
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Optimal False-Positive-Free Bloom Filter Design for
Scalable Multicast Forwarding

János Tapolcai, Member, IEEE, József Bíró, Member, IEEE, Péter Babarczi, Member, IEEE, András Gulyás,
Zalán Heszberger, Member, IEEE, and Dirk Trossen

Abstract—Large-scale information dissemination in multicast
communications has been increasingly attracting attention, be it
through uptake in new services or through recent research efforts.
In these, the core issues are supporting increased forwarding
speed, avoiding state in the forwarding elements, and scaling in
terms of the multicast tree size. This paper addresses all these
challenges—which are crucial for any scalable multicast scheme
to be successful—by revisiting the idea of in-packet Bloom filters
and source routing. As opposed to the traditional in-packet Bloom
filter concept, we build our Bloom filter by enclosing limited
information about the structure of the tree. Analytical investi-
gation is conducted and approximation formulas are provided
for optimal-length Bloom filters, in which we got rid of typical
Bloom filter illnesses such as false-positive forwarding. These
filters can be used in several multicast implementations, which
are demonstrated through a prototype. Thorough simulations are
conducted to demonstrate the scalability of the proposed Bloom
filters compared to its counterparts.

Index Terms—Bloom filter, information-centric networking,
multicast addressing, source routing.

Manuscript received January 08, 2014; revised July 14, 2014; accepted July
16, 2014; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor K.
Almeroth. This work was supported by the High Speed Networks Laboratory at
the Budapest University of Technology and Economics. The work of J. Tapolcai
and P. Babarczi was supported in part by the Hungarian Scientific Research
Fund under OTKA Grant K108947. The work of J. Bíró was supported by
the TAMOP-4.2.2.C-11/1/KONV-2012-0001 project funded by the European
Union, cofinanced by the European Social Fund. The work of P. Babarczi was
supported by the János Bolyai Research Scholarship of the Hungarian Academy
of Sciences (MTA). The work of D. Trossen was supported by the FP7 PUR-
SUIT project grant. This document has been produced with the financial assis-
tance of the European Union under the FP7 GÉANT project under Grant Agree-
ment No. 605243 as part of the MINERVA Open Call project.
J. Tapolcai and P. Babarczi are with the MTA-BME Future Internet Research

Group, Budapest University of Technology and Economics (BME), 1117 Bu-
dapest, Hungary (e-mail: tapolcai@tmit.bme.hu; babarczi@tmit.bme.hu).
J. Bíró is with theMTA-BME Future Internet Research Group, Budapest Uni-

versity of Technology and Economics (BME), 1117 Budapest, Hungary, and
also with the Inter-University Centre for Telecommunications and Informatics,
4028 Debrecen, Hungary (e-mail: biro@tmit.bme.hu).
A. Gulyás and Z. Heszberger are with the Information System Research

Group, Hungarian Academy of Sciences (MTA), 1245 Budapest, Hungary, and
also with the MTA-BME Future Internet Research Group, Budapest University
of Technology and Economics (BME), 1117 Budapest, Hungary (e-mail:
gulyas@tmit.bme.hu; heszberger@tmit.bme.hu).
D. Trossenwaswith the University of Cambridge, Cambridge CB3 0FD,U.K.

He is now with InterDigital Europe, Ltd., London EC2A 3QR, U.K. (e-mail:
dirk.trossen@interdigital.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2014.2342155

I. INTRODUCTION

I N THE current Internet, IP multicast is hardly deployed
beyond single providers due to incentive, security, and

scalability problems. These issues rendered multicast research
a cold topic [1] in the last decades. However, recent trends in
networking—such as information-centric networking (ICN),
which is built on a publish/subscribe service model—urges
the need for efficient multicast-based architectures. Common
to these trends is that they are leaving the issue of scalable
forwarding as a major challenge, which makes efficient mul-
ticast a core requirement for any successful solution in this
space. Therefore, multicast routing research is in its second
blossom [2]–[4]. The scalability challenge in these networks is
driven by three factors, namely the following:
Goal 1) the need to scale the speed of the forwarding operation

with the growing need for speed in the Internet;
Goal 2) the scalability in terms of state to be maintained in the

routers for the forwarding operation;
Goal 3) the scalability in terms of supported sizes of multicast

trees.
While solutions such as IP multicast generally support mul-

ticast trees that span across the Internet, its realization comes
at the cost of lookup-based forwarding operations, hindering
Goal 1. These operations require appropriately configured
entries in forwarding tables within the individual network
elements, which clearly hinders Goal 2. On the other hand,
recent trends in networking, such as ICN or software defined
networking (SDN), are deeply committed to the clear separa-
tion of the data and the control plane in order to achieve this
goal [5]–[8].
Tackling Goal 2, an appealing approach to minimize, or even

avoid, state in the network is that of source routing, which is
therefore in its second blossom after decades of ignorance in
the IP world. Here, instead of encoding next-hop information
of the multicast tree at the intermediate nodes, as done in tradi-
tional approaches, efficiently encoding link information of the
graph in a compact header allows for avoiding any state at these
intermediary elements. Such design issues manifest in recent
efforts toward using in-packet Bloom filters [2]–[4], [9] for en-
coding the edges of the multicast tree into the packet header.
Bloom filters are originally designed for membership queries,
i.e., for determining whether an element/edge belongs to a set/
tree or not. Placed in packet headers, the in-packet Bloom fil-
ters can effectively address a set of nodes or links [2]. Concep-
tually, the LIPSIN method in [2] is closest to source-specific

1063-6692 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

multicast (SSM, RFC3569) where the multicast traffic origi-
nates from a dedicated source node. However, this flat type of
tree representation in LIPSIN (i.e., the structure of the whole
tree is represented in an implicit manner as a set of edges) in
a single fixed-size (256-bit) filter while keeping the number of
false-positive forwardings—i.e., sending data on a link that is
not involved in the multicast tree—low is very limited (about
20 links). Note that false-positive forwarding, e.g., in IPTV, has
a severe affect as unnecessarily sending a high-quality video
stream on a link highly degrades network performance. Thus,
a single fixed-length header like LIPSIN is clearly not suitable
to reach Goal 3.
In this paper, we show that Goal 3, i.e., the scalability

problem in terms of multicast tree size, can be tackled by
using some topology-related information when composing the
in-packet Bloom filter, which was not present in the previous
approaches. Although the excellent scalability of our solu-
tion would make it suitable for Internet-wide adoption, some
technological concerns (e.g., simultaneous deployment of the
required functionality at networking hardware) render an in-
cremental domain-by-domain deployment scenario much more
realistic. This promotes the thorough intradomain investigation
of the problem, which will be made in this paper. First, we pro-
pose the so called multistage Bloom filter (MSBF) that consists
of consecutive Bloom filters encoding only the membership
of the edges residing at a given hop-distance (stages) from the
source. Second, optimal (varying) length false-positive-free
Bloom filters are introduced in order to eliminate false-positive
forwardings, which is of utmost importance in any practical re-
alization of in-packet Bloom-filter-based multicast forwarding.
Our analytical investigations and simulations prove that our
MSBF solution not only provides excellent space efficiency,
but it also remedies several other anomalies besides false-pos-
itive forwarding arising when Bloom filters are at use, like
forwarding loops and packet storms [4].
The rest of the paper is organized as follows. Section II ex-

pands on the related work in this area. In Section III, we define
the architectural background in which we embed our solution
and introduce the concept of our new multicast architecture. As
the main contribution of this paper, the analytical results on cre-
ating minimal-length false-positive-free Bloom filters are pre-
sented in Section IV. In Section V, we discuss the implementa-
tion details of multistage Bloom filters in SDNs, IP routers, and
an ICN prototype, followed by Section VI, where we present our
simulation and measurement results on the proposed false-pos-
itive-free scalable multicast architecture. Finally, Section VII
concludes the paper.

