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ABBREVIATIONS 

AFM, atomic force microscope; ACA, -aminocaproic acid; FDP, fibrin degradation products; 

SEM, scanning electron microscope; PBS, phosphate buffered saline; PDMS, 

poly(dimethylsiloxane).  
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ABSTRACT  

Intravascular fibrin clots are resolved by plasmin acting at the interface of gel-phase substrate 

and fluid-borne enzyme. The classic Michaelis-Menten kinetic scheme cannot describe 

satisfactorily this heterogeneous-phase proteolysis, because it assumes homogeneous well-mixed 

conditions. A more suitable model for these spatial constraints, known as fractal kinetics, 

includes a time-dependence of the Michaelis coefficient Km
F=Km0

F.(1+t)h, where h is a fractal 

exponent of time, t. The aim of the present study was to build up and experimentally validate a 

mathematical model for surface-acting plasmin that can contribute to a better understanding of 

the factors that influence fibrinolytic rates. The kinetic model was fitted to turbidimetric data for 

fibrinolysis under various conditions. The model predicted Km0
F=1.98 M and h=0.25 for fibrin 

composed of thin fibers and Km0
F=5.01 M and h=0.16 for thick fibers in line with a slower 

macroscale lytic rate (due to stronger clustering trend reflected in the h value) despite faster 

cleavage of individual thin fibers (seen as lower Km0
F). -Aminocaproic acid at 1 mM or 8 U/ml 

carboxypeptidase-B eliminated the time-dependence of Km
F and increased the lysis rate 

suggesting a role of C-terminal lysines in the progressive clustering of plasmin. This fractal 

kinetic concept gained structural support from imaging techniques. Atomic force microscopy 

revealed significant changes in plasmin distribution on patterned fibrinogen surface in line with 

the time-dependent clustering of fluorescent plasminogen in confocal laser microscopy. These 

data from complementary approaches support a mechanism for loss of plasmin activity resulting 

from C-terminal lysine-dependent redistribution of enzyme molecules on fibrin surface. 
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The scaffold of intravascular blood clots that are responsible for the acute tissue damage in 

ischemic cardio- and cerebrovascular disease is composed of fibrin meshwork and accordingly 

its dissolution is a primary strategy in the treatment of acute myocardial infarction and stroke 

(1,2). This therapeutic approach is based on the administration of tissue-type (or other) 

plasminogen activator that attacks the clot from the circulating blood and binds to the surface of 

fibrin forming an interfacial layer, in which plasminogen is converted to plasmin, a protease 

capable of hydrolyzing the fibrin matrix to water-soluble degradation products (FDPs) (reviewed 

in 3). Even if plasmin is generated by fibrin-bound activator, it needs to detach in order to attack 

the susceptible cleavage sites in fibrin. Thus, a layer adjacent to the surface is formed, in which 

free plasmin is in equilibrium with the fibrin-bound enzyme engaged in catalytic action. As a 

result of fibrin break-down, this lytic front moves from the surface to the core of the clot and the 

rate of its migration characterizes the overall efficiency of thrombolysis (4,5). Recently, direct 

plasmin application to the surface of thrombi has been proposed as a safe and efficient 

thrombolytic modality (reviewed in 6). Thus, independently of the plasmin source (local 

generation or bulk fluid phase-borne) all available enzyme-based approaches to resolve fibrin 

clots involve proteolytic events at the surface of a solid phase substrate. The optimization of the 

current thrombolytic agents and the design of new thrombolytics would greatly benefit from 

kinetic models that adequately treat this heterogeneous phase catalytic process. However, at 

present the treatment of fibrinolysis in enzymological terms lacks a model with parameters, 

which are mechanistically related to discrete steps of plasmin action. 

The existing kinetic models of fibrinolysis fall largely into three categories. In certain cases 

(e.g. our earlier work 7) the global efficiency of proteases acting on fibrin could be characterized 

with phenomenological kinetic parameters that allow adequate comparison of different enzymes, 



 5

but lack mechanistic content. A different approach builds upon diffusion, binding and catalytic 

data gained in separate experiments in attempt to reconstitute the global course of interfacial 

proteolysis from these discrete events (8-10). In these models the discrete steps are 

mechanistically substantiated, but due to the complex nature of the examined phenomenon a high 

number of independently gained parameters are necessary, which inevitably leads to 

simplifications to account for the variability of the conditions, under which these are derived, and 

thus some essential mechanistic aspects can be overlooked. For example, although 80 % of the 

fibrin fiber volume is occupied by water (11,12), this space is highly compartmented by the 

protofibrils aligned in parallel within the fibers and by the higher ordering of the fibers 

encompassing three-dimensional pores. However, in environments with similar fixed geometric 

obstacles within cells, or in the extracellular matrix, anomalous diffusion is observed (13,14). 

Thus, any model that is based on diffusion, binding and reaction rate parameters gained in 

homogeneous dilute solutions is necessarily just an approximation of the real situation in fibrin, 

where an additional level of complexity is rendered by the variability of fibrin meshwork 

structure (e.g. in cell-free areas of in vivo human thrombi the fiber diameter varies in the range 

100 – 200 nm and the pore diameter in the range 160 – 380 nm) (15). The third type of kinetic 

models of interfacial proteolysis in fibrin overcomes the limitations related to the deviation from 

the homogeneity assumptions by introducing a microscale stochastic approach, which operates 

with single enzyme molecules rather than enzyme concentrations in deterministic equations (16). 

