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Abstract

A k-uniform linear cycle of length ℓ, denoted by C
(k)
ℓ

, is a cyclic list of k-sets A1, . . . , Aℓ such

that consecutive sets intersect in exactly one element and nonconsecutive sets are disjoint. For

all k ≥ 5 and ℓ ≥ 3 and sufficiently large n we detemine the largest size of a k-uniform set family

on [n] not containing a linear cycle of length ℓ. For odd ℓ = 2t + 1 the unique extremal family

FS consists of all k-sets in [n] intersecting a fixed t-set S in [n]. For even ℓ = 2t + 2, the unique

extremal family consists of FS plus all the k-sets outside S containing some fixed two elements.

For k ≥ 4 and large n we also establish an exact result for so-called minimal cycles. For all k ≥ 4

our results substantially extend Erdős’ result on largest k-uniform families without t+ 1 pairwise

disjoint members and confirm, in a stronger form, a conjecture of Mubayi and Verstraëte [23].

Our main method is the delta system method.

1 Introduction

The delta system method is a very useful tool for set system problems. It was fully developed in a

series of papers including [11] and [8]. It was successfully used for starlike configurations in [8]

and [14] and recently also for larger configurations (as paths and trees) in [12] and [13]. In this

paper we apply the delta system method, particularly tools from [11] and [8], to determine, for all

k ≥ 5 and large n, the Turán numbers of certain hypergraphs called k-uniform linear cycles. This

confirms, in a stronger form, a conjecture of Mubayi and Verstraëte [23] for k ≥ 5 and adds to the

limited list of hypergraphs whose Turán numbers have been known either exactly or asymptotically.

We organize the paper as follows. Section 2 and 3 contain definitions concerning hypergraphs.

Section 4 gives a rough upper bound establishing the correct order of the magnitude. Section 6

contains the statements of the main results. Section 7 introduces the delta system method and

lemmas needed for the linear cycle problem and Sections 8–10 contain proofs.
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2 Definitions: shadows, degrees, delta systems

A hypergraph F = (V, E) consists of a set V of vertices and a set E of edges, where each edge is a subset

of V . If V has n vertices, then it is often convenient to just assume that V = [n] = {1, 2, . . . , n}.

Let
(V
k

)

denote the collection of all the k-subsets of V . If all the edges of F are k-subsets of V , then

we write F ⊆
(V
k

)

and say that F is a k-uniform hypergraph, or a k-graph for brevity, on V . Note

that the usual graphs are precisely 2-graphs on respective vertex sets. A hypergraph F = (V, E) is

also often times called a set system or set family on V with its edges referred to as the members of

the set system/family. A k-graph F is k-partite if its vertex set V can be partitioned into k subsets

V1, . . . , Vk such that each edge of F contains precisely one vertex from each Vi.

The shadow of F , denoted by ∂(F), is defined as

∂(F) = {D : ∃F ∈ F ,D ( F}.

Here, we treat ∅ as a member of ∂(F). We define the p-shadow of F to be

∂p(F) = {D : D ∈ ∂(F), |D| = p}.

The Lovász’ [20] version of the Kruskal-Katona theorem states that if F is a k-graph of size |F| =
(x
k

)

where x ≥ k − 1 is a real number, then for k ≥ p ≥ 1

|∂p(F)| ≥

(

x

p

)

. (1)

Let F be a hypergraph on [n] and D ⊆ V (F). The degree degF (D) of D in F , is defined as

degF (D) = |{F : F ∈ F ,D ⊆ F}|.

A family of sets F1, . . . , Fs is said to form an s-star or ∆-system of size s with kernel D if

Fi ∩ Fj = D for all 1 ≤ i < j ≤ s and ∀i ∈ [s], Fi \D 6= ∅. The sets F1, . . . , Fs are called the petals

of this s-star. Note that we allow D = ∅. Let F be a hypergraph and D ⊆ V (F). The kernel degree

deg∗F (D) of D in F is defined as

deg∗F (D) = max{s : F contains an s-star with kernel D}.

Given a k-graph F on a set V and a positive integer s, the kernel graph of F with threshold s,

denoted by Kers(F), is defined as

Kers(F) = {D ⊆ V : deg∗F (D) ≥ s}.

For convenience, if D ∈ Kers(F), we will just say that D is a kernel. For each 1 ≤ r ≤ k − 1, the

r-kernel graph of F with threshold s, denoted by Ker
(r)
s (F), is defined as

Ker(r)s (F) = {D ⊆ V : |D| = r,deg∗
F (D) ≥ s}.

If D ∈ Ker
(r)
s (F) we will just say that D is an r-kernel. Throughout the paper, we will frequently
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use the following fact which follows easily from the definition of deg∗F (D).

Given sets D,Y , if deg∗F (D) > |Y | then ∃F ∈ F such that D ⊆ F and (F \D) ∩ Y = ∅. (2)

3 Matchings, intersecting hypergraphs, paths and cycles

Given n, k, t, let FS be the k-graph on [n] formed by taking a t-set S in [n] and taking as edges

all the k-sets in [n] that intersect S. Clearly, FS contains no t + 1 pairwise disjoint members,

i.e., its matching number is t. Erdős [1] showed that there is a smallest positive integer n0(k, t)

such that, for all n > n0(k, t), FS is the largest k-uniform set system on [n] not containing t + 1

pairwise disjoint members. The function n0(k, t) has not been completely determined. The value

of n0(k, 2) was determined in the classical Erdős-Ko-Rado Theorem [3] about intersecting families.

