadler K. Lipid peroxidation
1250		regulates podocyte migration and cytoskeletal structure through redox sensitive RhoA signaling.
1251		<i>Redox Biology</i> 16: 248–254, 2018.
1252	111.	Kunnumakkara AB, Bordoloi D, Padmavathi G, Monisha J, Roy NK, Prasad S, and Aggarwal BB.
1253		Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. British Journal of
1254		Pharmacology 174: 1325–1348, 2017.
1255	112.	Kuro-o M. Calciprotein particle (CPP): a true culprit of phosphorus woes? Nefrología (English
1256		Edition) 34: 1–4, 2014.
1257	113.	Kuro-o M. The Klotho proteins in health and disease. <i>Nat Rev Nephrol</i> 15: 27–44, 2019.
1258	114.	Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M,
1259		Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, and Nabeshima Y.
1260		Mutation of the mouse klotho gene leads to a syndrome resembling ageing. <i>Nature</i> 390: 45–51,
1260		1997.
1261	115.	Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H,
1262	115.	
		Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, and
1264	116	Kuro-o M. Suppression of Aging in Mice by the Hormone Klotho. <i>Science</i> 309: 1829–1833, 2005.
1265	116.	Lau WL, Kalantar-Zadeh K, and Vaziri ND. The Gut as a Source of Inflammation in Chronic
1266		Kidney Disease. NEF 130: 92–98, 2015.
1267	117.	Lau WL, Leaf EM, Hu MC, Takeno MM, Kuro-o M, Moe OW, and Giachelli CM. Vitamin D
1268		receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with
1269		chronic kidney disease fed a high phosphate diet. Kidney International 82: 1261–1270, 2012.
1270	118.	Lazar V, Ditu L-M, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, Picu A, Petcu L, and
1271		Chifiriuc MC. Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases,
1272		Immunopathology, and Cancer. Front Immunol 9, 2018.
1273	119.	Lees JS, Welsh CE, Celis-Morales CA, Mackay D, Lewsey J, Gray SR, Lyall DM, Cleland JG, Gill
1274		JMR, Jhund PS, Pell J, Sattar N, Welsh P, and Mark PB. Glomerular filtration rate by differing
1275		measures, albuminuria and prediction of cardiovascular disease, mortality and end-stage kidney
1276		disease. Nat Med 25: 1753-1760, 2019.
1277	120.	Lerman Lilach O., Kurtz Theodore W., Touyz Rhian M., Ellison David H., Chade Alejandro R.,
1278		Crowley Steven D., Mattson David L., Mullins John J., Osborn Jeffrey, Eirin Alfonso, Reckelhoff
1279		Jane F., Iadecola Costantino, Coffman Thomas M., and null null. Animal Models of Hypertension:
1280		A Scientific Statement From the American Heart Association. <i>Hypertension</i> 73: e87–e120, 2019.
1281	121.	Li W, Wu W, Song H, Wang F, Li H, Chen L, Lai Y, Janicki JS, Ward KW, Meyer CJ, Wang XL,
1282		Tang D, and Cui T. Targeting Nrf2 by dihydro-CDDO-trifluoroethyl amide enhances autophagic
1283		clearance and viability of β -cells in a setting of oxidative stress. <i>FEBS Letters</i> 588: 2115–2124,
1283		2014.
1285	122.	Li X, Zou Y, Xing J, Fu Y-Y, Wang K-Y, Wan P-Z, and Zhai X-Y. Pretreatment with Roxadustat
1285	122.	(FG-4592) Attenuates Folic Acid-Induced Kidney Injury through Antiferroptosis via Akt/GSK-
1280		3β/Nrf2 Pathway. Oxidative Medicine and Cellular Longevity 2020: e6286984, 2020.
1287	123.	Ling XC and Kuo K-L. Oxidative stress in chronic kidney disease. <i>Renal Replacement Therapy</i> 4:
1288	123.	
1289	104	53, 2018. Lin F. Wu S. Bon H. and Cu L. Klothe summasses BIC. L mediated concessones associated
1290	124.	Liu F, Wu S, Ren H, and Gu J. Klotho suppresses RIG-I-mediated senescence-associated
1271		inflammation. Nat Cell Biol 13: 254–262. 2011.

inflammation. Nat Cell Biol 13: 254-262, 2011.

1292	125.	Liu J, Huang K, Cai G-Y, Chen X-M, Yang J-R, Lin L-R, Yang J, Huo B-G, Zhan J, and He Y-N.
1293		Receptor for advanced glycation end-products promotes premature senescence of proximal tubular
1294		epithelial cells via activation of endoplasmic reticulum stress-dependent p21 signaling. Cellular
1295		Signalling 26: 110–121, 2014.
1296	126.	Liu J, Yang J-R, Chen X-M, Cai G-Y, Lin L-R, and He Y-N. Impact of ER stress-regulated
1297		ATF4/p16 signaling on the premature senescence of renal tubular epithelial cells in diabetic
1298		nephropathy. American Journal of Physiology-Cell Physiology 308: C621–C630, 2015.
1299	127.	Losappio V, Franzin R, Infante B, Godeas G, Gesualdo L, Fersini A, Castellano G, and Stallone G.
1300	127.	Molecular Mechanisms of Premature Aging in Hemodialysis: The Complex Interplay between
1301		Innate and Adaptive Immune Dysfunction. <i>International Journal of Molecular Sciences</i> 21: 3422,
1302		2020.
1302	128.	Lu T-M, Chung M-Y, Lin C-C, Hsu C-P, and Lin S-J. Asymmetric Dimethylarginine and Clinical
1303	120.	Outcomes in Chronic Kidney Disease. <i>CJASN</i> 6: 1566–1572, 2011.
1304	129.	Lu Y, Zhang Y, Lou Y, Cui W, and Miao L. Sulforaphane suppresses obesity-related
1305	129.	glomerulopathy-induced damage by enhancing autophagy via Nrf2. <i>Life Sciences</i> : 118153, 2020.