This approach circumvents the necessity for assumptions of conventional transport phenomena, 

but its theoretical predictions for the efficiency of individual enzyme molecules have received 

only indirect support from experiments, because currently there are no direct data that track the 

behavior of separate molecules in the course of fibrinolysis. The present study was undertaken in 
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attempt to combine the advantages of the existing kinetic models of fibrinolysis (operating with 

parameters based on easily accessible empirical data) and to minimize their limitations (adding 

mechanistic meaningfulness to these operational parameters based on nanoscale tracing of 

molecular events). Following the recent advances in single-molecule experimentation, significant 

effort is put at present to express the stochastic behavior of molecules in global kinetic rate 

equations (17) and thus our work translates this current focus of enzyme kinetics theory to the 

field of fibrinolysis developing a mechanistically validated tool for experimental investigation of 

the process. 

Fractal kinetics provides a theoretically well-substantiated approach to describe chemical 

reactions under dimensional or topological constraints (18). According to this concept as a result 

of spatial restrictions in diffusion, the reactants cluster and segregate in the course of the 

reactions, which implies ageing of the reaction system (i.e. at identical instantaneous reactant 

concentrations at the time of observation, the reaction in an “older” system proceeds at a lower 

rate than in a “younger” one because of the more advanced degree of segregation) (18). This 

feature of fractal kinetics is reflected in the time-dependence of the instantaneous reaction rate 

coefficient k, which replaces the rate constant of classic kinetics (k=k0(1+t)-h, where k0 is the 

initial rate coefficient, t is time and h is a system-dependent exponent). As discussed above, 

fibrin forms multiple structured obstacles to fluid-borne enzymes and thus a fractal kinetic model 

could be potentially adequate to describe the plasmin-catalyzed degradation of fibrin. If the 

catalytic process is simplified to a three-step reaction scheme 
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E Fg EFg E FDP   , where E is plasmin, FgR is fibrin in the reactive 

interface and the rate coefficients of the separate reactions are indicated by k, the spatial 

constraints of the fibrin network affect only the diffusing reactant (E) resulting in a time-
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dependent rate coefficient for the association of plasmin and fibrin 1 1 0 1 hF F
,k k /( t )  . Thus, if 

the steady state assumption is valid for discrete time intervals, the classical Michaelis-Menten 

equation developed originally for well-mixed homogeneous reaction systems (reviewed in 19) 

can be applied in a modified form, in which the Michaelis constant 1
0

1 0

F F
catF

m, F
,

k k
K

k
 

  is replaced 

by a time-dependent coefficient 0 1 hF F
m m ,K K .( t )  . A similar modification of the Michaelis-

Menten model has been successfully applied in a different experimental setting (20). In the 

present study the analytical power of the fractal kinetic treatment of fibrinolysis has been tested 

on various fibrin structures and for known modifiers of plasmin action in order to establish its 

practical benefits.  

 

EXPERIMENTAL PROCEDURES 

 

Generation of plasmin- Plasmin was generated using plasminogen (isolated from human 

plasma activated by streptokinase (Calbiochem, LaJolla, CA, USA) at 172.5 U/mg zymogen. 

Plasmin concentrations were calculated by a method described elsewhere (21). 

Turbidimetric fibrinolytic assay and initial data processing- Fibrin was prepared in microtiter 

plates from fibrinogen (human, plasminogen-depleted, Calbiochem) at concentrations (Fg0) in 

the range (1.5 – 5.9 M) clotted by 5 or 100 nM thrombin (thrombin from Serva Electrophoresis 

GmbH [Heidelberg, Germany] was further purified by ion-exchange chromatography on 

sulfopropyl-Sephadex yielding preparation with specific activity of 2100 IU mg (22) and 1 

IU/mL was considered equivalent to approximately 10.7 nmol/L by active site titration (23)) for 

45 min at 37 °C (in a total volume of 100 l in 10 mM Hepes buffer pH 7.4 containing 150 mM 
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NaCl and 3 mM CaCl2). Thereafter 60 l plasmin at concentrations  0
0t no min al

E  0.25 – 1 M 

was added to the surface of the clots followed by 60 l mineral oil layered over the solution to 

prevent evaporation. The course of clot dissolution was monitored by measuring the light 

absorbance (A) at 340 nm at 37 C. For the sake of data processing each unique pair of nominal 

initial plasmin 0
0t , jE  and initial fibrin Fg0,j concentrations was considered as a separate 

experiment with number j=1, 2, …, J performed in Kj replicas (typically 8). Within each 

experiment a linear dependence between the quantity of residual fibrin (F) and the measured 

absorbance (A) was assumed and normalization of F was performed based on the initial and final 

values of A as described in Supplemental Information. The mean value and the standard 

deviation of F were calculated for each time point of each experiment and outliers were excluded 

based on criteria described in Supplemental Information. The heterogeneous surface at the 

boundary fibrin/fluid interface resulted in variability in the amount of fibrin-entrapped plasmin, 

which was independently estimated following withdrawal of the fluid phase-born plasmin after 

15-min incubation over fibrin in the experimental setup described above and addition of 60 l 

0.6 mM Spectrozyme-PL (H-D-norleucyl-hexahydrotyrosyl-lysine-p-nitroanilide, American 

Diagnostica, Pfungstadt, Germany). The amount of fibrin-entrapped plasmin was reflected in the 

rate of hydrolysis of Spectrozyme-PL measured as changes in absorbance at 405 nm (A405).  