For k = 2 (graphs) the value of n0(2, t) was determined by Erdős and Gallai [2]. The case k = 3

was recently investigated by Frankl, Rödl, and Rucinśki [10] and n0(3, t) was finally determined by

 Luczak and Mieczkowska [21] for large t, and by Frankl [6] for all t. In general, Huang, Loh, and

Sudakov [16] showed n0(k, t) < 3tk2, which was slightly improved in [9] and greatly improved to

n0(k, t) ≤ (2t + 1)k − t by Frankl [7].

Frankl [5] showed that for every n, k, t if a k-graph F on [n] has no t + 1 pairwise disjoint edges

then |F| ≤ t
(n−1
k−1

)

. This implies

∀D ⊆ [n] if deg∗F (D) ≤ s, then degF (D) ≤ s

(

n− |D| − 1

k − |D| − 1

)

. (3)

Frankl [4] considered set systems that do not contain two members intersecting in exactly one

element. This condition is equivalent to forbidding a linear path of length 2 (see definition below).

He showed that for all k ≥ 4 there exists a bound m(k) such that

if H ⊆

(

[m]

k

)

satisfies ∀A,B ∈ H, |A ∩B| 6= 1 and m > m(k), then |H| ≤

(

m− 2

k − 2

)

. (4)

The unique extremal family is obtained by taking as members all the k-sets in [m] containing a fixed

set of two elements.

We now introduce some notions of hypergraph paths and cycles. While the notion of a hypergraph

matching is a straightforward extension of that of a graph matching, there are different possibilities

for paths and cycles. We discuss three versions, Berge path, minimal path and linear (or loose) path.

A Berge path of length ℓ in the hypergraph F is a list of distinct hyperedges F1, . . . , Fℓ ∈ F and ℓ+1

distinct vertices P := {v1, . . . , vℓ+1} such that for each 1 ≤ i ≤ ℓ, Fi contains vi and vi+1.

If we allow only consecutive Fi’s to intersect, i.e., Fi ∩Fj = ∅ when |i− j| ≥ 2, then the resulting

Berge path is called a minimal path. We denote the family of all k-uniform minimal paths of length

ℓ by P
(k)
ℓ . If we require all the Fi’s to be pairwise disjoint outside P and Fi ∩ P = {vi, vi+1}, then

the path is unique. We call it the k-uniform linear path of length ℓ and denote it by P
(k)
ℓ . Note that

P
(k)
ℓ is a member of P

(k)
ℓ .

Likewise, a k-uniform Berge cycle of length ℓ is a cyclic list of distinct k-sets F1, . . . , Fℓ and ℓ

distinct vertices C = {v1, . . . , vℓ} such that for each 1 ≤ i ≤ ℓ, Fi contains vi and vi+1 (where

vℓ+1 = v1). If we allow only consecutive Fi’s in the cyclic list to intersect then the resulting cycle
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is called a minimal cycle. We denote the family of all k-uniform minimal cycles of length ℓ by C
(k)
ℓ .

If we require all the Fi’s to be pairwise disjoint outside C and Fi ∩ C = {vi, vi+1}, then the cycle is

unique and we call it the k-uniform linear cycle of length ℓ and denote it by C
(k)
ℓ . Note that C

(k)
ℓ is

a member of C
(k)
ℓ .

The triangulated cycle T
(3)
ℓ , is a triple system on 2ℓ vertices {v1, . . . , vℓ, u1, . . . , uℓ} with 2ℓ − 2

edges Ai := {v1, vi, vi+1} (1 < i < ℓ) and Bj := {vj , vj+1, uj} (ℓ ≥ 3). Note that the Bj’s form C
(3)
ℓ .

4 Hypergraph extensions and an estimate of the Turán number

Given a hypergraph H whose edges have size at most k, the k-expansion of H, denoted by H(k), is

the k-graph obtained by enlarging each edge of H into a k-set by using new vertices (called expansion

vertices) such that different edges are enlarged using disjoint sets of expansion vertices. For instance,

if H = {1, 12, 123}, then {1ab, 12c, 123} is the 3-expansion of H and {1abc, 12de, 123f} is the 4-

expansion of H. Note that for any k, b where b ≥ 2 and k ≥ b + 1, the k-expansion of a b-uniform

linear (or minimal) ℓ-cycle is a k-uniform linear (or minimal) ℓ-cycle.

Proposition 4.1 Let k be a positive integer. Let H := {E1, . . . , Et} be a hypergraph whose edges

are sets of size at most k. Let F be a k-graph, s = tk. If H ⊆ Kers(F), then H(k) ⊆ F .

Proof. We want to expand the edges of H into edges F1, . . . , Ft of F such that different edges of

H are enlarged through disjoint sets of expansion vertices. We find Fi’s one by one by using (2).

Suppose F1, . . . , Fi−1 have been defined. Let Y = (∪j<iFj) ∪ (∪jEj). Since deg∗F (Ei) ≥ s > |Y |, by

(2) one can find an Fi ∈ F such that Fi ⊇ Ei and Fi ∩ Y = Ei. We do this for i = 1, . . . , t. The Fi’s

form a copy of H(k).

Proposition 4.2 Suppose that F is a triple system not containing C
(3)
ℓ . Then |F| ≤ (2ℓ− 3)

(n
2

)

.

Proof. Starting with F , whenever we can find a pair {x, y} such that the number of triples containing

the pair is at least one and at most 2ℓ− 3, we remove all triples containing the pair from the system.