1300	120	
1307	130.	Mafra D, Borges N, Lindholm B, Shiels PG, Evenepoel P, and Stenvinkel P. Food as medicine:
1308	101	targeting the uraemic phenotype in chronic kidney disease. <i>Nat Rev Nephrol</i> in press, 2020.
	131.	Maguire D, Neytchev O, Talwar D, McMillan D, and Shiels PG. Telomere Homeostasis: Interplay
1310	122	with Magnesium. International Journal of Molecular Sciences 19: 157, 2018.
1311	132.	Mahmoud AM and Ali MM. Methyl Donor Micronutrients that Modify DNA Methylation and
1312	100	Cancer Outcome. <i>Nutrients</i> 11: 608, 2019.
1313	133.	Martin B, Ji S, Maudsley S, and Mattson MP. "Control" laboratory rodents are metabolically
1314		morbid: Why it matters. <i>PNAS</i> 107: 6127–6133, 2010.
1315	134.	Martini S, Nair V, Keller BJ, Eichinger F, Hawkins JJ, Randolph A, Böger CA, Gadegbeku CA,
1316		Fox CS, Cohen CD, Kretzler M, Bank the ER cDNA, Cohort C-P, and Consortium Ckdg.
1317		Integrative Biology Identifies Shared Transcriptional Networks in CKD. JASN 25: 2559–2572,
1318		2014.
1319	135.	Marton A, Kaneko T, Kovalik J-P, Yasui A, Nishiyama A, Kitada K, and Titze J. Organ protection
1320		by SGLT2 inhibitors: role of metabolic energy and water conservation. <i>Nature Reviews Nephrology</i>
1321		17: 65–77, 2021.
1322	136.	Mastrocola R. AGEs and neurodegeneration: the Nrf2/glyoxalase-1 interaction. Oncotarget 8:
1323		5645–5646, 2017.
1324	137.	McIntyre CW, Harrison LEA, Eldehni MT, Jefferies HJ, Szeto C-C, John SG, Sigrist MK, Burton
1325		JO, Hothi D, Korsheed S, Owen PJ, Lai K-B, and Li PKT. Circulating Endotoxemia: A Novel
1326		Factor in Systemic Inflammation and Cardiovascular Disease in Chronic Kidney Disease. CJASN 6:
1327		133–141, 2011.
1328	138.	Meert N, Schepers E, Smet RD, Argiles A, Cohen G, Deppisch R, Drüeke T, Massy Z, Spasovski
1329		G, Stegmayr B, Zidek W, Jankowski J, and Vanholder R. Inconsistency of Reported Uremic Toxin
1330		Concentrations. Artificial Organs 31: 600-611, 2007.
1331	139.	Mihai S, Codrici E, Popescu ID, Enciu A-M, Albulescu L, Necula LG, Mambet C, Anton G, and
1332		Tanase C. Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction, Progression,
1333		and Outcome. Journal of Immunology Research 2018: 1–16, 2018.
1334	140.	Missailidis C, Hällqvist J, Qureshi AR, Barany P, Heimbürger O, Lindholm B, Stenvinkel P, and
1335		Bergman P. Serum Trimethylamine-N-Oxide Is Strongly Related to Renal Function and Predicts
1336		Outcome in Chronic Kidney Disease. PLOS ONE 11: e0141738, 2016.
1337	141.	Muteliefu G, Shimizu H, Enomoto A, Nishijima F, Takahashi M, and Niwa T. Indoxyl sulfate
1338	1.11	promotes vascular smooth muscle cell senescence with upregulation of p53, p21, and prelamin A
1339		through oxidative stress. American Journal of Physiology-Cell Physiology 303: C126–C134, 2012.
1340	142.	Mutluay R, Değertekin CK, Sayilar EI, Derici Ü, Gültekin S, Gönen S, Arinsoy ST, and Sindel MŞ.
1341	1.2.	Serum fetuin-A is associated with the components of MIAC(malnutrition, inflammation,
1342		atherosclerosis, calcification) syndrome in different stages. <i>Turk J Med Sci</i> 49: 327–335, 2019.
1342	143.	Mutsaers HAM, Wilmer MJG, Reijnders D, Jansen J, van den Broek PHH, Forkink M, Schepers E,
1345	175.	Glorieux G, Vanholder R, van den Heuvel LP, Hoenderop JG, and Masereeuw R. Uremic toxins
1344		inhibit renal metabolic capacity through interference with glucuronidation and mitochondrial
1345		respiration. <i>Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease</i> 1832: 142–150,
1340		
134/		2013.

1348	144.	Nagasu H, Sogawa Y, Kidokoro K, Itano S, Yamamoto T, Satoh M, Sasaki T, Suzuki T, Yamamoto
1349	144.	M, Wigley WC, Proksch JW, Meyer CJ, and Kashihara N. Bardoxolone methyl analog attenuates
1350		proteinuria-induced tubular damage by modulating mitochondrial function. <i>The FASEB Journal</i> :
1351		fj.201900217R, 2019.
1352	145.	Nallu A, Sharma S, Ramezani A, Muralidharan J, and Raj D. Gut microbiome in chronic kidney
1353	1.01	disease: challenges and opportunities. <i>Translational Research</i> 179: 24–37, 2017.
1354	146.	Narumiya H, Sasaki S, Kuwahara N, Irie H, Kusaba T, Kameyama H, Tamagaki K, Hatta T,
1355	1.01	Takeda K, and Matsubara H. HMG-CoA reductase inhibitors up-regulate anti-aging klotho mRNA
1356		via RhoA inactivation in IMCD3 cells. <i>Cardiovasc Res</i> 64: 331–336, 2004.