II. RELATED WORK

A. Multicasting Routing

Standard IP multicasting can provide a way of transmit-
ting packets from a source to many recipients in a band-
width economical way. Multicast routing protocols like
DVMRP [10], [11] and PIM-SM [12] for performing the trans-
mission maintain multicast forwarding tables (MFTs) in the
routers along the multicast trees. This stateful approach is not
only in full contradiction of the stateless design of unicast IP,

but is also the Achilles’ heel of IP multicast. Due to the poten-
tially high number of multicast groups in the network according
to massive multiparty applications like video conferencing or
networked games, the states to be maintained in a router could
be untenable due to the unaggregability of the MFTs.
For better scalability in terms of Goal 1, explicit multicast

solutions have been suggested in the literature, in which for-
warding information (e.g., a list of destination IP addresses)
on the targeted group is encoded in the packet headers. This
flat type of stateless multicast routing protocol (like Xcast,
Xcast+ [13]) undoubtedly has the drawback that every interme-
diate node along the multicast tree should process the header,
even in the case the node is not a branching point of the tree.
To avoid mandatory packet header processing, tree encoding
schemes have been proposed to integrate into multicast proto-
cols, like in ERM and Linkcast [14], [15]. In these methods, the
entire tree structure is encoded into the headers. Moreover, in
the latter case (and its successors [13]), forwarding at interme-
diate nodes is based on interpreting the tree code, and unicast
lookups are completely eliminated. Nevertheless, the tree en-
coding scheme in Linkcast uses fixed-length link codes based
on an assumption of the maximum size of multicast groups and
imposes large computational overhead when interpreting the
encoded tree.

B. In-Packet Bloom Filters

The Bloom filter [16] is a simple yet efficient data structure
to answer membership queries. Let be a set of elements, as-
signed with -bit-long binary codes, in which a maximum of
bits are set in positions indicated by different hash functions.
Each of the hash functions maps the given element onto one
of the -bit positions. The hash functions are assumed to be in-
dependent and each position is selected with equal probability.
The Bloom filter representing is a -bit-long binary array
consisting of the bitwise OR of the codes of the elements in .
As the main feature, a membership test can simply be performed
by checking if all bit positions that are set in the code of the un-
derlying element are also set in the filter. The performance of
the filter is measured by the false-positive rate that is the prob-
ability that an element appears to be included (by test) but
actually it has never been added .
The application of Bloom filters is becoming increasingly

popular in future Internet architectures [2], [3] for tackling
Goals 1 and 2. Placed in packet headers, the in-packet Bloom
filters can effectively address a set of nodes or links, hereby
qualifying themselves as a strong candidate solution for ef-
ficient stateless multicast addressing. When a packet with
in-packet Bloom filter arrives to a router, membership testing
is performed on the outgoing link identifiers. The bitwise AND
and compare (CMP) operation on the Bloom filter placed in
the header and on the address of the outgoing link is extremely
fast when implemented on a digital signal processor, which
leads to a simpler router architecture compared to current IP
routers. Realizations of this solution, e.g., in [7], demonstrate
that 1-GB/s throughput can be easily achieved in prototypes.
Moreover, Bloom filters are favored for their space efficiency
since the filter requires much less space than listing the identi-
fiers for each link/host in the multicast tree. Furthermore, this

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAPOLCAI et al.: OPTIMAL FALSE-POSITIVE-FREE BLOOM FILTER DESIGN FOR SCALABLE MULTICAST FORWARDING 3

allows routers to stay quasi-stateless because the routers only
need to know the address of the neighboring nodes and links.
A clear weakness of such an in-packet Bloom filter concept

is the total ignorance of the following:
(i) the topology information;
(ii) the tree structure in addressing.
In [4], the first issue (i) was touched by generating the Bloom
filter addresses of each link according to the number of adja-
cent links, which is intuitively beneficial because the links with
fewer adjacent links have a smaller chance to give false-posi-
tive. However, it is still not able to fully support Goal 3, which
is addressed in this paper.

C. Our Contribution

In this paper, we propose an addressing scheme for arbitrary-
size trees and multicast groups that lies somewhat between the
two extreme approaches of explicit routing, i.e., the completely
flat solution and the complete tree encoding-based ones, and
suits well for the requirements of ICNs by tackling Goal 3.
In our solution, link identifiers at equal hop-distances from the
source of themulticast tree (referred to as stages hereafter) are to
be confined into Bloom filters, but without any exact encoding
of the tree topology, hereby providing an appealing mixture of
space and forwarding efficiency.
Furthermore, we address both weaknesses (i) and (ii) of

in-packet Bloom filters by introducing: (i) optimal-length
varying-size (ii) multistage Bloom filters, as opposed to the
traditional (single-stage) fixed-size in-packet Bloom filter con-
cept [2] (which represents the trees flatly as sets in a fixed-length
header). The idea of multistage Bloom filters was first intro-
duced in [17], followed by an ICN prototype implementation
in [18]. However, these works contained no clear guidelines
for the proper dimensioning of the filters from the theoretical
side, nor any tool for processing the required parameters (e.g.,
the number of hash functions) in an implementation. Thus, in
this paper we also introduce the concept of false-positive-free
Bloom filters and provide approximation and analytical results
for filters with minimal length, which can be directly used in
practice. The effectiveness and applicability of the derived
approximation formulas are demonstrated through simulations
and in our ICN prototype implementation as well.

III. ARCHITECTURAL BACKGROUND

For the reasons discussed earlier assuming a domain-by-do-
main introduction of ourMSBF approach, in the rest of the paper
we assume that information is disseminated across a single do-
main. As link identifiers are used instead of endpoint addresses,
from an overall network design perspective, an important con-
sideration is the scheme being used for encoding the link infor-
mation. Usually, the usage of fixed-size identifiers is favored,
enabling line-speed execution of the forwarding operation (see
the 256-bit-long identifier in [2] for an example). Such fixed
size, however, limits the ability to appropriately encode any
given size tree within the limited size of the identifier. While
varying-size header approaches have been clearly at a disadvan-
tage compared to fixed-size approaches, it is our contribution in

this paper to provide a solution that closes this gap in possible
forwarding speed while providing the previously outlined de-
sign advantages. For this, we contrast our work against existing
source routing approaches and provide insight into the perfor-
mance and implementation issues of our scheme.
Crucial to our approach is the knowledge of the overall

topology over which the multicast tree is formed. Such
topology knowledge is not unreasonable to assume, as can be
seen in technologies like multiprotocol label switching (MPLS)
or software defined networks as well as in proposals envi-
sioning future information-centric solutions. Common here is
the existence of a topology manager (or network controller)
with knowledge of link information between forwarding ele-
ments under the management of this entity. It is the role of this
topology manager to compute an appropriate forwarding header
(MSBF in our multicast architecture) that can be used within
its topology. We argue that the existence of such topology
management in today’s networks points toward the possibility
to improve information delivery in existing IP networks as
well.