Repeat this process until no more triple can be removed. Let H be the remaining triple system. If

H 6= ∅, then we must have degH({x, y}) ≥ 2ℓ−2 for all {x, y} ∈ ∂2(H). Clearly |F \H| ≤ (2ℓ−3)
(n
2

)

.

We claim that H = ∅. Otherwise, starting with any triple A1 = {v1, v2, v3} ∈ H we can embed one

by one A1, . . . , Aℓ−2 then B1, . . . , Bℓ, the edges of a triangulated cycle T
(3)
ℓ in H in the same way as

we did in the proof of Proposition 4.1. But T
(3)
ℓ contains C

(3)
ℓ . This contradicts C

(3)
ℓ 6⊆ F .

Given a family H of k-graphs, the Turán number of H, for fixed n, denoted by exk(n,H), is the

maximum number edges in a k-graph on [n] that does not contain any member of H as a subgraph.

If H consists of a single k-graph H, we will write exk(n,H) for exk(n, {H}).

Corollary 4.3 For all n and k, ℓ ≥ 3 we have

exk(n,C
(k)
ℓ ) ≤ (kℓ− 1)

(

n

k − 1

)

.
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Proof. Consider an F ⊆
([n]
k

)

avoiding C
(k)
ℓ . Let s = kℓ. By Proposition 4.1 the triple-system

Ker
(3)
s (F) does not contain C

(3)
ℓ so we can apply Proposition 4.2 for its size. Use the upper bound

(3) for the degrees of the other triples of [n]. We obtain

|F|

(

k

3

)

=
∑

|T |=3, T⊆[n]

degF (T ) ≤ |Ker(3)s (F)|

(

n− 3

k − 3

)

+

(

n

3

)

(s− 1)

(

n− 4

k − 4

)

.

An easy calculation completes the proof.

5 Some previous results and a conjecture

For the class of k-uniform Berge paths of length ℓ, Győri et al. [15] determined exk(n,B
(k)
ℓ ) exactly

for infinitely many n. For the Turán problem for k-uniform minimal paths of length ℓ, observe that

to forbid such a path it suffices to forbid a matching of size t + 1, M
(k)
t+1, where t = ⌊(ℓ − 1)/2⌋.

So exk(n,P
(k)
ℓ ) ≥ exk(n,M

(k)
t+1) ≥

(

n
k

)

−
(

n−t
k

)

, where the last lower bound is attained by taking all

the k-sets in [n] intersecting some fixed t-set S. Mubayi and Verstraete [23] showed that this lower

bound is tight up to a factor of 2. Note that
(n
k

)

−
(n−t

k

)

= t
(n−1
k−1

)

+ O(nk−2). They proved that if

k, ℓ ≥ 3, t = ⌊(ℓ− 1)/2⌋ and n ≥ (ℓ + 1)k/2, then exk(n,P
(k)
3 ) =

(n−1
k−1

)

and for ℓ, k > 3

t

(

n− 1

k − 1

)

+ O(nk−2) ≤ exk(n,P
(k)
ℓ ) ≤ 2t

(

n− 1

k − 1

)

+ O(nk−2). (5)

Using the delta system method, Füredi, Jiang, and Seiver [13] were able to sharpen (5) to determine

the exact value of exk(n,P
(k)
ℓ ) for all k ≥ 3, t ≥ 1 and sufficiently large n

exk(n,P
(k)
2t+1) =

(

n

k

)

−

(

n− t

k

)

, and ex(n,P
(k)
2t+2) =

(

n

k

)

−

(

n− t

k

)

+ 1. (6)

For P
(k)
2t+1, the only extremal family consists of all the k-sets in [n] that intersect some fixed t-set S.

For P
(k)
2t+2, the only extremal family consists of all the k-sets in [n] that intersect some fixed set S of

t vertices plus one additional k-set that is disjoint from S.

The Turán problem for a linear path P
(k)
ℓ was also solved in [13] for all k ≥ 4 and sufficiently

large n

exk(n,P
(k)
2t+1) =

(

n

k

)

−

(

n− t

k

)

, and exk(n,P
(k)
2t+2) =

(

n

k

)

−

(

n− t

k

)

+

(

n− t− 2

k − 2

)

. (7)

For P
(k)
2t+1, the only extremal family consists of all the k-sets in [n] that meet some fixed k-set S. For

P
(k)
2t+2, the only extremal family consists of all the k-sets in [n] that intersect some fixed t-set S plus

all the k-sets in [n] \ S that contain some two fixed elements.

For minimal cycles of length ℓ, the same lower bound of
(

n
k

)

−
(

n−t
k

)

for M
(k)
t+1 applies, where

t = ⌊(ℓ − 1)/2⌋. Answering a conjecture of Erdős, Mubayi and Verstraëte [22] showed that for all

k ≥ 3 and n ≥ 3k/2, we have exk(n, C
(k)
3 ) =

(n−1
k−1

)

. Later for general minimal cycles they [23] showed

that the lower bound for M
(k)
t+1 is tight up to a factor of 3. For k ≥ 3 , ℓ ≥ 4, t = ⌊(ℓ − 1)/2⌋ they
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have ex3(n, C
(3)
ℓ ) ≤ 5ℓ−1

6

(n
2

)

, ex4(n, C
(4)
ℓ ) ≤ 5ℓ

4

(n
3

)

and exk(n, C
(k)
4 ) =

(n−1
k−1

)

+ O(nk−2). For k, ℓ ≥ 5,

they obtained

t

(

n− 1

k − 1

)

+ O(nk−2) ≤ exk(n, C
(k)
ℓ ) ≤ 3t

(

n− 1

k − 1

)

+ O(nk−2). (8)

For k, ℓ ≥ 3, Mubayi and Verstraëte [23] conjectured their lower bound to be asymptotically tight.

