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Abstract  42 

Targeting visually-identified neurons for electrophysiological recording is a fundamental 43 

neuroscience technique; however, its potential is hampered by poor visualization of pipette tips 44 

in deep brain tissue. We describe a technique whereby quantum dots coat glass pipettes 45 

providing strong two-photon contrast at deeper penetration depths than current methods. We 46 

demonstrate utility in targeted patch-clamp recording experiments and single cell electroporation 47 

from identified rat and mouse neurons in vitro and in vivo. 48 

 49 

Electrical recording from individual neurons in brain tissue using patch-clamp techniques
 50 

provides the most direct information on neuronal activity
1,2

, and will be critical to success of the 51 

brain mapping initiatives
3,4

. Advances in genetic labeling of specific cell types open the 52 

possibility of targeted patch-clamp recordings from individually-identified fluorescent neurons in 53 

living brain tissue
5,6

. However, direct access to neurons, both labeled and unlabeled, is hampered 54 

by a lack of methods for visualizing thin pipettes tips as they are advanced through the brain to 55 

contact the targeted neuron. Visualization, especially deeper within the brain, is currently 56 

accomplished using two-photon (2P) imaging of fluorophores (e.g. Alexa Fluor dyes)
5-7 

that are 57 

continuously expelled from the pipette  during the approach, thereby creating a “shadow” around 58 

a labeled or unlabeled neuron.  Though such dyes have been successfully used for many years, 59 

their applicability is still limited by low 2P excitation action cross-sections (absorption of two 60 

photons of identical frequency) requiring potentially damaging higher laser powers, 61 

susceptibility to photobleaching, and dye accumulation which causes increased background 62 

fluorescence or light absorption, especially after multiple descents. As an alternative method for 63 

targeted single-cell recordings, we developed a technique for robust fluorescent labeling of 64 

standard borosilicate glass pipettes allowing their 2P visualization far deeper within brain tissue 65 

than current methods. 66 

From a photophysical perspective, their unique properties make semiconductor quantum 67 

dots (QDs) ideal for this imaging challenge. These nanocrystals, whose photoluminescence (PL) 68 

can be tuned via core size and composition, display desirable optical properties including high 69 

quantum yields (), resistance to photo and chemical degradation, narrow and symmetrical PL 70 
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emission (full-width-at-half-maximum ~25-35 nm), broad absorption spectra coupled to large 71 

one-photon (ε = 10
4
-10

7
 M

-1
cm

-1
) and some of the highest two-photon absorption cross-sections 72 

(σ2 = 10
3
-10

4
 Goeppert-Mayer or GM units) available

8,9
. QD utility for 2P imaging in tissue has 73 

been repeatedly confirmed
8-10

.
  

Here, we show QD-labeled glass pipettes provide outstanding 74 

contrast of the pipette tip even in deep brain for targeted electrophysiological recordings without 75 

compromising electrical properties of the pipette or neuronal activity. 
 

76 

For optically targeting labeled neurons (typically expressing a red or green fluorescent 77 

protein), we coated pipettes with green ( 19%, 530 nm), yellow ( 33%, 550 nm) or red ( 45%, 78 

625 nm) emitting CdSe-ZnS core-shell QDs (Fig. 1a). These QDs were cap-exchanged with 79 

polyethylene glycol modified- or zwitterionic-terminated dihydrolipoic acid ligands for optical 80 

characterization (Supplementary Fig. 1)
11

 or diluted in hexane with native phosphine-81 

hexadecylamine ligands still present on their surface for pipette coating. We determined QD 2P 82 

action cross-section () spectra using a two-photon spectrometer
12

. QD were measured in 83 

comparison to Alexa Fluor 488 ( 92%), Alexa 546 ( 79%), and Alexa 594 ( 66%) dyes (Fig. 84 

1b-d). Comparative  at 880 nm were ~400 GM units for 530 QDs versus 8 GM for Alexa 85 