A. Architectural Concept of Information-Centric Networks

The architectural context of information-centric networks is
based on the work in [7] and [19]. Here, we summarize the main
design principles onto which we set the foundations for our pro-
posed addressing scheme:
Spatially and Temporally Decouple Communicating Parties:

Apublish/subscribe service model is exported to all applications
and ancillary network components. Hence, the producer of in-
formation (publisher) does not need to coexist in time with the
consumers (subscribers), i.e., a subscriber can receive informa-
tion even if the initial information producer is not online, since
the information can be replicated or cached throughout the net-
work. Moreover, communicating entities do not know the loca-
tion of each other, spatially decoupling them.
Clearly Separate Network Functions: As discussed in [19],

the core network functions are cleanly separated with each node
supporting three network functions. The first one, rendezvous,
matches demand for and supply of information. This results in
some form of (location) information that is used for binding the
provisioning of information to a network location. This informa-
tion is used by the second function, topology management and
formation, to determine a suitable multicast tree for the transfer
of the information, this transfer being executed by the third func-
tion, forwarding.

B. Traditional Bloom-Filter-Based Forwarding (1SBF)

Based on the previous discussion on the ICN architecture,
similarly to previous works on Bloom filters [2]–[4], [9], the ex-
istence of the rendezvous point is assumed in the network. How-
ever, it is important to note that this function can be easily im-
plemented in a distributed fashion, e.g., target nodes subscribe
to source nodes directly. Similarly to other source routing ap-
proaches, we assume that the up-to-date topology of the network
is available at the topology manager. It is also the task of this
topology manager to compute the multicast trees (or DAGs) for
each multicast group after consulting with the rendezvous point.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 1. Traditional and multistage in-packet Bloom filters at the forwarding
phase (AND and CMP at each interface) on a multicast tree with four sub-
scribers , , , and . (a) Traditional (fixed-length) in-packet Bloom filter
with false-positive forwarding, owing to the large number of in-tree and

out-tree links. (b) Multistage (varying-length) Bloom filter on the same
topology without false-positive forwarding. At Stage 1, and ,
while at Stage 2, and .

Following the architecture of [2], the links are assigned by bi-
nary addresses, and the topology manager computes the mul-
ticast packet headers by combining the addresses of the links
residing in the corresponding multicast tree. In order to better
understand the details of the proposed multistage filter, let us
first recall how this computation is done using the traditional
in-packet Bloom filters.
• Each link is assigned by a binary link address (consisting
of bits of which at most are set to 1).

• The topology manager computes the multicast header by
bitwise OR-ing the addresses of the links in the corre-
sponding multicast tree.

At each router, outgoing link addresses are tested against the
Bloom filter (i.e., testing at each bit-position where the link ad-
dress is set if the filter is also set with a binary AND and CMP
function) and forwarded if positive. Note that this approach is
totally topology-unaware since it simply traces back the for-
warding decision to a classical membership testing problem.
As an example in the multicast tree of Fig. 1(a), the in-packet
Bloom filter contains the bitwise OR of five link addresses (with
fixed length and hash functions). The filter is
tested nine times (against every outgoing interface) during the
forwarding process, producing false-positive forwarding even
with such low number of links.

C. Varying-Length False-Positive-Free Multistage Bloom
Filters

In-packet Bloom-filters are an efficient representation of the
links of a multicast tree in an ICN context. However, it was

shown in [2] that the multicast tree size that can be efficiently
represented in a single fixed-size filter while keeping the false-
positive rate low is very limited (about 20 links), contradicting
with Goal 3.
Our contribution in this paper is to use a sequence of shorter

so-called stage filters instead of a single large one. Each stage
filter contains only the forwarding information for the edges
with the same hop-distance from the source node in the mul-
ticast tree. Thus, we improve the completely flat addressing
structure of the original in-packet Bloom filter concept, and
some topology-related information is added to the packet header
through the stage filters for tackling Goal 3. The efficiency of
this approach will be demonstrated analytically in Section IV,
while empirically in Section VI.
Another desired property of the introduced MSBF approach

is that, when forwarding a packet, the already-used stage filters
can be truncated at each hop one by one, as it contains only
information for the already-traversed links. That is, a tree of
hops is represented by stage Bloom filters, where the th

one contains only the links residing at hop-distance from the
source. When leaving the source, the multicast in-packet Bloom
filter header consists of stage filters, which then shrinks as
the packet travels along the tree, highly reducing the overhead
introduced by the in-packet Bloom filter.
In ICNs and also in traditional multicast applications, unnec-

essarily forwarding a high-bandwidth video stream on a link
could result in degraded network performance owing to con-
gestion. In terms of security and business considerations, it is
also not desirable if a node receives a stream unintentionally.
Thus, in order to keep the number of false-positive forward-
ings at a tolerable level in arbitrary-sizemulticast trees, applying
false-positive-free (FPF) varying-length stage filters could be a
solution, discussed in Section IV. For ensuring space efficiency,
the length of the FPF filters is optimized at each stage as the
function of the number of elements (i.e., links) it contains, which
clearly results in varying-size stage filters. Thus, for identifying
filter boundaries, we propose to store the length of each filter in
the header, e.g., by applying the commonly used Elias gamma
universal code [20], where the length of a -bit-long filter is
coded as follows (notations can be found in Table I):
• first zero bits are written;
• followed by the binary representation of on
bits.

As it is shown in the example of Fig. 1(b), the packet header
at Stage 1 consists of two parts, a -bit-long Elias gamma
code and a -bit-long Bloom filter. This filter at Stage 1
is tested against four links, out of which two are expected to be
chosen. Similarly, at Stage 2, the second filter (,)
is tested five times with three expected positive outcomes.
The benefit of our MSBF approach with respect to the intro-

duced overhead is clear, for example, if we investigate Fig. 1(b).
Note that the average Bloom filter length is for
1SBF, while for MSBF. The average overhead bits
for our MSBF approach is maximally , while ap-
plying the header truncation mechanism it could be reduced to

(as the number of overhead bits is 17 on the
two links of Stage 1, while 10 for the three links of Stage 2).
One can observe that even on this small multicast tree (where

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAPOLCAI et al.: OPTIMAL FALSE-POSITIVE-FREE BLOOM FILTER DESIGN FOR SCALABLE MULTICAST FORWARDING 5

TABLE I
NOTATION LIST

1SBF still performs well), the number of extra overhead bits
paid for varying-length multistage filters is negligible (12.8 in
contrast with 10 of the 1SBF approach), while with the appli-
cation of the MSBF filter, false-positive forwarding was com-
pletely eliminated.
Note that the main idea behind eliminating false-positive for-

warding is to move the uncertainty from the forwarding phase
to the Bloom filter generation phase, i.e., generating an FPF
filter can be considered as a randomized algorithm (with con-
trollable uncertainties). However, once an appropriate filter is
found, the forwarding will be surely FPF, i.e., the forwarding
phase is deterministic. Thus, in order to characterize the prop-
erties of the FPF filter generation process, in Section IV we will
derive and analyze the distribution and the expected value of
FPF filter length in several settings and provide some practical
guidelines that can be used in an implementation.

IV. ANALYSIS AND DESIGN OF FPF BLOOM FILTERS

In the case of the original Bloom filter, elements of a certain
subset of a much larger (often unknown) set can be col-
lected (encoded) into the filter in such a way that membership
queries can justify the inclusion of the elements of . Unfortu-
nately, other elements from can also happen to be tested
positively, although they were never added. The frequency of
the events of these false reportings of the membership test is
called false-positive probability. The design goal is to generate
a Bloom filter for that can provide the false-positive proba-
bility under a prescribed value. After generation, the operation

of such a filter can be erroneous. However, the false-positive
rate can be kept under a small value.
As opposed to this, in multicast communication, both

and are known, and their cardinalities are quite compa-
rable. This fact may be utilized in the filter generation process
in such a way that after generating a filter for , all the elements
of can be tested against the false inclusion. If the inclusion
of one or more of the elements of is reported, then another
filter can be generated for and tested against false inclusion
again. In principle, it is possible to find a filter with appropriate
length that does not contain any of the elements of . As op-
posed to the original Bloom filter, such a filter will be false-pos-
itive-free in operation and thus inherently suitable for error-free
multicast forwarding.
The generation of such filters at the topology manager for any

given multicast tree is not a trivial issue and will be discussed
in this section. Shortly foreshadowing this, the main tasks in an
FPF filter generation can be summarized as follows:
• computing expected filter lengths based on the number of
elements to be included in and the number of elements
to be excluded from the filter (called Scalability, discussed
in Sections IV-A and IV-B);

• computing/estimating the required test range based on
the expected filter length (called Insensitivity, discussed in
Section IV-C);

• testing the filter lengths in increasing order in the test range
against the FPF property, stop when the filter tested is FPF
using the appropriate number of hash functions (called Im-
plementability, discussed in Section IV-D).