Conjecture 5.1 [23] Let n, k, ℓ ≥ 3 be integers and t = ⌊ ℓ−1
2 ⌋. Then as n → ∞

exk(n, C
(k)
ℓ ) = t

(

n− 1

k − 1

)

+ O(nk−2).

6 Main results: Turán numbers of cycles

As our main result, in Theorem 6.1 we determine for all k ≥ 5 and sufficiently large n the exact value

of the Turán number of the linear cycle C
(k)
ℓ . In Theorem 6.2, we determine the exact Turán numbers

of minimal cycles C
(k)
ℓ for all k ≥ 4 and large n. Theorem 6.2 confirms the truth of Conjecture 5.1 for

all k ≥ 4 in a stronger sense. For k ≥ 5 and odd ℓ, Theorem 6.1 is even stronger than Theorem 6.2.

Theorem 6.1 (Main result) Let k, t be positive integers, k ≥ 5. For sufficiently large n, we have

exk(n,C
(k)
2t+1) =

(

n

k

)

−

(

n− t

k

)

, and exk(n,C
(k)
2t+2) =

(

n

k

)

−

(

n− t

k

)

+

(

n− t− 2

k − 2

)

.

For C
(k)
2t+1, the only extremal family consists of all the k-sets in [n] that meet some fixed k-set S. For

C
(k)
2t+2, the only extremal family consists of all the k-sets in [n] that intersect some fixed t-set S plus

all the k-sets in [n] \ S that contain some two fixed elements.

Note that the case ℓ = 3 was already proved in [8].

Theorem 6.2 Let t be a positive integer, k ≥ 4. For sufficiently large n, we have

exk(n, C
(k)
2t+1) =

(

n

k

)

−

(

n− t

k

)

, and exk(n, C
(k)
2t+2) =

(

n

k

)

−

(

n− t

k

)

+ 1.

For C
(k)
2t+1, the only extremal family consists of all the k-sets in [n] that meet some fixed k-set S. For

C
(k)
2t+2, the only extremal family consists of all the k-sets in [n] that intersect some fixed t-set S plus

one additional k-set outside S.

Our method does not work for k = 3, however, we were informed that Kostochka, Mubayi, and

Verstraëte [19] have some new results on this case.

Note that the answers in the main theorem are exactly the same as for P
(k)
2t+1 and P

(k)
2t+2 with the

same extremal constructions as well. However, neither the path result nor the cycle result imply

each other and the proofs for cycles are more involved and require additional ideas.
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7 The delta-system method

In this section, we introduce our main tools we need from the delta-system method. Given a hyper-

graph F and an edge F of F , we define the intersection structure of F relative to F to be

I(F,F) = {F ∩ F ′ : F ′ ∈ F , F ′ 6= F}.

Let F be a k-partite k-graph with a k-partition (X1, . . . ,Xk). Hence, each edge of F contains

exactly one element of each Xi. Given any subset S of [n], let

Π(S) = {i : S ∩Xi 6= ∅} ⊆ [k].

So Π(S) records which parts in the given k-partition that S meets. If L is a collection of subsets of

[n], then we define

Π(L) = {Π(S) : S ∈ L} ⊆ 2[k].

We will call Π(I(F,F)) the intersection pattern of F relative to F . Given F ∈ F and I ⊆ [k], let

F [I] = F ∩ (
⋃

i∈I Xi). So F [I] is the restriction of F onto those parts indexed by I.

Lemma 7.1 (The intersection semilattice lemma [11]) For any positive integers s and k,

there exists a positive constant c(k, s) such that every family F ⊆
([n]
k

)

contains a subfamily F∗ ⊆ F

satisfying

1. |F∗| ≥ c(k, s)|F|.

2. F∗ is k-partite, together with a k-partition (X1, . . . ,Xk).

3. There exists a family J of proper subsets of [k] such that Π(I(F,F∗)) = J holds for all F ∈ F∗.

4. J is closed under intersection, i.e., for all I, I ′ ∈ J we have I ∩ I ′ ∈ J as well.

5. For every F ∈ F∗, and every I ∈ J , F [I] ∈ Kers(F).

Definition 7.2 We call a family F∗ that satisfies items (2)-(5) of Lemma 7.1 (k, s)-homogeneous

with intersection pattern J .

Given a family L of subsets of [k], the rank of L is the minimum size of a set in [k] that is not

contained in any member of L. Formally

r(L) = min{|D| : D ⊆ [k], 6 ∃B ∈ L,D ⊆ B}.

The next three lemmas were used in many earlier papers, e.g., we can refer to [8, 13].

Lemma 7.3 (The rank bound) Let k, s be positive integers. Let F∗ be a (k, s)-homogeneous

family on n vertices with intersection pattern J . If r(J ) = p, then |F∗| ≤
(n
p

)

.

Lemma 7.4 Let k ≥ 3 be a positive integer. Let L be a family of proper subsets of [k] that is closed

under intersection.
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1. If L has rank k, then it contains all the proper subsets of [k].

2. If L has rank k − 1, then the elements of [k] can be listed as x1, x2, . . . , xt, xt+1, . . . , xk such

that for every t + 1 ≤ i ≤ k, [k] \ {xi} ∈ L and for all 1 ≤ i < j ≤ t, [k] \ {xi, xj} ∈ L.