488, 752 GM for 550 QDs versus 6 GM for Alexa 546, and 16470 GM for 625 QDs versus 12 86 

GM for Alexa 594. Assuming a pipette could be uniformly coated with equal amounts of 625 QD 87 

or Alexa Fluor 594 dye, and using a simplistic extrapolation of ()QD/()dye at equal 880 88 

nm 2P excitation, the 625 QD probe should be >900X brighter.  89 

To coat pipette tips with QDs, native QDs were first washed in organic solvent several 90 

times to remove the excess synthetic ligands then dried down and re-solubilized in hexane. The 91 

tip of the borosilicate pipette was then repeatedly dipped into the QD-hexane solution until a 92 

desirable PL was reached (visualized under UV light). To prevent QDs from clogging the pipette 93 

tip, we applied positive air pressure during the coating. Since native-capped QDs are completely 94 

insoluble in aqueous solutions, they remain attached to the glass pipette, providing 2P contrast in 95 

the presence of any physiological buffer, internal pipette solution or dyes. Comparing the 96 

standard approach for pipette visualization using a soluble fluorescent dye against the QD-coated 97 

pipette shows substantial intensity differences in the area of the pipette tip (Fig. 1e,f). When 98 

Alexa Fluor 488 is ejected from the pipette, measured fluorescence intensity is lowest at the tip, 99 

whereas QD-coated pipettes show the brightest fluorescence at the tip. This is ideal for 100 
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accurately determining pipette tip location in brain tissue, especially since this very structure will 101 

first contact neuronal membranes. To determine the detection limits of coated pipettes in deep 102 

brain tissue, we compared both methods in anaesthetized mice using 2P imaging and measured 103 

the intensity of fluorescence signals down to 500 µm depth at various laser powers (Fig.1 g-l)
5,13

. 104 

While Alexa Fluor 594 fluorescence ejected from the pipette deteriorated rapidly below 300 µm, 105 

QD-coated pipettes were still clearly visible at penetration depths of 500 µm, while using 77% 106 

less laser power (Fig. 1i-l). Even at the maximum excitation wavelength (800 nm), the  Alexa 107 

Fluor 594 signal was still lower compared to the QD coated pipettes (Supplementary Fig. 2). 108 

Such extended imaging depths at lower laser power can expand experimental access in vivo.  109 

To evaluate electrochemical and optical properties of QD-coated patch pipettes in situ, 110 

we performed patch-clamp recordings in brain slices. The pipette resistance of QD-coated 111 

pipettes did not differ from uncoated control pipettes, whereas the capacitance was slightly 112 

decreased (Fig. 2a-c). QD-coated pipettes formed gigaseal contacts similarly to uncoated patch 113 

pipettes
5-7,13

, when using the standard “blow-and-seal” technique. We patched different 114 

fluorescently-labeled cell types in brain slices, including hippocampal Ds-Red-labeled 115 

cholecystokinin positive interneurons and GFP labeled parvalbumin-positive interneurons (Fig. 116 

2d, Supplementary Fig. 3a). The fluorescence intensity of QD-coated pipettes was consistently 117 

higher than the endogenously-expressed fluorescent markers. Indeed, sensitivity of the 118 

photomultiplier detecting the QD-coated pipette signal needed to be scaled down to avoid 119 

saturation at the laser power required for visualizing the fluorescent proteins. Basic 120 

electrophysiological properties of neuron types patched with QD-coated pipettes were similar to 121 

those recorded using uncoated pipettes (somatic firing, voltage responses to a series of positive-122 

negative current injections), confirming the QD coating did not interfere with neuronal 123 

electrophysiological properties nor affected viability. Furthermore, 2P Ca
2+

 imaging from CA1 124 

pyramidal neurons loaded with the Ca
2+

-sensitive dye Oregon Green BAPTA-1 (OGB-1) 125 

through the QD-coated pipette revealed normal dendritic and spine Ca
2+ 

and voltage signals in 126 

response to backpropagating action potentials (APs, Fig. 2e) as well as to direct synaptic 127 