The uncertainties in the actual initial plasmin concentration 0
0t , actual( E )  were accounted for by 

the factor 0 0
0 0t , actual t , nominalC ( E ) /( E )  with probability distribution calculated from 

measurements of the ratio (A405 on fibrin surface/A405 in fibrin-free system) and implemented 

in the kinetic model as described in Supplemental Information. 
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Fractal kinetic model of the fibrinolytic process and estimation of its parameters- The Insets of 

Fig. 1 illustrate the notations used for the compartments and molecular species in the model of 

the experimental setup described above. The reaction proceeds at the interface of the two 

compartments with volume VR, which is a sub-volume of Vd. The VR compartment moves down 

at the same rate as the rate of fibrin conversion to FDP. As a result part of the volume VR  is 

continuously transforming into Vu and VR contains constant FgRt (because of the progressive 

dissolution of fibrin, FgRt coincides with Fg0). In our model the plasmin-catalyzed degradation of 

fibrin in VR is described with the following scheme 
1,0

-1

F

F

Fk ,h
cat

R t
k

k
E Fg EFg E FDP    , 

where the rate coefficients of the separate reactions are indicated by k. The assumption for fractal 

kinetic behavior of plasmin under the spatial constrains of the fibrin network results in time 

dependence of the rate coefficient for the association of plasmin and fibrin 1 1 0 1F F h
,k k /( t )   and 

thus the Michaelis coefficient 1

1

F F
catF

m F

k k
K

k
 

  will be also time-dependent 0 1F F h
m m,K K .( t )  . 

The interaction of plasmin with fibrin degradation products is accounted for by a rapid 

equilibrium 1

1

FDP

FDP

k

k
E FDP EFDP



 
 

characterized by 1

1

FDP
FDP
a FDP

k
K

k


 
equilibrium binding 

constant yielding . .FDP
aEFDP K E FDP . For derivation of the kinetic equations of the model 

system the steady state assumption 
 Rd EFg.V

0
dt

  is used leading to 
F
M

R

K

FgE
 gFE

.
  and to the 

differential equation 
 0

F
t R cat RF

cat t
u R u R

dFDP V k .EFg.V
k .EFg FDP

dt V V Fg . V V
 

 
 for fibrin degradation as 

described in Supplemental Information. This equation is solved with initial condition FDPt(0)=0 

and based on FDPt , Vd is calculated as a function of time till Vd reaches a value approaching VR 
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by 0.5 % (at this terminal stage residual fibrin is present only in a volume of 1.005VR). Thus, 

finally the model function for residual fibrin is calculated F=Fmodel(t,  0
0t ,

actual
E ,Fg0, 0

F
m,K , h , F

catk

, FDP
aK )=Fg0.Vd(t). Because  0

0t ,
actual

E  is a random variable with known distribution, the 

resulting Fmodel is also a random variable with mean and standard deviation estimated using triple 

calculation of the derived Fmodel function (see Supplemental Information). The parameters 0
F
m,K , 

h , F
catk , FDP

aK  were identified by a weighted least-square minimization of the 2  statistic 

function as detailed in Supplemental Information. The confidence intervals of the optimal 

parameters are estimated with a multiplicative Monte Carlo simulation procedure which 

generates 150 synthetic data sets processed in the same way as the empirical data (the details of 

this approach are described in Supplemental Information). All programs for data processing, 

model simulation and parameter estimation described above run under Matlab 2013b (The 

MathWorks Inc., Natick, MA). 

Scanning electron microscope (SEM) imaging of fibrin- Fibrinogen (5.9 M in 25 mM Na-

phosphate pH 7.4 buffer containing 75 mM NaCl) was clotted for 1 h at 37 °C with 5 or 100 nM 

thrombin in Eppendorf tubes (pre-treated with 25 v/v% Triton X-100 solution for 1 h and 

thoroughly washed with water). Clots were fixed, dehydrated, sputter coated with gold and 

examined as described in (15). 

Atomic force microscopic (AFM) imaging of fibrin- Fibrin clots were prepared from 6.5 M 

fibrinogen clotted with 5 nM thrombin for 30 min at room temperature on freshly cleaved mica 

sheets (Ted Pella Inc., CA) in a total volume of 50 l within 1 cm diameter rings enclosed by 

silicon grease. Plasmin at 1 nM was added to the clots and after 20 min clots were washed with 

100 mM Na-cacodylate pH 7.2 buffer and fixated in 3 % glutaraldehyde for 10 min. Following 3 
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washes with distilled water the samples were dehydrated in a 20 – 100 % dilution series of 

acetone and following a 10-min treatment with hexamethyldisilizane (24) air-dried for at least 30 

min. AFM images were taken with Multimode AFM head (DI, CA, USA) with Nanoscope V 

controller (Veeco, CA, USA) in contact mode in air at room temperature using a commercially 

available cantilever with a force constant of 0.12 N m−1 and a Si3N4 tip (Veeco Nanoprobe, NP 

model). 

Preparation of nanogold-labeled antibody- Labeling of anti-plasmin antibody (R&D Systems, 

Abingdon, UK) was carried out according to published procedures (25). Briefly, sulfo-N-

hydroxy-Succinimido 1.4 nm nanogold (Nanoprobes Inc., Yaphank, NY) reagent was dissolved 

in 200 l of deionized water immediately before use to give a 30 μM solution. The anti-plasmin 

antibody was incubated with the activated nanogold solution for 1 h at room temperature (final 

concentrations: 11.5 μM nanogold, 0.61 mg/ml anti-plasmin antibody). Conjugated and free 

nanogold were separated by fast pressure liquid chromatography using a Sephacryl S-200 HR 

column. Conjugated nanogold was collected and stored at -20 °C until use. 