If t = 1, then we say that L is of type 1. If t ≥ 2, then we say that L is of type 2.

If L is of type 1, then there exists an element x ∈ [k] such that L contains all the proper

subsets of [k] that contains x; we call x the central element of L. If L is of type 2, then

∀C ⊆ {x1, . . . , xt},∀D ⊆ {xt+1, . . . , xk}, where |C| ≤ t− 2, we have C ∪D ∈ L.

Lemma 7.5 (The partition lemma) Let n, k, s be positive integers, let F ⊆
([n]
k

)

. Then F can

be partitioned into subfamilies G1,G2, . . . ,Gm and F0 such that |F0| ≤
1

c(k,s)

(

n
k−2

)

and for 1 ≤ i ≤ m

each Gi is (k, s)-homogeneous with intersection pattern Ji of rank at least k − 1.

Proof. Apply Lemma 7.1 to F to get a (k, s)-homogeneous subfamily G1 with intersection pattern

J1 such that |G1| ≥ c(k, s)|F|. Then apply Lemma 7.1 again to F \ G1 to get a (k, s)-homogeneous

subfamily G2 with intersection pattern J2 such that |G2| ≥ c(k, s)|F \G1|. We continue like this. Let

m be the smallest nonnegative integer such that Jm+1 has rank k−2 or less and let F0 = F\(∪i≤mGi).

By our procedure, |Gm+1| ≥ c(k, s)|F0| and Lemma 7.3 gives the upper bound.

8 Homogeneous families without cycles are not of type 2

The aim of this section is to describe the typical intersection structures of the members of a k-uniform

hypergraph avoiding cycles.

Definition 8.1 A set-family F is centralized with threshold s if ∀F ∈ F there exists an element

c(F ) ∈ F such that if D is a proper subset of F containing c(F ) then D ∈ Kers(F). We call c(F ) a

central element of F . (The choice of c(F ) may not be unique, but we will fix one.)

Theorem 8.2 (The partition theorem) Let k, ℓ, s be positive integers, where k ≥ 4, ℓ ≥ 3, and

s ≥ kℓ. Let F ⊆
([n]
k

)

. If k = 4, then suppose F contains no member of C
(4)
ℓ . If k ≥ 5, then

suppose C
(k)
ℓ 6⊆ F . Then F can be partitioned into subfamilies F1,F0 such that F1 is centralized with

threshold s and |F0| ≤
1

c(k,s)

( n
k−2

)

.

The proof consists of several small steps and is given at the end of this Section.

The following proposition follows immediately from Lemma 7.1 and Lemma 7.4.

Proposition 8.3 If F =
⋃m

i=1 Gi, where ∀i ∈ [m], Gi is a (k, s)-homogeneous family whose intersec-

tion pattern Ji has rank k − 1 and is of type 1, then F is centralized with threshold s.

Recall that given a set S, 2S denotes the collection of all subsets of S.

Lemma 8.4 Let k ≥ 5 be an integer and let L be a family of subsets of [k] that is closed under

intersection and has rank k − 1 and is of type 2. Then there exists S ⊆ [n] such that |S| = 3 and

2S ⊆ L.
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Proof. Let S be a 3-subset of [k] \ {x1, x2}. Any subset A of S can be written as C ∪ D, where

C ⊆ {x1, . . . , xt}, |C| ≤ t− 2, and D ⊆ {xt+1, . . . , xk}. By Lemma 7.4, A ∈ L.

For k = 4, we prove something a bit weaker.

Proposition 8.5 Let L be a family of subsets of [4] that is closed under intersection and has rank

3 and is of type 2. Then L contains a minimal 3-cycle where each edge has size 2 or 3.

Proof. By Lemma 7.4, ∀C ⊆ {x1, . . . , xt}, where |C| ≤ t − 2, and ∀D ⊆ {xt+1, . . . xk}, we have

C∪D ∈ L. If t = 4, then we have {x1, x2}, {x1, x3}, {x2, x3} ∈ L. If t = 3, then we have {x1, x2, x3},

{x1, x4}, {x3, x4} ∈ L. If t = 2, then we have {x1, x2, x3}, {x1, x2, x4}, {x3, x4} ∈ L.

Lemma 8.6 Let k, ℓ, s be positive integers, where k ≥ 5, ℓ ≥ 3, and s ≥ kℓ. Let G be a (k, s)-

homogeneous family with a k-partition (X1, . . . ,Xk) and intersection pattern J such that either J

has rank k or has rank k − 1 and is of type 2. Then C
(k)
ℓ ⊆ G.

Proof. By Lemma 7.4 and Lemma 8.4, there exists a 3-set S ⊆ [k] such that 2S ⊆ J . By definition,

this means that ∀F ∈ G,∀A ⊆ S, F ∩(∪i∈AXi) is a member of Kers(G). Let H = {F ∩(∪i∈AXi) : F ∈

G, A ⊆ S}. Then H ⊆ Kers(G). Note that H is down-closed. Let D ∈ ∂2(H). Then D ∈ Kers(F). So

F contains an s-star L with kernel D. The restriction of the s petals of L on
⋃

i∈S Xi are s distinct

triples in H containing D. So deg∗H(D) = degH(D) ≥ s for all D ∈ ∂2(H). This allows us to embed

the triangulated cycle T
(3)
ℓ into H as we did in the proof of Proposition 4.2. Since C

(3)
ℓ ⊆ T

(3)
ℓ and

H ⊆ Kers(G) Proposition 4.1 implies that G contains a k-expansion of C
(3)
ℓ , which is C

(k)
ℓ .