1357	147.	Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M,
1358		and Matthews DR. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. <i>New</i>
1359		England Journal of Medicine 377: 644–657, 2017.
1360	148.	Neuen BL, Young T, Heerspink HJL, Neal B, Perkovic V, Billot L, Mahaffey KW, Charytan DM,
1361		Wheeler DC, Arnott C, Bompoint S, Levin A, and Jardine MJ. SGLT2 inhibitors for the prevention
1362		of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. The
1363		Lancet Diabetes & Endocrinology 7: 845–854, 2019.
1364	149.	Neyra JA and Hu MC. Potential application of klotho in human chronic kidney disease. <i>Bone</i> 100:
1365		41–49, 2017.
1366	150.	Nistala R, Whaley-Connell A, and Sowers JR. Redox Control of Renal Function and Hypertension.
1367		Antioxidants & Redox Signaling 10: 2047–2089, 2008.
1368	151.	Nordfors L, Lönnqvist F, Heimbürger O, Danielsson A, Schalling M, and Stenvinkel P. Low leptin
1369		gene expression and hyperleptinemia in chronic renal failure. <i>Kidney International</i> 54: 1267–1275,
1370		1998.
1371	152.	Ojima A, Matsui T, Nishino Y, Nakamura N, and Yamagishi S. Empagliflozin, an Inhibitor of
1372		Sodium-Glucose Cotransporter 2 Exerts Anti-Inflammatory and Antifibrotic Effects on
1373		Experimental Diabetic Nephropathy Partly by Suppressing AGEs-Receptor Axis. Horm Metab Res
1374		47: 686–692, 2015.
1375	153.	Opdebeeck B, D'Haese PC, and Verhulst A. Molecular and Cellular Mechanisms that Induce
1376		Arterial Calcification by Indoxyl Sulfate and P-Cresyl Sulfate. Toxins 12: 58, 2020.
1377	154.	Opdebeeck B, Maudsley S, Azmi A, Maré AD, Leger WD, Meijers B, Verhulst A, Evenepoel P,
1378		D'Haese PC, and Neven E. Indoxyl Sulfate and p-Cresyl Sulfate Promote Vascular Calcification
1379		and Associate with Glucose Intolerance. JASN 30: 751-766, 2019.
1380	155.	Osorio H, Coronel I, Arellano A, Pacheco U, Bautista R, Franco M, and Escalante B. Sodium-
1381		Glucose Cotransporter Inhibition Prevents Oxidative Stress in the Kidney of Diabetic Rats.
1382		Oxidative Medicine and Cellular Longevity 2012: 1–7, 2012.
1383	156.	O'Toole PW and Shiels PG. The role of the microbiota in sedentary lifestyle disorders and ageing:
1384		lessons from the animal kingdom. Journal of Internal Medicine 287: 271–282, 2020.
1385	157.	Owada S, Goto S, Bannai K, Hayashi H, Nishijima F, and Niwa T. Indoxyl Sulfate Reduces
1386		Superoxide Scavenging Activity in the Kidneys of Normal and Uremic Rats. AJN 28: 446–454,
1387		2008.
1388	158.	Paisley KE, Beaman M, Tooke JE, Mohamed-Ali V, Lowe GDO, and Shore AC. Endothelial
1389		dysfunction and inflammation in asymptomatic proteinuria. Kidney International 63: 624-633,
1390		2003.
1391	159.	Palm F, Nangaku M, Fasching A, Tanaka T, Nordquist L, Hansell P, Kawakami T, Nishijima F,
1392		and Fujita T. Uremia induces abnormal oxygen consumption in tubules and aggravates chronic
1393		hypoxia of the kidney via oxidative stress. American Journal of Physiology-Renal Physiology 299:
1394		F380–F386, 2010.
1395	160.	Passos JF, Saretzki G, and von Zglinicki T. DNA damage in telomeres and mitochondria during
1396	1.51	cellular senescence: is there a connection? <i>Nucleic Acids Res</i> 35: 7505–7513, 2007.
1397	161.	Pei J, Juni R, Harakalova M, Duncker DJ, Asselbergs FW, Koolwijk P, van Hinsbergh V, Verhaar
1398		MC, Mokry M, and Cheng C. Indoxyl Sulfate Stimulates Angiogenesis by Regulating Reactive
1399	1.62	Oxygen Species Production via CYP1B1. <i>Toxins</i> 11: 454, 2019.
1400	162.	Pergola PE, Raskin P, Toto RD, Meyer CJ, Huff JW, Grossman EB, Krauth M, Ruiz S, Audhya P,
1401		Christ-Schmidt H, Wittes J, and Warnock DG. Bardoxolone Methyl and Kidney Function in CKD with True 2 Diabeter. New England Learned of Madicine 265: 227–226 (2011)
1402		with Type 2 Diabetes. New England Journal of Medicine 365: 327–336, 2011.

1403	163.	Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal
1404		R, Bakris G, Bull S, Cannon CP, Capuano G, Chu P-L, de Zeeuw D, Greene T, Levin A, Pollock C,
1405		Wheeler DC, Yavin Y, Zhang H, Zinman B, Meininger G, Brenner BM, and Mahaffey KW.
1406		Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. New England Journal of
1407		Medicine 380: 2295–2306, 2019.
1408	164.	Piroddi M, Bartolini D, Ciffolilli S, and Galli F. Nondialyzable Uremic Toxins. BPU 35: 30-41,
1409		2013.
1410	165.	Pratviel G and Meunier B. Guanine Oxidation: One- and Two-Electron Reactions. Chemistry – A
1411		European Journal 12: 6018–6030, 2006.
1412	166.	Ralto KM, Rhee EP, and Parikh SM. NAD + homeostasis in renal health and disease. Nature
1413		<i>Reviews Nephrology</i> 16: 99–111, 2020.