Preparation of patterned fibrinogen substrate surface with micro-contact printing and 

monitoring of plasmin distribution with AFM- Fibrinogen was printed on mica using micro-

contact printing (25,26). A 15 mm diameter poly(dimethylsiloxane) (PDMS) (Sylgard 184, Dow 

Corning) rubber stamp patterned with pillar arrays of 0.7 m diameter was prepared by 

replication molding of silicon micropatterns prepared using optical lithography techniques. The 

PDMS stamp was incubated in 1 g/l fibrinogen (in PBS: 0.01 M sodium phosphate buffer, 150 

mM NaCl, pH 7.4) for 1 hour; the stamp was then rinsed in PBS for 5 minutes, dipped in 

distilled water and dried with N2 flush. Freshly cleaved mica was used as the substrate for 

stamping experiments. The PDMS stamps were placed onto the mica, adequate stamping of 
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proteins onto the substrate was ensured. The stamp was carefully peeled off thereafter, and the 

substrate surface was incubated in 1 g/l bovine serum albumin (Sigma, Budapest, Hungary) in 

PBS for 1 hour to allow coating of areas of the surface not occupied by fibrinogen. Samples were 

incubated in 0.01 or 1 nM plasmin in PBS. The reaction was stopped after 1 or 5 min by 

withdrawal of plasmin solution and dilution with PBS. Fixing was performed with 1 v/v % 

glutaraldehyde in PBS for 10 min. Ethanolamine was applied for 10 min to eliminate unbound 

glutaraldehyde. The samples were then incubated in nanogold-labeled anti-plasmin antibody 

(diluted to 2 mg/l in PBS) for 1 hour at room temperature. Each of the above mentioned steps 

were followed by rinsing the sample in PBS for 5 minutes. Thereafter samples were examined 

with AFM as described above for fibrin imaging. Images were processed using NanoScope 

Analysis software 1.40 (Bruker, Germany) as described below. 

Height analysis of AFM images of patterned fibrinogen surface and determination of bearing 

ratio- The average height of stamped fibrinogen layer was determined using height analysis of 

samples prior plasmin digestion. Bearing analysis was carried out on 1.5×1.5 μm regions of 

plasmin-treated samples, each containing a single square of printed fibrinogen, 27-54 regions per 

image at 4,500x magnification or 9 regions at 13,000x magnification (data analysis was carried 

out on 4 independent sets of experiments). To measure the percentage of surface area occupied 

by fibrinogen, bearing depth was set to 3 nm (based on results from control measurements). By 

setting the bearing depth value to 5 nm, the percentage of area occupied by plasmin on the 

surface of fibrinogen is measured. To determine the occupancy of fibrinogen surface by plasmin, 

the fraction of fibrinogen surface area occupied by plasmin was calculated for each of the 

selected regions as ratio (5 nm bearing percentage)/(3 nm bearing percentage) and expressed as 

percentage. 
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Cloning and expressing PLG_S195A_CFP- Full length cDNA for plasminogen was purchased 

from HGMP Resource Centre (IMAGE clone ID:4609295).  The plasminogen coding region was 

amplified by PCR and ligated into pFastBac 1 (Life Technologies) to create pFastBac-PLG.  A 

derivative of pFastBac-PLG was generated by site-directed mutagenesis (Stratagene) in which 

codon 195 of plasminogen was converted from AGT (serine) to GCT (alanine) to create 

pFastBac-PLG:S195A. pFastBac-PLG:S195A was modified to express a C-terminal fusion with 

enhanced cyan fluorescent protein (CFP) by modifying the plasminogen “stop” codon to an XbaI 

restriction site by site-directed mutagenesis.  The XbaI fragment of pECFP (Clontech) that 

includes the coding sequence for CFP was ligated into the modified XbaI site to create pFastBac-

PLG:S195A-CFP.  The Bac-to-Bac baculovirus expression system (Invitrogen) was used to 

express PLG:S195A-CFP in Sf9 cells in serum-free SF900II media.   PLG:S195A-CFP was 

secreted and purified from the culture media using a heparin agarose (Sigma) column for capture 

and concentration, eluting with 0.75 M NaCl on to a lysine-Sepharose (Sigma) column and 

eluted with 0.2 M tranexamic acid (Sigma). 

Confocal microscopic imaging of fibrin in the course of lysis- Fibrin clots were prepared from 

6.5 M fibrinogen, 2% of which was Alexa Fluor®  546-conjugated fibrinogen (Invitrogen Life 

Technologies, Budapest, Hungary), clotted with 5 nM thrombin for 30 min at room temperature 

in sterile, uncoated IBIDI VI 0.4 -slides (ibidi GmbH, Martinsried, Germany). Thereafter a 

mixture of 10 g/ml plasminogen-S:A-CFP and 0.1 μM plasmin was added to the edge of the 

clot and the fluorescence (excitation wavelength 458 nm, emission wavelength 470 nm for 

plasminogen-S:A-CFP detection and excitation wavelength 543 nm, emission wavelength 575 

nm for Alexa546-fibrinogen detection) was monitored with Confocal Laser Scanning System 

LSM710 (Carl Zeiss GmbH) taking sequential images of the fluid-fibrin interface at a distance of 
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approximately 50 m from the plate surface with identical exposures and laser intensities using a 

Plan-NeofluarX20/0.5 objective. All proteins were diluted in 25 mM Na-phosphate pH 7.4 buffer 

containing 75 mM NaCl. 