For k = 4, Lemma 8.5 and induction yield

Proposition 8.7 Let ℓ, s be positive integers, where ℓ ≥ 3 and s ≥ 4ℓ. Let G be a (4, s)-homogeneous

family with a 4-partition (X1, . . . ,X4) intersection pattern J such that either J has rank 4 or has

rank 3 and is of type 2. Then G contains a member of C
(4)
ℓ .

Proof. By Lemma 8.5 J contains a minimal 3-cycle L. Consider first the case where the edges of

L are I1 = {1, 2, 3}, I2 = {1, 2, 4} and I3 = {3, 4}. Then ∀F ∈ G, F [I1], F [I2], F [I3] ∈ Kers(G). We

use induction on ℓ to show that G contains a member of C
(4)
ℓ such that for any two consecutive edges

E,E′ on the cycle, either they intersect in exactly one vertex and that vertex lies in X3 or X4 or

they intersect in two vertices and those two vertices lie in X1 and X2, respectively; we call such a

member of C
(4)
ℓ a good member.

For the basis step let ℓ = 3. Let E0 = {a1, a2, a3, a4} be any edge in G, where ∀i ∈ [4], ai ∈ Xi.

By our assumption, {a1, a2, a3}, {a1, a2, a4}, {a3, a4} all have kernel degree at least s ≥ 4ℓ. So we can

find E1 = {a1, a2, a3, a
′
4}, E2 = {a1, a2, a

′
3, a4}, E3 = {a′1, a

′
2, a3, a4} ∈ G, where ∀i ∈ [4], a′i ∈ Xi and

a1, . . . , a4, a
′
1, . . . , a

′
4 are all distinct. Now, E1, E2, E3 form a minimal 3-cycle that satisfies the claim.

For the induction step, suppose ℓ ≥ 4 and that the claim holds for ℓ− 1 and that G contains a good

member L of C
(4)
ℓ−1. Let E be an edge of L. Let E′, E′′ be the edge preceding E and succeeding E,

respectively on L. Then {|E ∩ E′|, |E ∩ E′′|} = {1, 1} or {1, 2}. In the former case, we may assume

E ∩ E′ = {b3} ⊆ X3 and E ∩ E′′ = {b4} ⊆ X4. By our assumption E \ {b4} = E[I1] ∈ Kers(G) and

E\{b3} = E[I2] ∈ Kers(G). Since s ≥ 4ℓ and n(L) ≤ 4ℓ−1, we can find b′3 ∈ X3\V (L), b′4 ∈ X4\V (L)
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such that (E \ {b3}) ∪ {b′3} ∈ G and (E \ {b4}) ∪ {b′4} ∈ F . Replacing E with these two members of

G in L yields a good member of C
(4)
ℓ . The case where {|E ∩ E′|, |E ∩ E′′|} = {1, 2} can be handled

similarly. This completes the induction.

Similar arguments apply if J contains other kinds of minimal 3-cycles.

Proof of Theorem 8.2. Consider the partition F = G1∪· · ·∪Gm∪F0 given by the Partition Lemma 7.5.

For each i ∈ [m], Ji has rank at least k− 1. If some Ji has rank k or has rank k− 1 and is of type 2,

then C
(k)
ℓ ⊆ Gi ⊆ F by Lemma 8.6, a contradiction in the case of k ≥ 5. So each Ji has rank k − 1

and is of type 1. By Proposition 8.3, F1 :=
⋃m

i=1 Gi is centralized with threshold s.

For k = 4 we use Proposition 8.7 in place of Lemma 8.6.

9 The kernel structure of centralized families

Theorem 9.1 Let k, ℓ be integers, where k ≥ 4 and ℓ ≥ 3. Let t = ⌊ ℓ−1
2 ⌋. Let s = kℓ. For all

n ≥ n1(k, ℓ) the following holds: If F ⊆
([n]
k

)

is a centralized family with threshold s, C
(k)
ℓ 6⊆ F , and

|F| ≥ t
(

n
k−1

)

− o(nk−1), then there exist S, T ⊆ [n], where S ∩ T = ∅, |S| = t and |T | ≥ n − o(n),

such that Ker
(2)
s (F) contains all the edges between S and T .

Lemma 9.2 Let n, p, q be positive integers and x1, . . . , xn reals such that q ≥ p and x1 ≥ . . . ≥ xn ≥

q − 1. Let M =
∑n

i=1

(x
p

)

. Then ∀h ∈ [n], we have

n
∑

i=h

(

xi
q

)

≤ pq−p M
q

p

h
q

p
−1

.

Proof. Since
∑n

i=1

(

xi

p

)

= M and
(

x1
p

)

≥
(

x2
p

)

≥ . . . ≥
(

xn

p

)

, we have
(

xh

p

)

≤ M
h . Since

(

xh

p

)

≥ (xh

p )p,

this yields xh < p(Mh )
1
p . Also, trivially for i ≥ h,

(xi

q

)

≤ xq−p
i

(xi

p

)

≤ xq−p
h

(xi

p

)

. Hence,

n
∑

i=h

(

xi
q

)

≤ (xh)q−p
n
∑

i=h

(

xi
p

)

= xq−p
h M < M

[

p

(

M

h

)
1
p

]q−p

= pq−p M
q

p

h
q

p
−1

.