We will also demonstrate that breaking down the Bloom
filter into stages with optimal length can significantly reduce
the overall filter length compared to the following:
• the traditional (single-stage) Bloom filter with optimal
length;

• the LIPSIN approach using fixed-length in-packet Bloom
filters.

The notations are summarized in Table I.

A. Expected Length of the False-Positive-Free Bloom Filter

Let and denote the number of in-tree (which are con-
tained in the multicast tree , denoted by bold lines in Fig. 1)
and out-tree (which are not contained in the multicast tree ,
dotted lines in Fig. 1) links in a given stage, respectively, and
we assume that there are stages. For the sake of simplicity, we
conduct our analysis for identical and values in each stage.
However, in Section VI, general settings are used.
First, we recall how to design an optimally sized Bloom filter

to meet a prescribed false-positive requirement [21]. Without
loss of generality, the false-positive probability for a Bloom
filter with length can be calculated as

(1)

Introducing the notation and minimizing
using the first derivative transforms to

(2)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 2. Probability distribution of FPF filter lengths for and
.

It is easy to see that the optimal , which is the optimal number
of hash functions, is attained when

(3)

or using

(4)

we get the approximation

where (5)

In the following, the length of false-positive-free Bloom fil-
ters is discussed, i.e., a large-enough filter is created for which
the expected number of false-positives will be zero. For this, let
us define the following probability:

(6)

This expresses the probability that in a -length filter containing
elements, none of the out-tree links are included in the filter.

The probability distribution of the shortest FPF filter length
is shown in Fig. 2, which can be calculated as follows:

(7)

Now the length of the false-positive-free Bloom filter
comes from the random process of trying with increasing size
filters and stopping when false-positive cannot be found. This
expected length in case of the traditional (single stage) filter is

(8)

because there are links to be included and
links are to be excluded in the filter. The expected length of the
false-positive-free multistage filter is

(9)

because there are identical false-positive-free filters (each
containing links and not containing links) confined in the
stage filter. Using the above formulas, Table II shows a

TABLE II
COMPARISON OF TRADITIONAL (1S) AND MULTISTAGE (MS) BLOOM FILTERS

IN EXPECTED FILTER LENGTH WHEN , ,

comparison between the expected length of the traditional and
multistage Bloom filters, when , , and the
number of hops increases from 1 to 5. Evidently for a single hop

, (8) and (9) result in the same expected value 54.31, as
the numbers of and links are the same. However, notice that
the improvement due to using more stages can be stunning even
if the number of stages is relatively small; for trees with larger
depth, 30%–40% improvement can be reached.
Although the expected length of FPF Bloom filter cannot be

used directly for filter generation (according to Fig. 2, the filter
with length of the expected value will be false-positive-free with
only about 2% probability1), it plays an important role in finding
an appropriate minimal length for obtaining a false-positive-free
filter, hence it is worth being analyzed. Based on this analysis,
a test region of lengths around the expected value can be
determined, in which the false-positive-free filter can be found
with very high probability. For example, according to the min-
imal length distribution in Fig. 2, the minimal length of the FPF
Bloom filter can be found in the region with prob-
ability .

B. Approximations and Analysis of Minimal Filter Length

In this section, we provide analytical approximations for the
probability distribution and the expected value of the minimal
length of the false-positive-free Bloom filters. Based on these,
we analyze how these quantities depend on and , and we
also provide quantification on improvements in multistage fil-
ters against the single-stage FPF Bloom filter.
As previously presented in (6) and (7), the distribution of the

filter length can be characterized as

(10)

Based on this, the tail of the distribution [complementary cumu-
lative distribution function (CCDF)] of the filter length can be
written as

(11)

First, we show a useful approximation for this tail probability.
Lemma 1:

(12)

1This also means that the filter length generated by the FPF filter generation
process may largely deviate from the expected FPF filter length.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAPOLCAI et al.: OPTIMAL FALSE-POSITIVE-FREE BLOOM FILTER DESIGN FOR SCALABLE MULTICAST FORWARDING 7

Fig. 3. Tail probability and its approximation for , .

where and is the so-called
exponential integral function.
The proof is relegated to the Appendix. Extensive numerical

investigation showed that this tail probability approximation is
accurate enough for practical-size problems ,

, and in the region of
. In Fig. 3, one can observe good coincidence of the curves,

and even in the range under 10 , the “horizontal”2 relative
difference between the curves is under a few percent.
In what follows, an accurate approximation is presented on

the expected filter length (either for or).
In principle, can be expressed as the sum of the tail prob-
abilities as . Unfortunately, it seems
that it cannot be directly used as an integrate approximation sum
because the integral
turned out being not characterizable by using elementary and/or
special functions. Instead, we utilize the property of the CDF

that it is close to a symmetric distribution, therefore
the median is an acceptable approximation for the expected
value, for which . The next theorem presents
the main result of Section IV-B
Theorem 1: The expected false-positive filter length can be

approximated by the following formula:

(13)

where is the inverse function of the left branch3 of .
The statement of the theorem immediately follows from

Lemma 1 and the symbolic solution of the equation with
respect to

(14)

The approximation is worth rephrasing as

(15)

where is a very slowly in-
creasing function of (is approximately proportional to

2From a practical point of view, the “horizontal” relative difference has higher
significance than the “vertical” one. That is, for given prescribed tail probability
, the smallest and for which , are to be
found and compared as a “horizontal” relative difference .
3 has a branch cut discontinuity at 0; the left branch (with negative ar-

guments) is a negative valued function.

Fig. 4. Expected filter length and its approximation for ,
.

Fig. 5. Expected filter length and its approximation for ,
(log-linear plot).

. This mean filter length approximation is in very good
agreement with the “exact” average length numerically com-
putable by (9) or . Two figures are presented
for illustration: One is on the dependence with fixed , and
the other is on the dependence with fixed (Figs. 4 and 5).4

Now, the main message of Theorem 1 is that the expected
false-positive-free filter length is approximately proportional to
the number of elements included , and to the logarithm of
the number of elements excluded . This is referred to as the
property of Scalability.
The formula of the expected filter length can also be used to

quantify the expected gain in filter length usingmultistage filters
against a single one-stage filter as

(16)

Taking the simple example of Section IV-A (and for each
stage ,), this formula gives 121.9 bits, while
the previous numerical calculation (see the last row of Table II)
provided 118.06 bits as expected gains.