 

RESULTS AND DISCUSSION 

 

Fractal kinetic treatment of progress curves in fibrinolysis- The turbidimetric assay (Fig. 1) is 

a robust experimental setup to acquire high number of data points for the resolution of pre-

formed fibrin by fluid-phase borne plasmin. The optical signal in this assay is always 

proportional to the amount of intact fibrin with monomer concentration Fg0 in the volume Vd. 

The catalytic process occurs in the interface formed after the addition of plasmin at concentration 

0
0tE  in volume Vu. As a result of fibrin degradation and release of FDPs small enough not to 

produce any optical signal, Vd continuously decreases and Vu increases with consequent dilution 

of free plasmin in the bulk fluid phase. However, if the classic Michaelis-Menten model is 

applied for the catalytic events in the reactive layer VR, this dilution factor cannot account for the 

deceleration trend in the progress curves of lysis (Fig. 1A); systematic deviations of the 

optimized model predictions from the measured values are seen at all stages of the process. 

Importantly, our numeric treatment of the model progress curves takes into account the 

variability in the plasmin concentration in the reactive layer through a randomizing factor based 

on independent measurements of plasmin activity retained at the fluid-fibrin interface, but even 

with this larger standard deviation (SD) allowance arising from the initial concentration 

uncertainties the values predicted by the Michaelis-Menten model differ significantly from the 

measured progress curve (see Supplemental Information, Fig. S11). Plasmin interaction with 
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FDPs could also contribute to the declining speed of fibrinolysis, because binding of plasmin to 

these soluble products would withdraw protease molecules from the reactive interface layer. If 

this factor is taken into account in the model as a rapid equilibrium 1

1

FDP

FDP

k

k
E FDP EFDP



 
 

characterized by 1

1

FDP
FDP
a FDP

k
K

k


 
equilibrium binding constant, the fitted model progress curves 

approach better the measured values (Fig. S11 in Supplemental Information), but the systematic 

deviations still persist, especially in the initial stage of the process. Significant improvement in 

the goodness-of-fit (reduction of Chi2 from 0.95 to 0.24) could be achieved with the fractal 

kinetic model (Fig. 1 B&C). The time-dependent increase of the F
mK  value of this model (Fig. 

1D) in conjunction with the plasmin-FDP interaction satisfactorily describes the decline of the 

fibrinolytic rate in the complete course of the reaction.  

Dependence of the fractal Michaelis coefficient on enzyme concentration- The applicability of 

the fractal kinetic model was tested under variable conditions for fibrinolysis. Varying the 

plasmin concentration in the physiologically relevant range between 0.25 and 1 M, the F
catk  

parameter of the model remained constant, whereas the initial value of the F
mK  coefficient was 

more than doubled (Table 1). Such a dependence of the apparent Michaelis constant on enzyme 

concentration in heterogeneous phase fibrinolysis is not unexpected in view of the recently 

developed generic rate law for surface-active enzymes (27). As elegantly demonstrated in this 

theoretical study, if a fluid-phase enzyme acts on a surface-bound substrate, the value of the 

Michaelis constant appears larger at increasing enzyme concentration, because the available area 

for absorption decreases monotonously when more enzyme is applied. Thus, our heterogeneous 

phase fibrinolytic assay provides empirical support for this theoretical prediction. The 
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accompanying decrease in the fractal exponent h of our model at higher plasmin concentration 

(Table 1) can be also attributed to the effect of available absorption area, which in the course of 

time poses constant limits to the clustering potential, whereas the fraction of uniformly dispersed 

enzyme is proportional to the total concentration. The phenomenological consequence is weaker 

time-dependence of F
mK . 

Fibrin structure as a modifier of the fractal kinetic behavior of plasmin- Fibrin is not a simple 

surface substrate; at identical monomer concentration various structures are formed depending 

on the polymerization conditions (Fig. 1D, Insets). As we and others have previously shown (4,5 

and studies cited therein), fibrin formed at high thrombin concentration resulting in thin fibers is 

more difficult to dissolve on macroscopic scale than fibrin formed at low thrombin composed of 

thick fibers despite the faster digestion of individual thin fibers. This controversy is reflected in 

and explained by the values of the parameters of our present fractal kinetic model for the fibrin 

formed at 5 and 100 nM thrombin (Table 1). The moderately (by 30 %) higher F
catk  and two-fold 

lower initial F
mK  values for the fine fibrin structure suggest more efficient proteolytic action of 

plasmin on this fibrin substrate. However, the overall time course of fibrinolysis is faster in the 

coarse fibrin at any examined fibrinogen concentration (compare Figs. 1B and C). In our fractal 

kinetic model this controversy is accounted for by the higher value of the fractal exponent h in 

the thin-fiber substrate, which results in faster rise in the F
mK  value (Fig. 1D) and thus 

deceleration of the lysis. According to the hypothesis for the ‘crawling’ action of plasmin (28) 

because of the closer distance of binding sites in the cross-section of the fibrin fibers (6 nm on 

neighboring monomers in transverse section versus 22.5 nm in longitudinal direction along the 

protofibrils) plasmin moves preferentially in a lateral direction leading to transection of the 

individual fiber before dissociation and diffusion of the enzyme molecule to a remote site in the 
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same or different fiber. Thus, plasmin cleaves the single thin fibers faster with fewer monomers 

in the cross-section, but with the progress of the lysis digestion becomes more dependent on the 

slower diffusion steps. In contrast, the larger mass within a single cross-section requires longer 

time for cleaving individual fibers in coarse fibrin, but because of the fewer fibers, the 

decelerating effect of the propagating diffusion-mediated jumps to remote fibers is less 

pronounced in this fibrin architecture (lower h value, Table 1; slower increase of the F
mK , Fig. 