Proof of Theorem 9.1. Let us partition F according to c(F ). For each i ∈ [n], let

Ai = {F ∈ F : c(F ) = i}, and A′
i = Fi − {i}.

Let D ∈ ∂2(A
′
i). Then D ∪ {i} is a proper 3-subset of F containing i = c(F ). Since F is centralized

with threshold s, D ∪ {i} ∈ Ker
(3)
s (F). Thus ∀D ∈ ∂2(A′

i), we have D ∪ {i} ∈ Ker
(3)
s (F). This yields

|Ker(3)s (F)| ≥
1

3

n
∑

i=1

|∂2(A′
i)|. (9)
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Since C
(k)
ℓ 6⊆ F and s = kℓ, by Proposition 4.1, C

(3)
ℓ 6⊆ Ker

(3)
s (F). By Proposition 4.2, we have

|Ker(3)s (F)| ≤ ex3(n,C
(3)
ℓ ) < 2ℓ

(

n

2

)

. (10)

By (9) and (10), we have
n
∑

i=1

|∂2(A′
i)| ≤ 6ℓ

(

n

2

)

< 3ℓn2. (11)

For each i ∈ [n], let xi ≥ 1 be the real such that |∂2(A′
i)| =

(

xi

2

)

, where without loss of generality

we may assume that x1 ≥ . . . ≥ xn. Let M =
∑n

i=1

(xi

2

)

. Then M < 3ℓn2. By Kruskal-Katona’s

theorem (1), ∀i ∈ [n], |A′
i| ≤

( xi

k−1

)

. Now, set ε = 1
2(t+1) and h = ⌈nε⌉. Applying Lemma 9.2 with

p = 2, q = k − 1, we have

∑

i≥h

|Ai| =

n
∑

i=h

|A′
i| =

n
∑

i=h

(

xi
k − 1

)

≤ 2k−3M
k−1
2

h
k−3
2

= O(nk−1− k−3
2

ε) = O(n
k−1− k−3

4(t+1) ). (12)

Let L = [h]. Let F1 = {F ∈ F : c(F ) /∈ L}. Then F1 ⊆
⋃

i>hAi. By (12), we have

|F1| = O(n
k−1− k−3

4(t+1) ). (13)

By our definition, ∀F ∈ F \ F1 we have c(F ) ∈ L. Let F2 = {F : F ∈ F \ F1, |F ∩ L| ≥ 2}. Then

|F2| ≤

(

|L|

2

)(

n− |L|

k − 2

)

≤ nk−2+2ε < nk− 3
2 . (14)

Let F ′ = F \ (F1 ∪ F2). Then ∀F ∈ F ′, we have F ∩ L = {c(F )}. For each A ⊆ L, let

FA = {F ∈ F ′ : ∀a ∈ A, (F \ L) ∪ {a} ∈ F ′}, and F ′
A = {F \ L : F ∈ FA}.

Then F ′ =
⋃

A⊆LFA.

A set W of vertices in a hypergraph G is strongly independent if no two vertices of W lie in the

same edge of G. The cycle C
(k)
ℓ has a strongly independent set W of t + 1 = 1 + ⌊(ℓ− 1)/2⌋ = ⌈ℓ/2⌉

vertices whose removal leaves a (k − 1)-uniform hypergraph T with ℓ edges. It is easy to see that

T ⊆ C
(k−1)
⌈3ℓ/2⌉. By Corollary 4.3 we obtain

exk−1(n,T ) ≤ exk−1(n,C
(k−1)
⌈3ℓ/2⌉) < 2kℓ

(

n

k − 2

)

. (15)

Note that one can easily get a sharper bound on exk−1(n,T ) than (15). But (15) suffices for our

purposes. Suppose there exists A ⊆ L, where |A| ≥ t + 1, such that F ′
A contains a copy T ′ of T .

Then since each edge of T ′ together with each a ∈ A forms an edge of F , we can extend T ′ to a

copy of C
(k)
ℓ in F , contradicting C

(k)
ℓ 6⊆ F . So, ∀A ⊆ L, |A| ≥ t + 1, we have T 6⊆ FA and by (15)

|FA| ≤ 2kℓ
(n−|L|

k−2

)

. Let F3 =
⋃

A⊆L,|A|≥t+1FA. By our discussion above, we have

|F3| ≤

(

|L|

t + 1

)

2kℓ

(

n− |L|

k − 2

)

< 2kℓnk−2+ε(t+1) = O(nk− 3
2 ). (16)
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Let F∗ =
⋃

A⊆L,|A|≤tFA. Then F∗ = F ′ \ F3 = F \ (F1 ∪ F2 ∪ F3). By (13), (14), and (16), we

have

|F∗| ≥ t

(

n

k − 1

)

− o(nk−1).

Furthermore, by the definition of F∗, we have ∀F ∈ F∗, F ∩ L = {c(F )} and degF∗(F \ L) ≤ t.

Let

F∗
0 = {F ∈ F∗ : degF∗(F \ L) ≤ t− 1}.

Obviously

|F∗| +
1

t− 1
|F∗

0 | ≤ t

(

n− |L|

k − 1

)

.

Since |F∗| ≥ t
( n
k−1

)

− o(nk−1), we have

|F∗
0 | = o(nk−1) and |F∗ \ F∗

0 | ≥ t

(

n

k − 1

)

− o(nk−1).

By our definition, F∗ \ F∗
0 =

⋃

A⊆L,|A|=tFA. Note that |FA| = t|F ′
A| for each A ⊆ L, |A| = t.