stimulation by 2P glutamate uncaging (Fig. 2f and Supplementary Fig. 3b)
13

.  128 

  Under in vivo conditions, we recorded with QD-coated patch pipettes from cortical L2/3 129 

pyramidal neurons of anaesthetized mice expressing the genetically encoded Ca
2+

 indicator 130 
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GCaMP6 (Fig. 3a and Supplementary Videos 2 and 3). QD-coated pipettes could be clearly 131 

visualized within the intact brain even after penetrating the dura. Spontaneous electrical activity 132 

and corresponding somatic GCaMP6 Ca
2+

 signals were measured in the patched cells and 133 

appeared normal. Recordings from channelrhodopsin-(ChR2) expressing interneurons using QD-134 

coated pipettes verified that activation of ChR2 with 470 nm light produced robust and precisely 135 

driven firing as expected (Fig. 3b)
6,14

. QD-coated pipettes also successfully electroporated
7
 with 136 

Alexa Fluor 594 dye and a Ds-Red encoding plasmid into individually identified L2/3 pyramidal 137 

neurons at ~300 m depth (Supplementary Fig. 4 and Supplementary Video 1). The challenge 138 

of sequentially electroporating multiple cells in vivo did not alter the QD coating nor produced 139 

QD adsorption to the brain parenchyma demonstrating the reliability of this method. Importantly, 140 

GFP-expressing neurons were successfully electroporated in vivo at 760 µm depth using 625 QD 141 

coated pipettes (Fig. 3c-e and Supplementary Video 4).  Superb visibility of the QD coated 142 

pipette tips also improved access to small cellular structures, such as local dendritic regions in 143 

vitro (Fig. 3f). 144 

In summary, we introduce a simple technique to fabricate permanently-labeled 145 

fluorescent glass pipettes which facilitate visually targeted recordings from individual (labeled or 146 

unlabeled) neurons at great depth and with high precision both in vitro and in vivo. Pipettes have 147 

been labeled previously with fluorophores; however the dyes utilized did not provide the 148 

required 2P properties for deep tissue imaging
15,16

. Our approach is an alternative or complement 149 

to the current “gold standard” method
5-7

 while removing the need to perfuse dye into the 150 

extracellular space continuously which reduces visibility and contrast. High quality imaging with 151 

QD-coated pipettes is possible even at depths of ~500-800 µm within in vivo brain tissue (Fig. 1 152 

and Fig. 3). We note that the low intrinsic 2P properties of the currently used fluorescent proteins 153 

expressed in labeled neurons may still require higher laser power for their visualization. QD 154 

coating does not preclude use of fluorescent dyes, in fact, it allows the advantage of combining 155 

both visualization modalities simultaneously for specific applications (e.g. for monitoring pipette 156 

clogging or cell loading).  Furthermore, narrow, size-tunable QD PL allows access to coatings of 157 

various colors across the spectrum as experimentally required
9
. Critically, QD-coated pipettes 158 

did not interfere with physiological functions monitored throughout our experiments for ≤ 3 159 

hours, suggesting they can be used for a wide array of biological experiments. While we tested 160 
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QD coatings for electrophysiological recording pipettes in neuroscience, we expect that they can 161 

be applied to coat any probe type wherever improved visualization in tissue is needed. 162 

 163 

METHODS. Methods and any associated references are available in the online version of the 164 
paper. Note: Supplementary information is available in the online version of the paper.  165 
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Figure Legends.   216 

Figure 1. QD photophysical properties and in vivo imaging. (a) Normalized absorption and PL 217 

of QDs. Molecular extinction coefficients ε at wavelengths corresponding to the first excitation 218 
peak are: 530 QD 159,092 M