1D). Thus, the difference in the h values for fine and coarse fibrin supports the mechanistic 

justification of the fractal exponent in the model as a coefficient reflecting the spatial 

redistribution of the enzyme.  

Impact of modifiers of plasmin-fibrin interactions on the fractal kinetic parameters- We have 

recently shown that the continuous action of carboxypeptidase B (CPB) in lysing fibrin 

accelerates the plasmin-mediated fibrinolysis through removal of newly exposed C-terminal 

lysine residues (29). A comparable effect could be observed in a heterogeneous phase 

fibrinolytic assay in the presence of 1 mM -aminocaproic acid (ACA), whereas ACA at 

concentrations above 5 mM inhibits the plasmin action (Fig. 2A). The inhibiting effect of ACA 

is in agreement with the known interference of this lysine analog with the lysine-dependent 

binding of plasmin to fibrin resulting in maximal inhibition of fibrin monomer digestion at 5 mM 

concentration (7). However, neither the CPB, nor the low-concentration ACA effects can be 

adequately treated in quantitative terms with classical enzyme kinetic models, whereas the fractal 

kinetic model could be successfully applied under these modified conditions too (Fig. 2B&C). 

The time-dependent increase in the F
mK  values was completely eliminated by both modifiers 

(observed as a decrease in the fractal exponent h by at least an order of magnitude, Table 1), 

which suggests that the newly exposed C-terminal lysines in the course of lysis are primarily 
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involved in the hypothesized progressive clustering of plasmin. The elimination of the 

redistribution-related ageing of the enzyme in the dynamically changing fibrin meshwork 

resulted in faster course of fibrinolysis either in CPB-modified fibrin or in the presence of 1 mM 

ACA (however antagonizing higher affinity plasmin-fibrin interactions by ACA at 5 mM or 

higher concentration was inhibitory). It is noteworthy that in the presence of the accelerating 

concentration of ACA the Km not only lost its time dependence, but its value was higher than 

the initial F
mK  in the modifier-free fibrinolytic assay (Table 1). No increase in Km was observed 

in the CPB-modified fibrin, which can be attributed to two opposing consequences of the CPB 

action. The removal of the C-terminal lysines exposed by plasmin would raise the Km similarly to 

ACA, but the presence of CPB at the stage of fibrin formation resulted in thinner fibers (e.g. 8 

U/ml CPB decreases the median fiber diameter in 6 M fibrin from 144 nm to 109 nm) (29), a 

structure similar to the one formed by 100 nM thrombin, in which plasmin operates with lower 

F
mK  (Table 1). Thus, the effects of CPB on the parameters of the fractal kinetic model support 

the primary role of the progressive rise of F
mK  in the relative lytic resistance of fibrin with fine 

structure; if this factor is eliminated by CPB, plasmin acts with a constant lower Km and the 

overall course of lysis is significantly faster (Fig. 2A).  

Structural evidence for progressive clustering of plasmin on fibrin surface- Because the key 

element of the fractal kinetic model discussed above is the clustering of plasmin molecules on 

the structured substrate surface, direct morphological evidence was also sought to substantiate 

this mechanism of action suggested by the macroscale course of fibrinolysis. On a microscopic 

scale, the distribution of plasmin on the surface of fibrin was monitored with the help of a 

fluorescent recombinant plasminogen variant plasminogen-S:A-CFP, which contains all fibrin-

binding sites of plasmin, but cannot exert any catalytic activity with its active site serine replaced 
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by alanine (Fig. 3). As a result of non-fluorescent plasmin action, new plasmin(ogen) binding 

sites become exposed in the reactive layer. This reorganization of the substrate surface altering 

the binding pattern of plasmin(ogen) is reflected in the behaviour of the fluorescent plasminogen 

variant. As shown in Fig. 3, although applied in a homogeneous solution to the surface of fibrin, 

following a 1 min digestion of fibrin with plasmin, plasminogen clusters were formed on the 

surface linked by a continuous layer of weaker plasminogen-related fluorescence. At a later stage 

of digestion the sites of the earlier clusters showed no detectable accumulation of plasminogen 

(arrows in Fig. 3), clusters were seen at different locations suggesting dynamic redistribution of 

plasmin(ogen) at the fluid-fibrin interface with increasing degree of heterogeneity. The focal 

nature of plasmin action was clearly demonstrated by the nanoscale traces in the AFM images of 

lysing fibrin (Fig. 4). However the same images also indicate that the random spatial 

arrangement of the fibrin fibers does not allow objective quantitation of the degree of 

heterogeneity of plasmin distribution on the surface of this network. To overcome this difficulty 

we designed a substrate surface for plasmin with structured pattern composed of fibrinogen 

arranged in well-defined squares (Fig. 5). Because of the regular pattern of the substrate, the 

relative area of intact fibrinogen covered by plasmin molecules could be reliably estimated based 

on the ratio of cross-section area at 5 nm height (corresponding to the nanogold-labeled 

antiplasmin antibody-enhanced plasmin on top of fibrinogen) and the cross-section area at 3 nm 

(corresponding to the height of the intact fibrinogen surface) shown as bearing ratio in Fig. 