C. Approximation of the Required Test Range

From a practical point of view, it is important to find the
optimal-length FPF Bloom filter as quickly as we can. It is
straightforward to search for a minimal-length FPF Bloom filter
in with increasing filter length. However, it re-
quires a lot of unnecessary computations, as from Fig. 2, one
can observe that the most probable range to find an FPF filter
is around the expected value . In this section, we are
interested in the size of this test range , i.e., the test interval

, where it is practical to seek an FPF

4Note that in Fig. 5, the horizontal axis with has logarithmic scale.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 6. Required test range and its approximation with success rate
.

filter, as a simple and accurate enough approximation can also
be given for the required test range based on the CCDF (tail
probability) approximation in Lemma 1. If the prescribed suc-
cess rate for the test range is , then we find and such
that the probability of the lower tail and the
upper tail of the distribution should be at most
. Using our tail probability approximation, the required test

range is about

(17)

where .
With and , the required test interval is 160

with (99.999%) success ratio. The formula in (17) gives
us 159. On Fig. 6, one can observe the small differences between
(half of) the test interval (previously noted by) and its approx-
imation versus the success rate, with the same and . Based
on extensive numerical investigations, we observed that the an-
alytical formula of the test range provides good approximation
when (i.e., the multicast tree includes less links than it
excludes, which is true in most practical scenarios). Moreover,
for these cases, the numerical computation reveals that the test
range hardly depends on . For example, if is increased from
40 to 4000, in the previous example, the test range increases
from 160 to 174. Note that this is also reflected by (17), in which
the approximation of the test range does not depend on .
The main message of this section is that the required test

range for finding the minimal false-positive-free filter length
is approximately independent from the number of elements ex-
cluded. This is referred to as the property of Insensitivity.

D. Approximation of the Number of Hash Functions

Up until this point in the optimized Bloom filter and hence in
the analysis of the false-positive-free Bloom filter, the number
of hash functions is implicitly treated as a positive real-valued
number based on (3). Nevertheless, in implementations, it
should be a positive integer number. Recall that the optimal
number of hash functions (in case of a -length filter with
number of elements to be included) is

(18)

With given parameters, this value should be rounded to a posi-
tive integer number. In finding the one with the minimal length
among the false-positive-free Bloom filters, the rounding means
that for every length to be tested, a rounded value of should

be used. Based on thorough numerical assessment of the effect
of this rounding procedure, we can state that all the numerically
computable formulas and their analytical approximations for the
required test range and the expected filter length change negli-
gibly. Moreover, it can also be demonstrated that it is enough
to use a single integer number of hash functions, and a suitable
choice for this is

(19)
due to the approximation in (15). An illustrative ex-
ample for the robustness of the filter length calculation against
the rounding effect is as follows: The expected minimum filter
length is 161.2 for , based on (9), and its ap-
proximation is 159.1 based on (15) (using real-valued numbers
of hash functions). The rounded number of hash functions for
this length is . Recalculating the expected filter length
with this fixed number of hash functions is 162.4. Moreover, if
we use 3 instead of 4 for the number of hash functions, the ex-
pected length is 162.1. Intuitively, this may be due to the fact
that around the mean value there are the most probable minimal
filter lengths having principle impact on the mean-value calcu-
lation, and in this region, the rounded may be constant or
change its value only once. The very similar observations can
also be performed for the required test range.
In Fig. 7(a), the contour plots of are presented on the
plane. It can be observed that for a given , remains in-

tact through a wide range of . It is also confirmed by the slow
increase of the function. The contours represent the im-
plicit function with fixed , which is approximately loga-
rithmic due to the observation that . In Fig. 7(b),
the contour plot of the expected filter length is presented
on the same plane. It can be observed that for fixed expected
length, is quickly decreasing when is increasing, that is,
a filter with given length could exclude fewer elements if the
number of elements to be included is larger. It is also justified
by the approximation formula because, from this, is
approximately if is fixed. In Fig. 7(c), the ratio
of the number of hash functions and the expected filter length

is plotted. From the previous figures and considerations,
one may expect that this quantity does not significantly depend
on for a given . This is acknowledged by the contours of the
figure, which are almost “vertical.”
The main message of this section is that the expected filter

length and the required test range remain intact when the
unimplementable real (continuous-valued) number of hash
functions is replaced by a single integer number (therefore
implementable) of hash functions. This is referred to as the
property of Implementability.

V. IMPLEMENTATION ISSUES ON BLOOM-FILTER-BASED
FORWARDING

In Section III-C, an efficient multicast addressing mecha-
nism in information-centric networks, called multistage Bloom
filters, was introduced. The optimal-length MSBF header was
calculated at the topology manager based on publisher/sub-
scriber information of the rendezvous function using our results
in Section IV. In this section, the implementation issues of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAPOLCAI et al.: OPTIMAL FALSE-POSITIVE-FREE BLOOM FILTER DESIGN FOR SCALABLE MULTICAST FORWARDING 9

Fig. 7. Optimal number of hash functions. (a) Contour plot of . (b)
Contour plot of . (c) Contour plot of .

Bloom-filter-based forwarding are discussed in several archi-
tectures and environments.

A. Implementation Details in Software Defined Networks

In this section, we discuss the implementation details of
single-stage Bloom-filter-based forwarding in OpenFlow.
We note here that, to the best of our knowledge, our im-
plementation [8] is the only one that is fully supported by
standard OpenFlow v1.0 protocol.5 Although the extension
of this implementation for multistage filters cannot be done
in a standard OpenFlow v1.0 conform manner, the basics of
Bloom-filter-based forwarding can be easily demonstrated
through it. Thus, we shortly summarize this approach.
In the model of [8], Bloom IDs are assigned to switch ports.

These Bloom IDs are used to generate the in-packet Bloom
filter, i.e., port IDs, which the packet needs to pass through are
bitwise OR-ed and put into the packet’s destination Ethernet
address field. In our implementation, we need to slightly de-
viate from the regular usage of flow entries. Normally, flow en-
tries correspond to a specific set of flows, whereas we proac-
tively configure a separate flow table for each port as shown
in Table III. The first entry in the table matches if the packet’s
Bloom filter contains the port’s Bloom ID. In case of a match,

5Our implementation is open-source and can be downloaded at http://sb.tmit.
bme.hu/mediawiki/index.php/Sigcomm2012.

TABLE III
FLOW ENTRIES IN THE TH FLOW TABLE IN OUR OPENFLOW

BLOOM-FILTER-BASED FORWARDING APPROACH

the switch forwards the packet via the corresponding port and,
independently of the outcome, the packet is matched against the
next port’s flow table, hereby providing the stateless multicast
switching capability. Hence, the packet is matched against the
port ID of each outgoing interface and forwarded on all neces-
sary ports.

B. Implementation Issues in Intermediary Forwarding
Elements

Next, we discuss the implementation issues of the proposed
MSBF framework [17]. The forwarding process of the multi-
stage filter runs in each relay node along the multicast tree and
consists of the following steps.
1) The header of the incoming multicast packet is loaded into
a fast access type of memory.

2) The starting number of 0’s is counted, and the length field
is loaded accordingly (Elias-gamma function).

3) The following length number of bits is identified as the cur-
rent stage filter and prepared for Bloom filter membership
testing.

4) The Bloom filter membership testing is executed in parallel
at each link interface card.

5) If the test is positive, then at the current bit position, the
header is truncated—that is, the current stage filter with
the length field is removed from the header.

6) If the header size is greater than zero, the packet is for-
warded using the new header.