-1
 cm

-1
 at 501 nm; 550 QD 120,000 M

-1
 cm

-1
 at 533 nm; 625 QD 219 

500,000 M
-1

 cm
-1

 at 610 nm. (b-d) 2P action cross-section spectra () in GM units for (b) 530-220 
, (c) 550- and (d) 625 QDs in phosphate buffered saline, superimposed over spectra of Alexa 221 
Fluor 488, Alexa Fluor 546 and Alexa Fluor 594 in water, respectively. Inset in d shows the 222 
enlarged spectrum of Alexa Fluor 594. (e) Image of a 625 QD-coated pipette (upper) and an 223 
uncoated pipette ejecting Alexa Fluor 488 (lower). Intensity measurements were performed in 224 

the white rectangles within the pipette tips. (f) Fluorescence intensity as measured in (e) for 625 225 

QD, 550 QD and Alexa Fluor 488 dye. (g, h) Schematics of the (g) classic approach for pipette 226 
visualization during shadow patching and the new (h) approach using QD-coated pipettes (red). 227 

Alexa Fluor 594 filled pipettes (i) or 625 QD-coated pipettes (j) were imaged at different depths 228 
(D) in the mouse brain at the indicated laser power (LP). Images are the average of 10 frames, 229 
except for Alexa Fluor at 500 µm (100 frames average). Average gray value (10 frames) in 230 
arbitrary units of either the Alexa Fluor 594 (k) or the 625 QD (l) pipette’s fluorescence as a 231 

function of laser power at 940 nm and depth.  232 

Figure 2. Electrical properties of QD-coated patch pipettes. (a-c) Comparison of uncoated and 233 
QD-coated patch pipettes, (a) resistance (unpaired t-test, n = 7/6, P = 0.979), (b) capacitance 234 
(unpaired t-test, n = 7/8, P = 0.020), and (c) access resistance (one-way ANOVA test, n = 4/7/6 235 

cells in 6 animals, P = 0.454). Black: mean ± S.D.  (d) 2P monitoring of QD-coated pipettes 236 

(green, 530 nm QD) during patching of hippocampal neurons (red) in acute brain slices from a 237 
BAC-CCK-Ds-Red mouse. Representative for 13 cells in 5 animals. Panels from left: 2P images 238 
(1-3); voltage responses to positive and negative current injections (200 pA) in the same cell (4). 239 

(e) Rat hippocampal CA1 pyramidal neuron loaded with Ca
2+

 sensor OGB-1 (green) through 625 240 
QD-coated patch pipette (red) in acute brain slice. Circles: dendritic regions used for recording 241 

backpropagation AP evoked Ca
2+

 signals induced by +50-150 pA current injections. Ca
2+

 signals 242 
for each location are plotted on the right (n = 1). (f) Rat hippocampal CA1 pyramidal neuron 243 
loaded with Alexa Fluor 594 (red) through a 550 QD-coated patch pipette in acute slice. Box 244 

inset: dendritic region and 12 spines selected for 2P glutamate uncaging. Right, top: uncaging-245 
evoked excitatory postsynaptic potentials (gluEPSPs) at indicated spines with inter-spine 246 

stimulation interval (IsSI) of 200 ms. Right, bottom: simultaneous glutamate uncaging at all 12 247 

spines (IsSI = 0.3 ms) evokes dendritic spike (arrow, n = 8/9 dendrites in 4 neurons from 2 248 

animals, patched with various QD-coated pipettes). Black: voltage trace, red: dV/dt trace.  249 

Figure 3. Neuronal manipulations with QD-coated pipettes. (a) Left: GCamp6f expressing 250 
cortical L2/3 pyramidal neuron (green) patched with 625 QD-coated pipette (red) in vivo at 207 251 
µm depth. Right, GCamp6f Ca