1414	167.	Rapa SF, Di Iorio BR, Campiglia P, Heidland A, and Marzocco S. Inflammation and Oxidative
1415		Stress in Chronic Kidney Disease—Potential Therapeutic Role of Minerals, Vitamins and Plant-
1416		Derived Metabolites. International Journal of Molecular Sciences 21: 263, 2020.
1417	168.	Ratliff BB, Abdulmahdi W, Pawar R, and Wolin MS. Oxidant Mechanisms in Renal Injury and
1418		Disease. Antioxidants & Redox Signaling 25: 119–146, 2016.
1419	169.	Ravarotto V, Simioni F, Pagnin E, Davis PA, and Calò LA. Oxidative stress - chronic kidney
1420		disease – cardiovascular disease: A vicious circle. Life Sciences 210: 125–131, 2018.
1421	170.	Ritter CS, Zhang S, Delmez J, Finch JL, and Slatopolsky E. Differential expression and regulation
1422		of Klotho by paricalcitol in the kidney, parathyroid, and aorta of uremic rats. Kidney International
1423		87: 1141–1152, 2015.
1424	171.	Robbins PD and Niedernhofer LJ. Advances in Therapeutic Approaches to Extend Healthspan: a
1425		perspective from the 2nd Scripps Symposium on the Biology of Aging. Aging Cell 16: 610-614,
1426		2017.
1427	172.	Robinson MW, McGuinness D, Swann R, Barclay S, Mills PR, Patel AH, McLauchlan J, and
1428		Shiels PG. Non cell autonomous upregulation of CDKN2 transcription linked to progression of
1429		chronic hepatitis C disease. Aging Cell 12: 1141–1143, 2013.
1430	173.	Rodrigues SD, França KC, Dallin FT, Fujihara CK, Nascimento AJ, Pecoits-Filho R, and Nakao
1431		LS. N-acetylcysteine as a potential strategy to attenuate the oxidative stress induced by uremic
1432		serum in the vascular system. Life Sciences 121: 110–116, 2015.
1433	174.	Rojo de la Vega M, Chapman E, and Zhang DD. NRF2 and the Hallmarks of Cancer. Cancer Cell
1434		34: 21–43, 2018.
1435	175.	Rowland AA and Voeltz GK. Endoplasmic reticulum-mitochondria contacts: function of the
1436		junction. Nat Rev Mol Cell Biol 13: 607–615, 2012.
1437	176.	Sarafidis PA and Bakris GL. Protection of the kidney by thiazolidinediones: An assessment from
1438		bench to bedside. Kidney International 70: 1223-1233, 2006.
1439	177.	Schupp N, Stopper H, and Heidland A. DNA Damage in Chronic Kidney Disease: Evaluation of
1440		Clinical Biomarkers. Oxid Med Cell Longev 2016: 3592042, 2016.
1441	178.	Sela S, Shurtz-Swirski R, Cohen-Mazor M, Mazor R, Chezar J, Shapiro G, Hassan K, Shkolnik G,
1442		Geron R, and Kristal B. Primed Peripheral Polymorphonuclear Leukocyte: A Culprit Underlying
1443		Chronic Low-Grade Inflammation and Systemic Oxidative Stress in Chronic Kidney Disease. JASN
1444		16: 2431–2438, 2005.
1445	179.	Sen T and Heerspink HJL. A kidney perspective on the mechanism of action of sodium glucose co-
1446	100	transporter 2 inhibitors. Cell Metabolism 33: 732–739, 2021.
1447	180.	Sepe V, Gregorini M, Rampino T, Esposito P, Coppo R, Galli F, and Libetta C. Vitamin e-loaded
1448	4.0.1	membrane dialyzers reduce hemodialysis inflammaging. BMC Nephrology 20: 412, 2019.
1449	181.	Sepidarkish M, Farsi F, Akbari-Fakhrabadi M, Namazi N, Almasi-Hashiani A, Maleki Hagiagha A,
1450		and Heshmati J. The effect of vitamin D supplementation on oxidative stress parameters: A
1451		systematic review and meta-analysis of clinical trials. <i>Pharmacological Research</i> 139: 141–152,
1452	100	
1453	182.	Shang F, Wang S-C, Hsu C-Y, Miao Y, Martin M, Yin Y, Wu C-C, Wang Y-T, Wu G, Chien S,
1454		Huang H-D, Tarng D-C, Shiu Y-T, Cheung AK, Huang P-H, Chen Z, and Shyy JY-J. MicroRNA-
1455	102	92a Mediates Endothelial Dysfunction in CKD. JASN 28: 3251–3261, 2017.
1456	183.	Shen W-C, Liang C-J, Huang T-M, Liu C-W, Wang S-H, Young G-H, Tsai J-S, Tseng Y-C, Peng
1457		Y-S, Wu V-C, and Chen Y-L. Indoxyl sulfate enhances IL-1β-induced E-selectin expression in

1458		endothelial cells in acute kidney injury by the ROS/MAPKs/NFkB/AP-1 pathway. Arch Toxicol 90:
1459		2779–2792, 2016.
1460	184.	Shi K, Wang F, Jiang H, Liu H, Wei M, Wang Z, and Xie L. Gut Bacterial Translocation May
1461		Aggravate Microinflammation in Hemodialysis Patients. Dig Dis Sci 59: 2109–2117, 2014.
1462	185.	Shi M, Flores B, Gillings N, Bian A, Cho HJ, Yan S, Liu Y, Levine B, Moe OW, and Hu MC.
1463		αKlotho Mitigates Progression of AKI to CKD through Activation of Autophagy. JASN 27: 2331-
1464		2345, 2016.
1465	186.	Shiels PG, Buchanan S, Selman C, and Stenvinkel P. Allostatic load and ageing: linking the
1466 1467		microbiome and nutrition with age-related health. <i>Biochemical Society Transactions</i> 47: 1165–
1467	187.	1172, 2019. Shiels PG and Davies RW. Ageing and the death of neurones. In: <i>Molecular Biology of the Neuron</i> ,
1469	167.	2ed ed. Oxford University Press, 2004.