The membership testing requires a bitwise logical AND opera-
tion of the Bloom filter and the link address. The result is then
tested (bitwise CMP) if it equals to the link address itself. Recall
that the filters at different stages can have different sizes, which
requires link addresses of varying sizes. To store the addresses
of all possible lengths for each link can be overwhelmingly
memory-consuming; prompt generation can provide a better so-
lution instead. For this purpose, [22] proposes a lightweight
mechanism, where two uniformly distributed random hash func-
tions (even two can be enough) are used to generate varying-
size hash codes to implement Bloom filters without any loss in
the asymptotic false-positive probability. In this case, two hash
functions and are stored at line cards, where is
the link address. The th hash function is generated by the
formula , where is the length
of the hash code of the link to be established, and .
Finally, it is tested whether the th bit in the stage filter
is 1 for every . Note that in such implementation, membership
testing depends mainly on the number of hash functions and less
on the size of Bloom filters, allowing fast forwarding even for
large Bloom filters.
With respect to the processing power required by the pro-

posed method, only and should be stored for each

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

port, which can be stored in the local Level 1 (L1) cache of
the CPU. L1 cache can be accessed in just a few CPU cycles,
and its typical size is tens of kilobytes. Recall that in the pro-
posed method, instead of address lookup, we need to decode the
length of the first stage, performing 2–3 modulo divisions with
remainder using the two hash functions of and ,
and test the related bit-positions in the header. These operations
should not require more than a few tens of CPU cycles,6 which
is not considered to be overwhelmingly expensive.
In comparison, e.g., forwarding an IPv4 packet requires 6–8

memory access operations (and up to 16 for IPv6) taking up
most of the forwarding time. Note that a 3-GHz processor has
a CPU cycle of 0.3 ns, while a single DDR SDRAM memory
access operation requires 20 ns (that is about 66 CPU cy-
cles) for each memory access, summing up to 396–528 CPU
cycles for the whole IPv4 address lookup strongly depending
on the applied advanced cache technology [24]. In traditional
label switching technologies, no extra processing is needed be-
sides changing the label in the header. However, this comes for
the price of keeping states in the switches (clearly not satisfying
Goal 2).

C. Implementation Details in an ICN Prototype

We realize our solution in an available ICN prototype [7]
for evaluation and demonstration. The rendezvous component
implements the respective network function, as outlined in
Section III-A. All publish/subscribe requests finally reach
this element, which matches publishers with subscribers and
triggers the formation of a forwarding path/tree. The topology
manager manages the network topology and, upon request by
a rendezvous component, creates forwarding paths from one
or more publishers to one or more subscribers. These paths are
sent to the respective publishers that use them when publishing
information for a specific information identifier, utilizing the
forwarding component for the delivery across the network.
We integrate our solution into the platform in [7] by adapting

two modules [18]. First, we replace the forwarding component,
which is currently based on [2], with a realization of the for-
warding operation described in Section V-B. The platform de-
sign allows for forwarding functions to coexist, delimited by
the dissemination strategy for a particular part of the informa-
tion structure. Second, we also adapt the topology manager by
extending the current minimal spanning tree mechanism with
the header encoding, i.e., the topology management function
splits the tree into stages and calculates stage Bloom filters by
executing the following steps (initializing the filter length to

).
Step 1) Create the stage filter as the bitwise OR of the

first bits of the in-tree links (if
calculated in Section IV-C).

Step 2) Check whether contains any of the out-tree
link identifiers.

6Note that as , computing the remainder requires at most
subtractions and comparisons in the worst case even without applying any

software or hardware optimized algorithm. In the general case, a native and
single (i.e., not considering pipeline execution) 32-bit unsigned integer division
operation costs around 26–38 cycles in IA-32 or 64-bit Intel processor architec-
tures [23].

Step 3) If is false-positive-free, return , else go to
Step 1 with .

Note that the test interval can be efficiently com-
puted based on the Scalability and Insensitivity properties (pre-
sented in Sections IV-B and IV-C), that is given and , the
expected filter length can be approximated by (15), and the re-
quired test range (given a prescribed success ratio) around
this mean value can be determined by (17).
Observe also that the three-step loop above succeeds to

find the false-positive-free Bloom Filter in with
probability .
In the stage filter creation in Step 1, a single integer

number of hash functions is used [according to (19)], and its
applicability is credited with the Implementability property dis-
cussed in Section IV-D.
The length of the FPF Bloom filter is included

into the stage filter using an Elias-gamma encoding with
bits used for the length encoding per

stage.

VI. SIMULATION AND MEASUREMENT RESULTS

A. Measures on Filter Length

In order to ensure the fair comparison of different Bloom-
filter-based approaches, in this section we define performance
measures to compare the header length of different forwarding
schemes. Remember that the filter length at link in the
proposed architecture stands for

(20)

where is the total length of the Elias-gamma codes of the
stage filters, while is the total bits consumed by (stage) Bloom
filters in the header at link .
Definition 1: The filter compactness of a multicast tree

is denoted by , which is the sum of the header overhead
along each link in the multicast tree divided by the square of the
number of links in the multicast tree, formally

Obviously, a lower refers to a more compact filter. To fur-
ther explain, filter compactness refers to the average filter length
divided by the number of tree links stored in the filter. Using this
definition, the performance of an architecture does not depend
on the tree size, and the average filter length can be obtained by

.
To compare the overall performance of different filters, in

the simulations, a set of multicast trees is generated for a given
network topology , denoted by , and the average
filter compactness

of these trees is evaluated in the investigated architecture.
Recall that in our multicast architecture, the headers are trun-

cated at forwarding (i.e., the route information already traversed

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAPOLCAI et al.: OPTIMAL FALSE-POSITIVE-FREE BLOOM FILTER DESIGN FOR SCALABLE MULTICAST FORWARDING 11

Fig. 8. Header length versus the number of hops in the multicast tree for the
37-node European reference network (legends are shown in Fig. 9). (a) Unicast
demands. (b) Multicast demands.

by the packet is erased), which leads to a better filter compact-
ness . Therefore, as a reference, average filter compactness
is also evaluatedwithout abbreviating the headers at forwarding,
denoted by . In order to obtain a fair comparison of the tra-
ditional and our stage filters, similarly to the filter compactness,
we define the following metric.
Definition 2: The Bloom filter compactness of a multicast

tree is denoted by , which is the sum of the lengths of
the in-packet Bloom-filters along each link in the multicast tree
divided by the square of the number of links in the multicast
tree, formally

Similarly, average Bloom filter compactness without abbrevi-
ating the headers is defined as for a set of multicast trees.

B. False-Positive-Free Bloom Filter Length Analysis

In the simulation, we compare the two Bloom-filter-based
forwarding approaches, namely the traditional in-packet Bloom
filters [2] that were modified to handle varying-size headers
(drawn with filled marks on the charts) and the proposed
MSBF approach (drawn with empty marks on the charts). We
compare their performance in terms of the metrics proposed
in Section VI-A, i.e., and to investigate the effect of
abbreviating the header, and and to investigate the
effect of varying-size headers.
Fig. 8 shows the result on the COST 266 pan-European back-

bone network with 37 nodes and 57 links. The demands were
classified according to the maximum hop distance in the mul-
ticast tree. random demands were generated with
unicast traffic only in Fig. 8(a), and multicast traffic with up to
10 terminal nodes in Fig. 8(b). Coinciding with our analytical
evaluation, the multistage Bloom filter has significantly shorter
filter sizes. Surprisingly, this is true even when the multistage
Bloom filter consists of one Bloom filter in one-hop trees. This
is because, in multistage Bloom filters, the number of links on
which false-positive can occur is smaller since none of the links,
which are two hops away from the source node, can generate
a false-positive due to the header truncation mechanism, i.e.,
zero-sized header prevents the forwarding of a packet in the

Fig. 9. Results of 2-connected 50-node networks with different number of
links.