2+
 signals (top) during spontaneous spiking activity (bottom). 252 

Representative of n = 5 cells. (b) Left: mouse cortical interneuron (green) expressing CHR2-YFP 253 
under the control of the vesicular gamma-aminobutyric acid (GABA) transporter (VGAT) 254 

promoter, patched with 530 QD-coated pipette (green) in vivo. After recording spiking activity in 255 
cell-attached mode, the cell was loaded with Alexa Fluor 594 (red). Right: 40 Hz sine wave-256 
modulated 470 nm LED light stimulation (top blue; delivered through 2P microscope optical 257 
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path) and electrical activity of the same patched neuron (middle: single trial trace; bottom: raster 258 
plot of light evoked action potentials, 10 trials). (c-e) Deep layer targeting in Thy1-EGFP mouse. 259 
(c) Top: Z-projection (80 µm) of targeted neuron soma (arrowhead) at 760 µm depth pre-260 
electroporation. Bottom: 3D reconstructed orthogonal view, corresponding to ~800 µm. Green: 261 

GFP fluorescence, arrowhead: site of pipette contact to the neuron. (d) Targeted neuron during 262 
electroporation. Red: 625 QD. 40 mW laser power at 940 nm. Frames are averaged 10x. (e) 263 
Targeted neuron expressing DsRed (red) and GFP (green) 2 days post-electroporation. (f) 264 
Fluorescence directed dendritic patching, representative of n = 3 dendrites in 2 animals.  The 265 
apical trunk of an in vitro CA1 pyramidal cell preloaded with Alexa Fluor 488 patched with 625 266 

QD-coated pipette using fluorescent visualization. Dendritic patch formation (top). Synaptic 267 

gluEPSPs (bottom) after uncaging at nearby spines.  268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 
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Supplementary Materials 288 

 289 

Online Methods 290 

 291 

 292 

Materials and Methods 293 

 294 

Preparation of hydrophobic QDs.  Native organic QDs
11

 were washed twice to remove the 295 

excess ligands present from synthesis. QD samples in toluene or decane were precipitated by the 296 

addition of several milliliters of an acetone:methanol 50:50 mixture in a 15 or 50 mL Falcon 297 

tube. The QDs were then centrifuged to a pellet and the supernatant decanted and discarded. The 298 

pellet was dried under nitrogen and the QDs were again resuspended in hexane or toluene. This 299 

was followed by another round of washing and precipitation with drying under nitrogen for 300 

storage.  The QDs were resuspended in hexane for probe coating.  301 

 302 

 303 

Two-photon action cross-sections of QDs and Alexa Fluor dyes. Action cross sections were 304 

measured with an inverted microscope using a Ti:sapphire laser as an excitation source, as 305 

described earlier
12

.  Briefly, QD or dye solutions at micromolar concentration (or 0.1 M for 625 306 

QD) were contained in coverslip-bottomed dishes (MatTek) and 2P excitation spectra from 710 307 

nm to 1080 nm were obtained at a constant laser power at the sample of 0.5 mW.  530 QD, 550 308 

QD, and 625 QD were measured in phosphate-buffered saline, Alexa Fluor 488, 546, and 594 309 

were measured in water (for comparison to published values), and the 2P reference dye 310 

fluorescein was measured at pH 11.  Spectra obtained from the buffers alone were used as 311 

background correction for the fluorophore spectra. No emission filters were used other than two 312 

short-pass filters (720/SP, Semrock). The absolute two-photon action cross section of the 313 

reference dye fluorescein was taken from Xu and Webb (1996)
17

, with corrections made for 314 

small differences in the quantum efficiency of the detector (avalanche photodiode detector model 315 

PDF; Micro Photon Devices) for the different emission wavelengths of the fluorophores. 316 
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Pipette coating with QDs. Borosilicate pipettes were pulled with a standard puller. Positive air 317 

pressure was applied through the back of the pipette with a 10 ml syringe and submerged into 318 

methanol to determine the bubble number
18

. After methanol evaporation, the tip of the pipette 319 

was dipped into the QDs solution keeping the positive pressure to prevent clogging. After 0.5 to 320 

2 seconds, the pipette was allowed to dry in the air to form a layer of QDs on the glass surface. 321 