1470	188.	Shiels PG, McGuinness D, Eriksson M, Kooman JP, and Stenvinkel P. The role of epigenetics in
1471		renal ageing. Nat Rev Nephrol 13: 471–482, 2017.
1472	189.	Shiels PG and Ritzau-Reid K. Biological Ageing, Inflammation and Nutrition: How Might They
1473		Impact on Systemic Sclerosis? Curr Aging Sci 8: 123–130, 2015.
1474	190.	Shimizu H, Bolati D, Adijiang A, Enomoto A, Nishijima F, Dateki M, and Niwa T. Senescence and
1475		dysfunction of proximal tubular cells are associated with activated p53 expression by indoxyl
1476		sulfate. American Journal of Physiology-Cell Physiology 299: C1110–C1117, 2010.
1477	191.	Shimoyama Y, Mitsuda Y, Tsuruta Y, Hamajima N, and Niwa T. Polymorphism of Nrf2, an
1478 1479		Antioxidative Gene, is Associated with Blood Pressure and Cardiovascular Mortality in
1479	192.	Hemodialysis Patients. <i>Int J Med Sci</i> 11: 726–731, 2014. Simmons EM, Langone A, Sezer MT, Vella JP, Recupero P, Morrow JD, Ikizler TA, and
1481	192.	Himmelfarb J. Effect of Renal Transplantation on Biomarkers of Inflammation and Oxidative
1482		Stress in End-Stage Renal Disease Patients. <i>Transplantation</i> 79: 914–919, 2005.
1483	193.	Soto-Gamez A and Demaria M. Therapeutic interventions for aging: the case of cellular
1484		senescence. Drug Discovery Today 22: 786–795, 2017.
1485	194.	Stanford J, Charlton K, Stefoska-Needham A, Ibrahim R, and Lambert K. The gut microbiota
1486		profile of adults with kidney disease and kidney stones: a systematic review of the literature. BMC
1487		Nephrology 21: 215, 2020.
1488	195.	Steenkamp R, Pyart R, and Fraser S. Chapter 5 Survival and Cause of Death in UK Adult Patients
1489		on Renal Replacement Therapy in 2016: National and Centre-specific Analyses. <i>NEF</i> 139: 117–
1490 1491	196.	150, 2018. Stenvinkel P. Mitochondrial dysfunction as part of an inflammatory intermediate phenotype that
1491	190.	drives premature ageing. J Intern Med: joim.13243, 2021.
1493	197.	Stenvinkel P, Meyer CJ, Block GA, Chertow GM, and Shiels PG. Understanding the role of the
1494	1777	cytoprotective transcription factor nuclear factor erythroid 2–related factor 2—lessons from
1495		evolution, the animal kingdom and rare progeroid syndromes. <i>Nephrol Dial Transplant</i> .
1496	198.	Stenvinkel P, Painer J, Johnson RJ, and Natterson-Horowitz B. Biomimetics – Nature's roadmap to
1497		insights and solutions for burden of lifestyle diseases. Journal of Internal Medicine 287: 238-251,
1498		2020.
1499	199.	Stenvinkel P, Pecoits-Filho R, and Lindholm B. Coronary Artery Disease in End-Stage Renal
1500	200	Disease: No Longer a Simple Plumbing Problem. JASN 14: 1927–1939, 2003.
1501 1502	200.	Stenvinkel P and Shiels PG. Long-lived animals with negligible senescence: clues for ageing
1502	201.	research. <i>Biochemical Society Transactions</i> 47: 1157–1164, 2019. Stinghen AEM, Massy ZA, Vlassara H, Striker GE, and Boullier A. Uremic Toxicity of Advanced
1505	201.	Glycation End Products in CKD. JASN 27: 354–370, 2016.
1505	202.	Storey BC, Staplin N, Haynes R, Reith C, Emberson J, Herrington WG, Wheeler DC, Walker R,
1506		Fellström B, Wanner C, Landray MJ, Baigent C, Storey BC, Staplin N, Haynes R, Reith C,
1507		Emberson J, Herrington WG, Wheeler DC, Walker R, Fellström B, Wanner C, Landray MJ,
1508		Baigent C, Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, Wanner C,
1509		Krane V, Cass A, Craig J, Neal B, Jiang L, Hooi LS, Levin A, Agodoa L, Gaziano M, Kasiske B,
1510		Walker R, Massy ZA, Feldt-Rasmussen B, Krairittichai U, Ophascharoensuk V, Fellström B,
1511		Holdaas H, Tesar V, Wiecek A, Grobbee D, de Zeeuw D, Grönhagen-Riska C, Dasgupta T, Lewis
1512 1513		D, Herrington W, Mafham M, Majoni W, Wallendszus K, Grimm R, Pedersen T, Tobert J, Armitage L Bayter A, Bray C, Chen Y, Chen Z, Hill M, Knott C, Parish S, Simpson D, Sleight P
1313		Armitage J, Baxter A, Bray C, Chen Y, Chen Z, Hill M, Knott C, Parish S, Simpson D, Sleight P,
		53

1514		Young A, and Collins R. Lowering LDL cholesterol reduces cardiovascular risk independently of
1515		presence of inflammation. <i>Kidney International</i> 93: 1000–1007, 2018.
1516	203.	Strong R, Miller RA, Antebi A, Astle CM, Bogue M, Denzel MS, Fernandez E, Flurkey K,
1517		Hamilton KL, Lamming DW, Javors MA, Magalhães JP de, Martinez PA, McCord JM, Miller BF,
1518		Müller M, Nelson JF, Ndukum J, Rainger GE, Richardson A, Sabatini DM, Salmon AB, Simpkins
1510		JW, Steegenga WT, Nadon NL, and Harrison DE. Longer lifespan in male mice treated with a
1520		weakly estrogenic agonist, an antioxidant, an α -glucosidase inhibitor or a Nrf2-inducer. Aging Cell
1521		15: 872–884, 2016.