TABLE IV
IN-TREE AND OUT-TREE LINKS PER STAGE IN THE COST 266 PAN-EUROPEAN

BACKBONE NETWORK WITH 37 NODES AND 57 LINKS

multistage case. Note that the size of the multicast trees in-
creases as the number of hops increases and shows the great
scalability multistage Bloom filter can achieve. This is validated
by the number of in-tree and out-tree links per stage as well in
Table IV.
In the case of traditional in-packet Bloom filters, encoding the

size adds small overhead, especially for large multicast trees.
Since multistage Bloom filters consist of several consecutive
Bloom filters, one may argue that encoding these boundaries
may end up in a larger overhead. Our results support that this
is not the case since, due to the truncation of the header at
forwarding and the space efficiency of the multistage filter, in
average header length the multistage Bloom filters remarkably
outperform the original approach. The advantage of the MSBF
approach is even more significant for unicast demands.
Next, we investigate the performance with respect to the net-

work density. Twenty random 50-node, 2-connected networks
are generated with different network density. Fig. 9 shows the
results of demands where the horizontal axis corre-
sponds to the number of links in the graph. One can observe that
the performance gain of multistage Bloom filter is always 3–4
bits per link and does not depend on the density of the topology.
Finally, we investigate the scalability of the approaches as

the network grows. Table V shows the results on topologies
with different sizes and with multicast demands of terminal
nodes at most 10. As a reference, an Xcast-based solution is
also added to the table, in which the header consists of a series
of IPv4 addresses with 32 bits for each destination. However,
note that IPv4 and Xcast are not source routing solutions and
require large routing tables at the routers (i.e., clearly not
supporting Goals 1 and 2). We were surprised to see that,
although the forwarding decision for an in-packet Bloom filter
is significantly simpler and faster compared to traditional IPv4
forwarding, using in-packet Bloom filters even at the AS level
has similar performance than Xcast. Further note that using the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE V
TOPOLOGIES USED FOR THE NUMERICAL EVALUATIONS WITH FILTER LENGTH MEASURES FOR THE TRADITIONAL IN-PACKET BLOOM FILTERS (1SBF)

AND FOR THE MULTISTAGE (MSBF) USING THE EXACT AND APPROXIMATION FORMULAS

TABLE VI
HEADER LENGTH AND FORWARDING EXECUTION TIMES

approximation formula developed in Section IV-C for the test
range requires a lower number of tested filter lengths in order
to find an FPF Bloom filter, which is important from a practical
point of view. Furthermore, these filters are comparable to
those in , which were generated with the greedy approach.

C. Forwarding Complexity in the ICN Prototype

We compare the complexity of our scalable multicast ar-
chitecture in each forwarding element with LIPSIN [2], based
on the MSBF implementation within our ICN prototype [18].
Referring to Section V-B, the MSBF forwarding complexity
not only includes the Bloom-filter-based membership test,
but also the on-demand hash creation as well as the extrac-
tion of the stage FPF Bloom filter. On the other hand, the
traditional Bloom filter approach (LIPSIN) only performs a
constant-length Bloom filter membership test. For comparison,
we created three different multicast trees on the same topology
with three, four, and five stages, respectively. We repeatedly
executed the forwarding function in our prototype (processing
the LIPSIN header at each stage as well) and determined the
average of the execution times at the various stage boundaries.
Table VI shows the results of these tests, compared to the
constant filter length and forwarding time of the LIPSIN. One
can observe that the execution times for stage Bloom filters
with length smaller than 50 are faster than comparable LIPSIN
times. This is due to the membership test operating on smaller
bit sets compared to the 256 bits used in the LIPSIN alternative.
Again, these results can only be indicative since our current
implementation is not optimized through, e.g., replacing the
on-demand hash function through table lookups or utilizing

hardware assistance could be further improve the performance
of our MSBF approach based on varying-length FPF Bloom
filters.

D. Discussion on Forwarding Loops and Packet Storms

A well-known problem of Bloom filters is that through a
chain of false-positives, a packet can loop back to a previously
visited node where it generates a false-positive again and is
stuck in an infinite loop. In extreme situations, such a behavior
may cause even packets storms. In [4], a bit permutation tech-
nique was proposed to prevent such anomalies with very high
probability. Our proposed multistage Bloom filters remedy
these illnesses in a fairly natural way (even without using FPF
filters) since, due to the truncation of the filter after every
stage, the packets cannot go further than a few hops. In such
a way our MSBF approach certainly prevents the formation
of infinite loops by encoding the stage decomposition into the
header. Note that the flow duplication is indirectly prevented
by limiting the multicast routing on tree without false-positive
forwarding.

VII. CONCLUSION

In this paper, we addressed the scalable multicast forwarding
problem and introduced a novel multistage Bloom-filter-based
architecture, which tackles Goals 1–3. Although in ICN archi-
tectures and with the application of in-packet Bloom filters,
Goals 1 and 2 have been addressed, the scalability in terms of
supported multicast tree size was lost in these concepts owing
to neglecting topology information when creating the in-packet
filter. Furthermore, false-positive forwarding was a serious
issue in these environments. We gave a thorough analysis on
the design of minimal-length false-positive-free Bloom filter
both for the traditional Bloom filter approach with varying-size
filters and also for our novel multistage architecture in order to
avoid such anomalies. Approximation formulas were proposed,
which can be directly used in a practical implementation of,
e.g., an ICN prototype. Our simulation results suggest that
encoding topology-related information into varying-length
multistage filters results in much better efficiency in several
topologies than its previous counterparts.

APPENDIX

A. Proof of Lemma 1

First, we rewrite and approximate as

(21)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAPOLCAI et al.: OPTIMAL FALSE-POSITIVE-FREE BLOOM FILTER DESIGN FOR SCALABLE MULTICAST FORWARDING 13

due to for small . Based on this, consider the
following approximation of the logarithm of :

(22)

where the last approximation is again due to .
This sum above can also be viewed as an integrate approxima-
tion sum, hence

(23)

The integrate on the right-hand side can be expressed by the
exponential integral function as

(24)

for larger , from which the statement follows.

REFERENCES

[1] J. Crowcroft, “Cold topics in networking,” Comput. Commun. Rev.,
vol. 38, no. 1, pp. 45–47, Jan. 2008.

[2] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P.
Nikander, “LIPSIN: Line speed publish/subscribe inter-networking,”
Comput. Commun. Rev., vol. 39, no. 4, pp. 195–206, 2009.

[3] S. Ratnasamy, A. Ermolinskiy, and S. Shenker, “Revisiting IP multi-
cast,” Comput. Commun. Rev., vol. 36, no. 4, p. 26, 2006.

[4] M. Särelä et al., “Forwarding anomalies in Bloom filter-based
multicast,” in Proc. IEEE INFOCOM, Shanghai, China, 2011, pp.
2399–2407.

[5] V. Jacobson et al., “Networking named content,” in Proc. ACM
CoNEXT, 2009, pp. 1–12.

[6] T. Koponen et al., “A data-oriented (and beyond) network architec-
ture,” Comput. Commun. Rev., vol. 37, no. 4, pp. 181–192, 2007.

[7] D. Trossen and G. Parisis, “Designing and realizing an information-
centric internet,” IEEE Commun. Mag., vol. 50, no. 7, pp. 60–67, Jul.
2012.

[8] F. Németh, Á. Stipkovits, B. Sonkoly, and A. Gulyás, “Towards Smart-
Flow: Case studies on enhanced programmable forwarding in Open-
Flow switches,” Comput. Commun. Rev., vol. 42, no. 4, pp. 85–86,
2012.

[9] C. Rothenberg, C. Macapuna, F. Verdi, M. Magalhães, and A. Zahem-
szky, “Data center networking with in-packet Bloom filters,” in Proc.
Brazilian Symp. Comput. Netw. (SBRC), Gramado, Brazil, 2010, pp.
553–566.