The coating procedure was repeated several times until reaching a desirable photoluminescence 322 

determined under UV light. See Supporting Protocol for a stepwise QD coating procedure with 323 

more details and some notes. 324 

 325 

In vitro and in vivo experiments 326 

 327 
Note: all animal usage and all experiments were performed in strict accordance with institutional 328 

IRB approval and met all applicable regulations. 329 

 330 

 331 

In vitro experiments 332 

Slice preparation. Acute transverse hippocampal slices were prepared from either 8-9 week-old 333 

male Sprague-Dawley rats (400 µm thick slices) as described previously
19

, or from P18-24 BAC-334 

CCK-Ds-Red
20

 or PV/GFP BAC
21

 mice of both sexes (300 µm thick slices), according to 335 

methods approved by the Institute of Experimental Medicine, Hungarian Academy of Sciences, 336 

in accordance with DIRECTIVE 2010/63/EU Directives of the European Community and 337 

Hungarian regulations (1998. XXVIII. section 243/1998, renewed in 40/2013, II.14.). Briefly, 338 

rats were deeply anaesthetized with isoflurane and transcardially perfused with ice-cold cutting 339 

solution containing (in mM): sucrose 220, NaHCO3 28, KCl 2.5, NaH2PO4 1.25, CaCl2 0.5, 340 

MgCl2 7, glucose 7, Na-pyruvate 3, and ascorbic acid 1, saturated with 95% O2 and 5% CO2. 341 

Mice were deeply anaesthetized with isoflurane and decapitated without transcardial perfusion. 342 

The brain was quickly removed and sectioned with a vibratome (VT1000A, VT1000S or 343 

VT1200S, Leica). Slices were incubated in a submerged holding chamber (rat slices) or in an 344 

interface chamber (mice slices) in artificial cerebrospinal fluid (aCSF) at 37°C for 30 min and 345 

then stored in the same chamber at room temperature. For recording, slices were transferred to 346 



12 

 

the submerged recording chamber of the microscope where experiments were performed at 33-347 

35 °C in aCSF containing (in mM): NaCl 125, KCl 3, NaHCO3 25, NaH2PO4 1.25, CaCl2 1.3, 348 

MgCl2 1, glucose 25, Na-pyruvate 3, and ascorbic acid 1, saturated with 95% O2 and 5% CO2.  349 

 350 

Pipette property measurements. Pairs of pipettes were pulled from the same borosilicate glass. 351 

QD-coated and un-coated pipettes were filled with internal solution leaving a blocking bubble at 352 

the tip of the pipette, then submerged into the aCSF-containing recording chamber. Pipette 353 

capacitance was measured in voltage-clamp mode using 10 mV step command with a HEKA 354 

Amplifier at 100 kHz filtering.  After the removal of the blocking bubble from the pipette, the 355 

pipette resistance was measured using the same protocol. 356 

 357 

Electrophysiology. Cells were visualized using a Zeiss AxioExaminer epifluorescent microscope 358 

equipped with infrared Dodt optics and a water immersion lens (63X, 0.9 NA, Zeiss). Current-359 

clamp whole-cell patch-clamp recordings were performed with a Dagan BVC-700 amplifier 360 

(Dagan) in the active 'bridge' mode, filtered at 3 kHz and digitized at 50 kHz. Patch pipettes were 361 

filled with a solution containing (in mM): K-gluconate 134, KCl 6, HEPES 10, NaCl 4, Mg2ATP 362 

4, Tris2GTP 0.3, Na-phosphocreatine 14, pH 7.25. In some experiments (as indicated in the text) 363 

the pipette solution was complemented with either 100 M Alexa Fluor 488, 50 M Alexa Fluor 364 

594, or 100 M Oregon Green 488 BAPTA-1 (OGB-1, for Ca
2+

 measurements; all dyes were 365 

from Invitrogen). Series resistance was <30 MΩ. 366 

Two-photon imaging and uncaging. Two ultrafast pulsed laser beams (Chameleon Ultra II; 367 