1522	204.	Sun C-Y, Chang S-C, and Wu M-S. Suppression of Klotho expression by protein-bound uremic
1523		toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation.
1524		Kidney International 81: 640–650, 2012.
1525	205.	Sun C-Y, Cheng M-L, Pan H-C, Lee J-H, and Lee C-C. Protein-bound uremic toxins impaired
1526		mitochondrial dynamics and functions. Oncotarget 8: 77722–77733, 2017.
1527	206.	Suzuki D, Toyoda M, Yamamoto N, Miyauchi M, Katoh M, Kimura M, Maruyama M, Honma M,
	200.	
1528		Umezono T, and Yagame M. Relationship between the Expression of Advanced Glycation End-
1529		Products (AGE) and the Receptor for AGE (RAGE) mRNA in Diabetic Nephropathy. Internal
1530		Medicine 45: 435–441, 2006.
1531	207.	Takahashi K, Nammour TM, Fukunaga M, Ebert J, Morrow JD, Roberts LJ, Hoover RL, and Badr
1532		KF. Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2
1533		alpha, in the rat. Evidence for interaction with thromboxane A2 receptors. J Clin Invest 90: 136–
1534		141, 1992.
1535	208.	
	208.	Tanaka Y, Joki N, Hase H, Iwasaki M, Ikeda M, Ando R, Shinoda T, Inaguma D, Sakaguchi T,
1536		Komatsu Y, Koiwa F, Yamaka T, and Shigematsu T. Effect of erythropoietin-stimulating agent on
1537		uremic inflammation. Journal of Inflammation 9: 17, 2012.
1538	209.	Tang C, Cai J, Yin X-M, Weinberg JM, Venkatachalam MA, and Dong Z. Mitochondrial quality
1539		control in kidney injury and repair. <i>Nature Reviews Nephrology</i> : 1–20, 2020.
1540	210.	Tang C and Dong Z. Mitochondria in Kidney Injury: When the Power Plant Fails. JASN 27: 1869–
1541		1872, 2016.
1542	211.	Tchkonia T, Zhu Y, Deursen J van, Campisi J, and Kirkland JL. Cellular senescence and the
1543	211.	senescent secretory phenotype: therapeutic opportunities. <i>J Clin Invest</i> 123: 966–972, 2013.
1544	212	
	212.	Terami N, Ogawa D, Tachibana H, Hatanaka T, Wada J, Nakatsuka A, Eguchi J, Horiguchi CS,
1545		Nishii N, Yamada H, Takei K, and Makino H. Long-Term Treatment with the Sodium Glucose
1546		Cotransporter 2 Inhibitor, Dapagliflozin, Ameliorates Glucose Homeostasis and Diabetic
1547		Nephropathy in db/db Mice. PLOS ONE 9: e100777, 2014.
1548	213.	Thethi TK, Bajwa MA, Ghanim H, Jo C, Weir M, Goldfine AB, Umpierrez G, Desouza C,
1549		Dandona P, Fang-Hollingsworth Y, Raghavan V, and Fonseca VA. Effect of paricalcitol on
1550		endothelial function and inflammation in type 2 diabetes and chronic kidney disease. Journal of
1551		Diabetes and its Complications 29: 433–437, 2015.
1552	214.	Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, and Biswal S.
1552	214.	
		Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J
1554		<i>Clin Invest</i> 116: 984–995, 2016.
1555	215.	Tönjes A, Hoffmann A, Kralisch S, Qureshi AR, Klöting N, Scholz M, Schleinitz D, Bachmann A,
1556		Kratzsch J, Nowicki M, Paeschke S, Wirkner K, Enzenbach C, Baber R, Beige J, Anders M, Bast I,
1557		Blüher M, Kovacs P, Löffler M, Zhang M-Z, Harris RC, Stenvinkel P, Stumvoll M, Fasshauer M,
1558		and Ebert T. Pro-neurotensin depends on renal function and is related to all-cause mortality in
1559		chronic kidney disease. European Journal of Endocrinology 183: 233–244, 2020.
1560	216.	Torino C, Pizzini P, Cutrupi S, Tripepi R, Vilasi A, Tripepi G, Mallamaci F, and Zoccali C. Effect
1561	210.	
		of Vitamin D Receptor Activation on the AGE/RAGE System and Myeloperoxidase in Chronic
1562		Kidney Disease Patients. Oxidative Medicine and Cellular Longevity.
1563		https://www.hindawi.com/journals/omcl/2017/2801324/. July 27, 2020.
1564	217.	Tran MT, Zsengeller ZK, Berg AH, Khankin EV, Bhasin MK, Kim W, Clish CB, Stillman IE,
1565		Karumanchi SA, Rhee EP, and Parikh SM. PGC1a drives NAD biosynthesis linking oxidative
1566		metabolism to renal protection. <i>Nature</i> 531: 528–532, 2016.
1567	218.	Trellu S, Courties A, Jaisson S, Gorisse L, Gillery P, Kerdine-Römer S, Vaamonde-Garcia C,
1568	_10.	Houard X, Ekhirch F-P, Sautet A, Friguet B, Jacques C, Berenbaum F, and Sellam J. Impairment of
1000		round r, Existent r r, Suuter r, r inguer D, sueques C, Derenbaum r, and Benam J. impairment Of

age-related osteoarthritis. <i>Arthritis Research & Therapy</i> 21: 18, 2019.	mation in
1571 219. Underwood CF, Hildreth CM, Wyse BF, Boyd R, Goodchild AK, and Phillips JK. Uraen	
1572 unrecognized driver of central neurohumoral dysfunction in chronic kidney disease? Acta	ı
1573 <i>Physiologica</i> 219: 305–323, 2017.	