[10] S. Deering and D. Cheriton, “Multicast routing in datagram internet-
works and extended LANs,” Trans. Comput. Syst., vol. 8, no. 2, pp.
85–110, 1990.

[11] S. Deering, C. Partridge, and D. Waitzman, “Distance vector multicast
routing protocol,” Internet Request For Comments RFC-1075, 1988.

[12] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, “Protocol inde-
pendent multicast-sparse mode (PIM-SM): Protocol specification (Re-
vised),” Internet Engineering Task Force, RFC 4601 (Proposed Stan-
dard), Aug. 2006, updated by RFCs 5059 and 5796.

[13] M. Bag-Mohammadi andN. Yazdani, “A fast and efficient explicit mul-
ticast routing protocol,” IEICE Trans. Commun., vol. E-88B, no. 10,
pp. 4000–4007, 2005.

[14] J. Bion, D. Farinacci, M. Shand, and A. Tweedly, “Explicit Route Mul-
ticast (ERM),” Internet Engineering Task Force, Jun. 2000.

[15] M. Bag-Mohammadi, S. Samadian-Barzoki, and N. Yazdani,
“Linkcast: Fast and scalable multicast routing protocol,” in Proc.
IFIP Netw., 2004, pp. 1282–1287.

[16] B. Bloom, “Space/time trade-offs in hash coding with allowable er-
rors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[17] J. Tapolcai et al., “Stateless multi-stage dissemination of information:
Source routing revisited,” in Proc. IEEE GLOBECOM, 2012, pp.
2797–2802.

[18] W. Yang, D. Trossen, and J. Tapolcai, “Scalable forwarding for infor-
mation-centric networks,” in Proc. IEEE ICC-NGN, Budapest, Hun-
gary, 2013, pp. 3639–3644.

[19] D. Trossen, M. Sarela, and K. Sollins, “Arguments for an information-
centric internetworking architecture,” Comput. Commun. Rev., vol. 40,
no. 2, pp. 26–33, Apr. 2010.

[20] P. Elias, “Universal codeword sets and representations of the integers,”
IEEE Trans. Inf. Theory, vol. IT-21, no. 2, pp. 194–203, Mar. 1975.

[21] P. Bose et al., “On the false-positive rate of Bloom filters,” Inf. Process.
Lett., vol. 108, no. 4, pp. 210–213, 2008.

[22] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance:
Building a better Bloom filter,” in Proc. ESA, 2005, vol. 14, pp.
456–467.

[23] “Intel 64 and IA-32 Architectures Optimization Reference Manual”
2014 [Online]. Available: http://www.intel.com/content/dam/
www/public/us/en/documents/manuals/64-ia-32-architectures-
optimization-manual.pdf

[24] T.-C. Chiueh and P. Pradhan, “High-performance IP routing table
lookup using CPU caching,” in Proc. 18th. Annu. IEEE INFOCOM,
1999, vol. 3, pp. 1421–1428.

[25] SNDlib, “Survivable fixed telecommunication network design library,”
2006 [Online]. Available: http://sndlib.zib.de

[26] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” 2013 [Online]. Available: http://www.
topology-zoo.org

János Tapolcai (M’09) received the M.Sc. degree in
technical informatics and Ph.D. degree in computer
science from the Budapest University of Technology
and Economics (BME), Budapest, Hungary, in 2000
and 2005, respectively, and the D.Sc. degree in en-
gineering science from the Hungarian Academy of
Sciences (MTA), Budapest, Hungary, in 2013.
Currently, he is an Associate Professor with the

High-Speed Networks Laboratory, Department of
Telecommunications and Media Informatics, BME.
He is an author of over 100 scientific publications.

His research interests include applied mathematics, combinatorial optimization,
optical networks and IP routing, addressing, and survivability.
Dr. Tapolcai is a TPC member of leading conferences such as IEEE IN-

FOCOM (2012–2015). He is a winner of the MTA Lendület Program and
Google Faculty Award and the Best Paper Award in ICC 2006 and DRCN 2011.

József Bíró (M’96) received the M.Sc. and Ph.D.
degrees in electrical engineering and computer
science from the Budapest University of Technology
and Economics, Budapest, Hungary, in 1993 and
1998, respectively. He holds the Doctor of Sciences
degree of the Hungarian Academy of Sciences,
Budapest, Hungary.
Since 2009, he has been a Professor of network

performance with the Department of Telecommuni-
cations and Media Informatics and a Senior Research
Fellow with the Inter-University Centre for Telecom-

munications and Informatics. His recent research interests are stochastic mod-
eling and performance evaluation of networks in general, hyperbolic random
graphs and routing analysis in particular.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Péter Babarczi (M’11) received the M.Sc. and
Ph.D. (summa cum laude) degrees in computer
science from the Budapest University of Technology
and Economics, Budapest, Hungary, in 2008 and
2012, respectively.
He is currently working as an Assistant Professor

with the High-Speed Networks Laboratory, Depart-
ment of Telecommunications andMedia Informatics,
Budapest University of Technology and Economics.
In 2012, he held an appointment as a Post-Doctoral
Research Associate with the University of Waterloo,

Waterloo, ON, Canada, and the University of Oklahoma, Norman, OK, USA.
His research interests include all-optical failure localization, combinatorial op-
timization, dedicated protection, and network coding.
Dr. Babarczi won the János Bolyai Research Scholarship of the Hungarian

Academy of Sciences in 2013.

András Gulyás received the M.Sc. and Ph.D. de-
grees in informatics from the Budapest University of
Technology and Economics, Budapest, Hungary, in
2002 and 2008 respectively.
Currently, he is a Research Fellow with the De-

partment of Telecommunications and Media Infor-
matics, Budapest University of Technology and Eco-
nomics. His research interests are complex and self-
organizing networks, network calculus, and software
defined networking.

Zalán Heszberger (S’99–A’01–M’14)received the
M.Sc. and Ph.D. degrees in electrical engineering
from the Budapest University of Technology and
Economics (BME), Budapest, Hungary, in 1997 and
2007, respectively.
Currently, he is an Associate Professor with the

Department of Telecommunications and Media
Informatics, BME. His main research interests
are future Internet technologies and complex net-
working. Currently, he is working on clean-slate
design Internet routing and network management

algorithms.

Dirk Trossen received the Ph.D. degree in computer
science from the Technical University of Aachen,
Aachen, Germany, in 2000.
He is a Principal Engineer with InterDigital

Europe, London, U.K., the European branch of
InterDigital, Inc. His main responsibility lies in
establishing the European presence of InterDigital
through engagements within the EU-funded Horizon
2020 work program as well as within U.K.-funded
efforts. He has more than 15 years of experience
in network architectures, services, and wireless

technology. His main contributions can be found in the area of interdomain
networking as well as seamless handovers, physical network overlays, and
new service concepts for operators. He was the technical lead of the European
efforts PSIRP and PURSUIT, performing research on large-scale publish–sub-
scribe information-centric systems in the context of the Future Internet and
possible novel internetworking solutions. Prior to joining InterDigital, he was
co-founder of TecVis LP, a U.K.-based software solution company in the
mobile, context-aware solution space, and he held prior positions as a Senior
Researcher with Cambridge University, Cambridge, U.K.; Chief Researcher
with BT Research, Ipswich, U.K.; and a Principal Scientist with Nokia Research
in Boston, MA, USA, and Helsinki, Finland. He is also a research affiliate
with the Advanced Network Architecture Group, MIT CSAIL, Cambridge,
MA, USA. He published more than 75 peer-reviewed papers in international
conferences and journals and currently has 29 international patents.