Coherent) and a dual galvanometer-based two-photon laser scanning system (Prairie 368 

Technologies) were used to simultaneously image neurons (at 880 or 920 nm) and to focally 369 

uncage MNI-caged-L-glutamate (Tocris; 9-10 mM applied via pressure ejection through a 20-30 370 

m diameter pipette above the slice) at individual dendritic spines (at 720 nm)
22

. Laser beam 371 

intensity was independently controlled with electro-optical modulators (Model 350-50, 372 

Conoptics). All images shown are collapsed Z stacks of multiple images. Uncaging dwell time 373 
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was 0.2 ms; galvo move time was 0.1 or 200 ms. (see text). Linescan imaging was performed at 374 

150-500 Hz. 375 

Data analysis. Analysis was performed using custom-written macros in IgorPro (WaveMetrics). 376 

Ca
2+

 and voltage signals were analyzed offline using averaged traces of 3-5 trials. Morphological 377 

and distance measurements were performed using ImageJ (NIH) on two-dimensional maximal 378 

intensity projections of 2 µm z-series collected at the end of the experiment. Only data obtained 379 

in experiments meeting the standard technical criteria for successful recordings (GOhm seal 380 

resistance, <30 MOhm access resistance) were included 381 

 382 

 383 

In vivo experiments 384 

Surgical procedures. All in vivo mouse experiments were approved by the Animal Care 385 

Committee of the University of Geneva. Adult (2-5 months old) C57/Bl6 wild type, VGAT-386 

ChR2 (YFP-Channelrhodopsin-2 expressing neurons under the control of the locus of the 387 

vesicular γ-aminobutyric acid (GABA) transporter, VGAT) or Tg(Thy1-EGFP)MJrs/J (EGFP 388 

expressing neurons under the control of a modified Thy1 promoter region) mice of both sexes 389 

were used. All surgeries were conducted under isofluorane anesthesia (1.5%) in a custom made 390 

stereotactic apparatus equipped with a thermic plate (37°C). Prior to the surgery, toe-pinch 391 

nociceptive responses were assessed and mice received anti-inflammatory (2.5 mg/kg 392 

dexamethasone i.m; 5 mg/kg carprofen s.c.), analgesic (0.1 mg/kg buprenorphine i.m.) and local 393 

anesthetic (1% lidocaine s.c. under the scalp) drugs.  394 

 395 
Stereotactic injections of GCaMP6. Two to 4 weeks prior to the electrophysiological 396 

experiments, layer 2/3 cortical neurons of C57/Bl6 mice were labeled with the genetically 397 

encoded calcium indicator GCaMP6 using a viral vector. The scalp was shaved and sterilized 398 

with ethanol 70% and a betadine solution. A small skin incision was performed over the motor 399 

cortex (1 mm anterior and 0.8 mm lateral to Bregma) and a small craniotomy was performed 400 

with a dental drill to allow for virus injection. Glass capillaries (Drummond) were pulled (Sutter 401 

Instrument P-97) and beveled to attain thin and sharp pipettes (outer diameter <30 µm).  A 402 

pipette was loaded with a suspension of the adeno-associated virus AAV1-Syn-GCaMP6f 403 
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(UPenn, 2.96e12 GC) and lowered into the motor cortex (250 m deep). A 50 nL injection (10-404 