1574 220. Vallon V, Gerasimova M, Rose MA, Masuda T, Satriano J, Mayoux E, Koepsell H, Thor	
and Rieg T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in pro-	
1576 hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. <i>American</i>	Journal of
1577 Physiology-Renal Physiology 306: F194–F204, 2013.	
1578 221. van Bussel Bas C., Schouten Fleur, Henry Ronald M., Schalkwijk Casper G., de Boer Mi	
1579 Ferreira Isabel, Smulders Yvo M., Twisk Jos W., and Stehouwer Coen D. Endothelial Dy	
and Low-Grade Inflammation Are Associated With Greater Arterial Stiffness Over a 6-Y	ear Period.
1581 <i>Hypertension</i> 58: 588–595, 2011.	
1582 222. Vanholder R, Argilés A, Baurmeister U, Brunet P, Clark W, Cohen G, Dedeyn PP, Depp	
1583 Descamps-Latscha B, Henle T, Jörres A, Massy ZA, Rodriguez M, Stegmayr B, Stenvinl	
1584 Wratten ML. Uremic Toxicity: Present State of the Art. <i>The International Journal of Art</i>	ificial
1585 Organs 24: 695–725, 2001.	
1586 223. Vanholder R, De Smet R, Glorieux G, Argilés A, Baurmeister U, Brunet P, Clark W, Col	
1587 Deyn PP, Deppisch R, Descamps-Latscha B, Henle T, Jörres A, Lemke HD, Massy ZA, 1	
1588 Deetjen J, Rodriguez M, Stegmayr B, Stenvinkel P, Tetta C, Wanner C, Zidek W, and Fo	
1589 European Uremic Toxin Work Group (EUTox). Review on uremic toxins: Classification,	
1590 concentration, and interindividual variability. <i>Kidney International</i> 63: 1934–1943, 2003	
1591 224. Vanholder R, Pletinck A, Schepers E, and Glorieux G. Biochemical and Clinical Impact	of Organic
1592 Uremic Retention Solutes: A Comprehensive Update. <i>Toxins</i> 10: 33, 2018.	
1593 225. Vasko R. Peroxisomes and Kidney Injury. Antioxidants & Redox Signaling 25: 217–231,	
1594 226. Vistoli G, Maddis DD, Cipak A, Zarkovic N, Carini M, and Aldini G. Advanced glycoxid	
1595 lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of format	ion. Free
1596 <i>Radical Research</i> 47: 3–27, 2013.	1 0 11
1597 227. Vlassara H, Uribarri J, Cai W, Goodman S, Pyzik R, Post J, Grosjean F, Woodward M, a	
1598 GE. Effects of Sevelamer on HbA1c, Inflammation, and Advanced Glycation End Production	cts in
1599 Diabetic Kidney Disease. CJASN 7: 934–942, 2012.	
 1600 228. von Leitner Eike-Christin, Klinke Anna, Atzler Dorothee, Slocum Jessica L., Lund Natal 1601 Kielstein Jan T., Maas Renke, Schmidt-Haupt Robin, Pekarova Michaela, Hellwinkel Ob 	
 Dimitrios, D'Alecy Louis G., Lau Denise, Willems Stephan, Kubala Lukas, Ehmke Hein Meinertz Thomas, Blankenberg Stefan, Schwedhelm Edzard, Gadegbeku Crystal A., Bög 	
	-
1604 H., Baldus Stephan, and Sydow Karsten. Pathogenic Cycle Between the Endogenous Nit 1605 Synthase Inhibitor Asymmetrical Dimethylarginine and the Leukocyte-Derived Hemopro	
	nem
 Myeloperoxidase. <i>Circulation</i> 124: 2735–2745, 2011. Wan C, Su H, and Zhang C. Role of NADPH Oxidase in Metabolic Disease-Related Ren 	ol Iniumy
1608 An Update. Oxidative Medicine and Cellular Longevity.	ai injury.
1609 https://www.hindawi.com/journals/omcl/2016/7813072/. August 20, 2020.	
1610 230. Wang J, Uryga AK, Reinhold J, Figg N, Baker L, Finigan A, Gray K, Kumar S, Clarke M	(and
1611 Bennett M. Vascular Smooth Muscle Cell Senescence Promotes Atherosclerosis and Fea	
1612 Defined M. Vasculai Smooth Muscle Cell Schescence Fromotes Atheroscierosis and Fea Plaque Vulnerability. <i>Circulation</i> 132: 1909–1919, 2015.	
1613 231. Wang W, Li S, Wang H, Li B, Shao L, Lai Y, Horvath G, Wang Q, Yamamoto M, Janich	
1614 Wang XL, Tang D, and Cui T. Nrf2 enhances myocardial clearance of toxic ubiquitinated	
1615 Journal of Molecular and Cellular Cardiology 72: 305–315, 2014.	i protenis.
1616 232. Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Schautz B, Later W, Heymsfield SB, and N	/iiller MI
	numsue
1617 Specific metabolic rates of major organs and tissues across adulthood: evaluation by mec	
1617Specific metabolic rates of major organs and tissues across adulthood: evaluation by mec1618model of resting energy expenditure. Am J Clin Nutr 92: 1369–1377, 2010.	OE
1617Specific metabolic rates of major organs and tissues across adulthood: evaluation by mec1618model of resting energy expenditure. Am J Clin Nutr 92: 1369–1377, 2010.1619233.Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen	
 Specific metabolic rates of major organs and tissues across adulthood: evaluation by mec model of resting energy expenditure. <i>Am J Clin Nutr</i> 92: 1369–1377, 2010. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen Woerle HJ, Broedl UC, and Zinman B. Empagliflozin and Progression of Kidney Disease 	
1617Specific metabolic rates of major organs and tissues across adulthood: evaluation by mec1618model of resting energy expenditure. Am J Clin Nutr 92: 1369–1377, 2010.1619233.Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen	e in Type 2

1624		Maruyama T. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by
1625		activation of NADPH oxidase. Kidney International 83: 582-592, 2013.
1626	235.	White E. The role for autophagy in cancer. J Clin Invest 125: 42–46, 2015.