5B&C. Visual inspection of the AFM images (Fig. 5A) evidences that at 1 min digestion, 

plasmin clusters were smaller in size and more uniformly dispersed over fibrinogen than at 5 min 

digestion, when larger clusters were preferentially localized at the edges of fibrinogen squares. 

Height analysis showed that this progressive clustering was not due to an absolute decrease in 
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the fibrinogen area available for plasmin binding, but to redistribution of plasmin over the intact 

fibrinogen surface that could be quantitatively expressed as bearing ratio (Fig. 5B&C). 

Decreasing relative occupancy of the intact substrate surface by plasmin is an indicator for loss 

of homogeneous distribution of the enzyme that occurs progressively in time (Fig. 5C) and is 

accelerated with the increase in enzyme concentration (Fig. 5B). Micro-contact printing creates a 

structured, heterogeneous surface for plasmin action. However, this method does not allow 

utilization of highly insoluble substances, e.g. fibrin. This is a limitation of the experimental 

system used here, because fibrinogen does not form polymers, and neither does it contain all 

plasmin(ogen) binding sites present in fibrin (30). With this limitation in mind, the dynamic 

clustering of plasmin on the patterned fibrinogen surface can be translated to the hypothetical 

situation in fibrin according to the scheme in Fig. 5D. At stage I (initial) the more uniformly 

dispersed enzyme and the larger available area allow for higher rate of association to fibrin 

reflected in lower initial values of F
mK  (Fig. 1D). At stage II (late) the generated new plasmin 

binding sites (new C-terminal lysines) and the decreased available area (eliminated transected 

fibers) restrict the probability for new binding events seen as lower association rate and 

consequently higher F
mK  values (Fig. 1D). As the lytic front moves, stage I state is formed in 

deeper clot layers and the relative expansion of stage II interfacial layer results in increase of F
mK  

in the course of time. 

In conclusion, our study has substantiated in mechanistic terms a fractal kinetic model that 

describes satisfactorily the action of plasmin on fibrin surface. In this work earlier theoretical 

predictions for the behavior of surface-acting enzymes (18,27) and qualitative evidence for 

spatially constrained migration of plasmin in the network of fibrin fibers (28) converge in a 

unified concept for quantitative characterization of interfacial fibrinolysis. This concept furthers 
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our understanding of how various factors could affect in vivo fibrinolytic rates (as exemplified by 

the differential effects of fibrin structure on the separate parameters of the fractal kinetic model 

in this study). The fractal kinetic nature of the interfacial fibrinolysis adds a self-limiting factor 

to the action of plasmin, which is complementary to the plasma inhibitor-dependent decay of its 

activity in vivo and thus contributes to the higher sensitivity of the fibrinolytic system to 

regulation at the level of plasminogen activation that supplies new plasmin responding to system 

demands. In addition to the improved quantitative interpretation of physiological fibrinolysis, 

this model delineates novel strategies in the ongoing research of direct fibrinolytic enzymes (6). 

For example, it predicts that the catalytic efficiency of a protease acting on the surface of fibrin 

would benefit from retarded clustering of the enzyme, which could be achieved with 

recombinant modifications of the parent plasmin molecule (optimizing the number of its fibrin-

binding sites and their fibrin affinity based on testing of enzyme variants in the newly introduced 

kinetic model). An alternative strategy could be the development of plasminogen activators that 

occupy plasmin binding sites in fibrin and consequently combine the advantage of local 

generation of plasmin in therapeutic thrombolysis with prevention of plasmin clustering. Thus, 

this model could contribute to the rational design of better thrombolytic agents to combat cardio- 

and cerebrovascular disease, the major morbidity and mortality cause in the world. 
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TABLES 

Table 1. Fractal kinetic parameters of plasmin on fibrin meshwork substrate 

modifier plasmin 
(M) 

F
mK  or mK

(M) 

h (-) F
catk  (min-1) FDP

aK  (M-1) Chi2

none 0.25 2.13  

(1.90-2.45) 

0.25  

(0.24-0.26) 

32.31  

(32.28-32.35) 

0.44  

(0.37-0.58) 

0.24

 1.0 5.01  

(4.96-6.03) 

 

0.16     

(0.12-0.17) 

32.31  

(32.11-32.32) 

0.84  

(0.77-1.03) 

0.45

Th100 1.0 1.98  

(1.80-2.22) 

 

0.25  

(0.23-0.27) 

42.41  

(42.39-42.42) 

0.43  

(0.39-0.48) 

0.24

       

1mM 
ACA 

0.25 8.44  

(8.09-9.23) 

0.03  

(0.02-0.06) 

39.23  

(39.07-39.33) 

0 0.46

 1.0 7.52  

(7.45-7.69) 

 

0 39.89  

(39.85-39.90) 

1.63  

(1.42-1.89) 

0.51

CPB 0.25 2.68  

(2.39-2.84) 

0 41.76  

(41.74-41.78) 

1.20  

(1.11-1.34) 

0.54

 1.0 3.25  

(2.59-4.03) 

0 41.63  

(40.81-45.42) 

1.04  

(0.65-1.65) 

0.53

 

Kinetic parameters are reported as best-fitted values and their 95 % confidence intervals from 
150 cycles of Monte Carlo simulations using a global fitting procedure to measurements 
illustrated in Figure 1.  
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Fibrin was prepared from fibrinogen at different concentrations clotted with 5 nM thrombin (or 
100 nM thrombin indicated as Th100). For evaluation of the effect of -aminocaproic acid 
(ACA) and carboxypeptidase B (CPB) CPB was mixed with fibrinogen at 8 U/ml prior clotting, 
whereas ACA was added together with plasmin at the surface of the clot.  