20 nL/min) was performed using a piston-based injection system (Narishige). After the injection, 405 

the scalp was sutured and mice were left to recover for at least two weeks. 406 

 407 
Craniotomy for in vivo recordings.  The day of the electrophysiological recordings, the scalp 408 

was removed. The exposed skull was cleaned and dried. The periostium was removed with a 409 

scalpel and a custom-made titanium head bar was cemented to the bone with a thin layer of 410 

cyanoacrylate glue and covered with dental cement. In order to create a well for the water 411 

immersion objective of the microscope, 150 uL of 1% agarose (w/v)  were dripped on the skull 412 

and left to jellify. The border of the agarose drop was covered with dental cement to create a 1 413 

mm deep recording chamber and the dental cement was allowed to cure for 10 minutes. A round 414 

craniotomy of 1-1.5 mm diameter was performed over the motor cortex taking care of not 415 

damaging the dura. The exposed dura was thoroughly rinsed with sterile saline to prevent 416 

bleeding and to remove bone debris and kept moistened throughout the experiment. Once set, the 417 

mouse was placed under the two-photon microscope and held by the titanium head bar with a 418 

custom-built holder. 419 

 420 

In vivo imaging. Two-photon imaging was performed using a scanimage r4.1 controlled 421 

microscope equipped with a resonant scanner head (Thorlabs), two GaAsP photomultiplier tubes 422 

(Hamamatsu 10770PB-40; filters: red and green channel) and a 16x 0.8 NA water immersion 423 

objective (Nikon)
7
. The laser beam was tuned at 940 nm (Ti-Sapphire Coherent Ultra II 424 

Chameleon) and light pulse (140 fs) dispersion was corrected with a group velocity dispersion 425 

compressor (Chameleon PreComp). Maximal power used (measured in the air at the focal plane) 426 

was <50 mW. To stimulate ChR-2 expressing neurons, the microscope was also equipped with a 427 

470 nm LED illumination source controlled by ephus. Maximal power at the focal plane was 500 428 

uW. During the pipette approximation to the targeted cell, images (256 x 256 pixels) were 429 

acquired at 60 fps and online averaged (10 frames rolling window average). 430 

 431 

In vivo electrophysiology and single cell electroporation. 4-6 MΩ (for electrophysiology) or 12-432 

15 MΩ (for single cell electroporation) borosilicate pipettes pipettes (Science Products Gmbh) 433 
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were pulled with a two-step vertical puller (Narishige) and coated with QDs as described above. 434 

Electrophysiological recordings were performed using an Axoclamp 200B amplifier (Molecular 435 

Devices) controlled by Ephus. Pipettes were held a 30°- 40° angle with the cortical surface and 436 

the tip of the pipette was positioned on the surface of the dura diagonally aligned to the targeted 437 

cell. For the dura penetration, the pressure of the pipette was set to 150 mbar and reduced to 50 438 

mbar once it was inside the brain. The pipette was diagonally advanced up to the targeted cell 439 

and minor lateral or vertical adjustments were made to avoid blood vessels. Pipette resistance 440 

was continuously monitored to check for clogging. GCamp6-, VGAT-ChR2- and Thy1-GFP-441 

expressing neurons were simultaneously visualized with the fluorescent pipette (red or green 442 

QDs) and the tip of the pipette was carefully advanced to the center of the neuron and the 443 

positive pressure was released after a 50% increase in the pipette resistance. Targeted single cell 444 

electroporation was performed as previously described
9
 using an Axoporator 800A (Molecular 445 

Devices). Borosilicate pipettes were filled with internal solution and 50 µg/µl of DsRed plasmid. 446 

After seal formation, a single electroporation train was applied (1 s, 50 Hz, 500 µs pulse 447 

duration, -7 V). To prevent brain damage, a maximum of 3 penetrations were performed at the 448 

same brain location. Noticeably, QDs are readily adsorbed to the dura, therefore the fluorescence 449 

of the pipette that pierced the dura was dimmer - on average - than the following ones. In spite of 450 

this, QDs were never adsorbed to the brain parenchyma even after repeated pipette penetrations 451 

or long recordings. 452 

 453 

Data analysis. In statistical comparisons, differences were considered significant when P < 0.05. 454 

Statistical analysis was performed using two-tailed unpaired t-test or one-way ANOVA. All data 455 

were tested and met the assumption for normal distribution. . In all figures, symbols and error 456 

bars represent mean ± S.D. Experiments were not randomized or blind.  457 

 458 

 459 

 460 
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