1627	236.	Wilcox Christopher S. Asymmetric Dimethylarginine and Reactive Oxygen Species. Hypertension
1628		59: 375–381, 2012.
1629	237.	Williams GC. Pleiotropy, Natural Selection, and the Evolution of Senescence. Evolution 11: 398-
1630		411, 1957.
1631	238.	Wing MR, Patel SS, Ramezani A, and Raj DS. Gut microbiome in chronic kidney disease.
1632		Experimental Physiology 101: 471–477, 2016.
1633	239.	Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA,
1634		Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson
1635		IAM, Fredriksson M, Johansson PA, Langkilde A-M, and Sabatine MS. Dapagliflozin and
1636		Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of Medicine 380: 347–357,
1637		2019.
1638	240.	Xu H, Watanabe M, Qureshi AR, Heimbürger O, Bárány P, Anderstam B, Eriksson M, Stenvinkel
1639		P, and Lindholm B. Oxidative Dna Damage and Mortality in Hemodialysis and Peritoneal Dialysis
1640		Patients: Peritoneal Dialysis International, 2015.
1641	241.	Xue P, Hou Y, Chen Y, Yang B, Fu J, Zheng H, Yarborough K, Woods CG, Liu D, Yamamoto M,
1642		Zhang Q, Andersen ME, and Pi J. Adipose Deficiency of Nrf2 in ob/ob Mice Results in Severe
1643		Metabolic Syndrome. <i>Diabetes</i> 62: 845–854, 2013.
1644	242.	Yang H-C, Deleuze S, Zuo Y, Potthoff SA, Ma L-J, and Fogo AB. The PPARy Agonist
1645	0.40	Pioglitazone Ameliorates Aging-Related Progressive Renal Injury. JASN 20: 2380–2388, 2009.
1646	243.	Yeh W-J, Yang H-Y, Pai M-H, Wu C-H, and Chen J-R. Long-term administration of advanced
1647		glycation end-product stimulates the activation of NLRP3 inflammasome and sparking the
1648 1649	244	development of renal injury. <i>The Journal of Nutritional Biochemistry</i> 39: 68–76, 2017.
1650	244.	Yilmaz MI, Saglam M, Caglar K, Cakir E, Sonmez A, Ozgurtas T, Aydin A, Eyileten T, Ozcan O,
1650		Acikel C, Tasar M, Genctoy G, Erbil K, Vural A, and Zoccali C. The Determinants of Endothelial Dysfunction in CKD: Oxidative Stress and Asymmetric Dimethylarginine. <i>American Journal of</i>
1652		<i>Kidney Diseases</i> 47: 42–50, 2006.
1653	245.	Yilmaz O, Afsar B, Ortiz A, and Kanbay M. The role of endothelial glycocalyx in health and
1654	243.	disease. <i>Clin Kidney J</i> 12: 611–619, 2019.
1655	246.	Yoon HE, Lim SW, Piao SG, Song J-H, Kim J, and Yang CW. Statin Upregulates the Expression of
1656	240.	Klotho, an Anti-Aging Gene, in Experimental Cyclosporine Nephropathy. <i>NEE</i> 120: e123–e133,
1657		2012.
1658	247.	Yu M, Kim YJ, and Kang D-H. Indoxyl Sulfate–Induced Endothelial Dysfunction in Patients with
1659		Chronic Kidney Disease via an Induction of Oxidative Stress. <i>CJASN</i> 6: 30–39, 2011.
1660	248.	Yura T, Fukunaga M, Khan R, Nassar GN, Badr KF, and Montero A. Free-radical–generated F2-
1661		isoprostane stimulates cell proliferation and endothelin-1 expression on endothelial cells. <i>Kidney</i>
1662		International 56: 471–478, 1999.
1663	249.	Zanoli L, Lentini P, Briet M, Castellino P, House AA, London GM, Malatino L, McCullough PA,
1664		Mikhailidis DP, and Boutouyrie P. Arterial Stiffness in the Heart Disease of CKD. JASN 30: 918–
1665		928, 2019.
1666	250.	de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, Goldsberry A, Houser
1667		M, Krauth M, Lambers Heerspink HJ, McMurray JJ, Meyer CJ, Parving H-H, Remuzzi G, Toto
1668		RD, Vaziri ND, Wanner C, Wittes J, Wrolstad D, and Chertow GM. Bardoxolone Methyl in Type 2
1669		Diabetes and Stage 4 Chronic Kidney Disease. New England Journal of Medicine 369: 2492–2503,
1670		2013.
1671	251.	Zhang R, Saredy J, Shao Y, Yao T, Liu L, Saaoud F, Yang WY, Sun Y, Johnson C, Drummer C, Fu
1672		H, Lu Y, Xu K, Liu M, Wang J, Cutler E, Yu D, Jiang X, Li Y, Li R, Wang L, Choi ET, Wang H,
1673		and Yang X. End-stage renal disease is different from chronic kidney disease in upregulating ROS-
1674		modulated proinflammatory secretome in PBMCs - A novel multiple-hit model for disease
1675	252	progression. <i>Redox Biology</i> 34: 101460, 2020.
1676	252.	Zhao Y, Banerjee S, Dey N, LeJeune WS, Sarkar PS, Brobey R, Rosenblatt KP, Tilton RG, and
1677 1678		Choudhary S. Klotho Depletion Contributes to Increased Inflammation in Kidney of the db/db
10/0		Mouse Model of Diabetes via RelA (Serine)536 Phosphorylation. <i>Diabetes</i> 60: 1907–1916, 2011.

- 1679 1680 1681 253. Zou D, Wu W, He Y, Ma S, and Gao J. The role of klotho in chronic kidney disease. BMC Nephrology 19: 285, 2018.
- 254. Search of: klotho - List Results - ClinicalTrials.gov.
- 1682 https://clinicaltrials.gov/ct2/results?term=klotho&Search=Search. February 2, 2020.