If a fractal kinetic model was used (h≠0), the values of F
mK  are reported for time t=0. 

 

FIGURE LEGENDS 

Figure 1. Optimized model and measured progress curves of fibrin degradation by plasmin. 

Fibrinogen at the indicated concentrations was clotted by 5 (panel B) or 100 nM (panels A and 

C) thrombin for 45 min, thereafter 1 M plasmin was added to the surface of fibrin and the 

absorbance at 340 nm was continuously monitored. The amount of intact fibrin Fn=Fg0.Vd was 

calculated from the absorbance data and shown as mean (symbols) and SD (continuous vertical 

lines) from 8 measurements. The model progress curves for parameters optimized according the 

classic Michaelis-Menten model (panel A) or the fractal kinetic model (panels B and C) are 

presented as continuous lines, whereas the model SD is indicated by vertical dashed lines. Chi2 is 

the quantitative indicator for the goodness-of-fit as defined in the Supplemental Information. 

Panel D shows the time dependence of the plasmin Km
F predicted by the fractal kinetic model for 

fibrin substrate prepared from fibrinogen clotted by 5 (dotted line) or 100 (solid line) nM 

thrombin, the structure of which is illustrated by the inset scanning electron microscope images 

(in both cases fibrinogen was at 5.9 M, scale bar=2 μm). Insets in panels A-C show the 

compartmentation of molecular species assumed for the respective models. Vd is the volume 

occupied by intact fibrin at monomer concentration Fg0. In the reactive interface layer with 

volume VR Fg0 is distributed between free fibrin FgR and plasmin-fibrin complex EFg. The Et0 is 

distributed among free plasmin E, plasmin bound to soluble fibrin degradation products EFDP 

and EFg. 
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Figure 2. Effect of carboxypeptidase B and ACA on plasmin-catalyzed fibrinolysis. A: 

Fibrinogen at 2.9 M was clotted with 5 nM thrombin, after 45 min 1 M plasmin was added to 

the surface of the clot and the absorbance at 340 nm was measured (mean of 8 progress curves is 

shown). Carboxypeptidase B (CPB) was added to fibrinogen prior clotting, whereas ACA was 

present only in the plasmin solution. Measured (symbols) and model progress curves of lysis 

(continuous lines) are shown for CPB-modified fibrin (panel B) and 1 mM ACA applied 

together with plasmin (panel C). The best fit for the lysis in B and C was achieved according to a 

non-fractal model including a rapid equilibrium term for the interaction of plasmin and FDPs. 

Vertical bars indicate the SD of the measurement (continuous lines) and the model (dashed 

lines).  

Figure 3. Microscopic clustering of plasminogen in the lytic interfacial layer of fibrin. 

Alexa543-labeled fibrin was prepared as described in Experimental procedures and 0.1 μM 

plasmin containing plasminogen-S:A-CFP was added to its surface. Images were taken in a 

confocal laser microscope 1 and 5 min after initiation of lysis. The plasminogen-S:A-CFP 

molecules are forming clusters along the lysis front, connected by a continuous layer of weaker 

fluorescent signal at 1 min, which is interrupted at the sites indicated by arrows at 5 min. Red 

channel: Alexa543-labeled fibrin (excitation 543 nm, emission 575 nm). Green channel: 

plasminogen-S:A-CFP (excitation 458 nm, emission 470 nm). Scale bar=50 μm. 

Figure 4. Focal nanoscale traces of plasmin action in three-dimensional fibrin meshwork. Fibrin 

was prepared on mica sheets and AFM images were taken as described in Methods. The 

continuity of the original fibrin fibers (left panel) is interrupted by transections (arrow) leading to 
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extensive moth-hole-like digestive foci 20 min after application of 1 nM plasmin to the clot 

(right panel). 

Figure 5. Distribution of plasmin molecules on patterned fibrinogen substrate surface. Square 

(0.7x0.7 m) fibrinogen islets of 3 nm height were prepared on mica sheets using micro-contact 

printing technique (A, left panel) and following plasmin treatment, stopping the digestion, 

glutaraldehyde fixation and exposure to nanogold-labeled anti-plasmin antibody AFM images 

were taken as described in Methods. A: representative images of plasmin-anti-plasmin 

complexes attached to fibrinogen digested for 1 min and 5 min with 1 nM plasmin, scale bar=1.5 

m. B and C: The bearing ratio representing the percentage of intact fibrinogen surface occupied 

by plasmin was determined on at least 39 AFM images of fibrinogen islets from 2 independent 

series of measurements for each type of samples (p values refer to Kolmogorov-Smirnov test 

executed on the indicated pairs of samples). The digestion time was 5 min in panel B, the 

plasmin concentration was 1 nM in panel C. D: Based on the results in panels A-C a scheme is 

proposed for the distribution of plasmin (red dots) across a cross-section of a fibrin clot in the 

plane of the reactive interface defined in Fig. 1 at an early (stage I) and late (stage II) time point 

of lysis (only fibrin fibers perpendicular to the interfacial plane are shown as green circles, 

assuming that their transection results in FDP release). In stage II the transected thinner are 

absent from the plane of the section, whereas the plasmin molecules form clusters, the sites of 

which can be traced back to the loci of digestion observed in the AFM images (Fig. 4). 
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