Fix any A ⊆ L, D ∈ ∂(F ′
A), and a ∈ A. By definition, D∪{a} is a proper subset of some F ∈ FA

where c(F ) = a. So D ∪ {a} ∈ Kers(F). In particular, ∀x ∈ ∂1(F ′
A) = V (F ′

A) and ∀a ∈ A, we have

{a, x} ∈ Ker
(2)
s (F) and ∀{x, y} ∈ ∂2(F ′

A) and ∀a ∈ A, we have {a, x, y} ∈ Ker
(3)
s (F). This means

that Ker
(2)
s (F) contains all the edges between A and V (F ′

A). Let

A1 = {A ⊆ L : |A| = t, |V (F ′
A)| ≥ t + 1}, A2 = {A ⊆ L : |A| = t, |V (F ′

A)| ≤ t}.

Recall that |L| = O(nε) = O(n
1

2(t+1) ). We have

|
⋃

A∈A2

FA| ≤

(

|L|

t

)(

t

k − 1

)

t = O(n
1
2 ).

Hence,

|
⋃

A∈A1

FA| ≥ t

(

n

k − 1

)

− o(nk−1). (17)

Claim 1. ∀A,B ∈ A1, A 6= B, we have ∂2(F ′
A) ∩ ∂2(F ′

B) = ∅.

Proof of Claim 1. Suppose otherwise that there are A,B ∈ A1, A 6= B and x, y ∈ [n] \ L, such

that {x, y} ∈ ∂2(F
′
A) ∩ ∂2(F ′

B). Since Ker
(2)
s (F) contains all the edges between A and V (F ′

A) and

|V (F ′
A)| ≥ t+ 1, we can find an x, y-path P of length 2t in Ker

(2)
s (F) using the edges between A and

V (F ′
A). Let b ∈ B \A. Since {x, y} ∈ ∂2(F

′
B), we have {x, y, b} ∈ Ker

(3)
s (F). Now, P ∪ {x, y, b} is a

linear cycle of length 2t + 1 in Kers(F). Since s ≥ kℓ, by Proposition 4.1, F contains a linear cycle

C
(k)
2t+1. Note that we also have {x, b}, {y, b} ∈ Ker

(2)
s (F). So P ∪ {xb, yb} is a linear cycle of length

2t+ 2 in Kers(F) and by Proposition 4.1, F contains a linear cycle of length 2t+ 2. Since ℓ = 2t+ 1

or 2t + 2, F contains a copy of C
(k)
ℓ , contradicting our assumption about F .

For convenience, suppose A1 = {A1, . . . , Ap}. For each i ∈ [p], let yi ≥ k − 1 denote the positive

real such that |F ′
Ai
| =

( yi
k−1

)

, where without loss of generality, we may assume that y1 ≥ y2 ≥ . . . ≥ yp.

By the Kruskal-Katona theorem (1), ∀i ∈ [p], |∂2(F ′
Ai

)| ≥
(

yi
2

)

. By Claim 1, ∂2(F
′
A1

), . . . , ∂2(F ′
Ap

)
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are pairwise disjoint. So we have

p
∑

i=1

(

yi
2

)

≤

(

n− |L|

2

)

<

(

n

2

)

.

For each i = 1, . . . , p, observe that
( yi
k−1)

( y1
k−1)

≤
(yi2 )
(y12 )

and hence
( yi
k−1

)

≤
( y1
k−1

) (yi2 )
(y12 )

. This yields

|
⋃

A∈A1

FA| = t
∑

A∈A1

|F ′
A| = t

p
∑

i=1

(

yi
k − 1

)

≤ t

(

y1
k − 1

)
∑p

i=1

(yi
2

)

(y1
2

) < t

(

y1
k − 1

)

(n
2

)

(y1
2

) .

This and (17) imply y1 ≥ n− o(n). Applying Kruskal-Katona theorem (1) again we get

|V (F ′
A1

)| = |∂1(F ′
A1

)| ≥ y1 ≥ n− o(n).

Since Ker
(2)
s (F) has the all the edges between A1 and V (F ′

A1
) the sets S = A1 and T = V (F ′

A1
)

satisfy the claim of Theorem 9.1.

10 Proofs of the main results

In this section we prove Theorem 6.1 and Theorem 6.2. The lower bound is presented in Section 6.

It remains to prove the upper bounds for large n.

Let F ⊆
([n]
k

)

, where n is sufficiently large. To prove Theorem 6.1 we assume that k ≥ 5 and F

contains no copy of C
(k)
ℓ . To prove Theorem 6.2, we assume that k ≥ 4 and F contains no member of

C
(k)
ℓ . Each upper bound in Theorem 6.1 and 6.2 is at least t

( n
k−1

)

−O(nk−2). So we may assume that

|F| ≥ t
( n
k−1

)

− o(nk−1). By Theorem 8.2, we can partition F into two subfamilies F1 and F0, where

F1 is centralized with threshold s = kℓ and |F0| = O(nk−2). In particular, |F1| ≥ t
(

n
k−1

)

− o(nk−1).

By Theorem 9.1, there exists a set S ⊆ [n], where |S| = t and a set T ⊆ [n]\S where |T | ≥ n−o(n)

such that Ker
(2)
s (F1), as a 2-graph, contains all the edges between S and T . Let W ⊆ [n] \ S be

a set of maximum size such that Ker
(2)
s (F) contains all the edges between S and W . We have

|W | ≥ n− o(n). Let Z = [n] \ (S ∪W ), z = |Z|. We have z = o(n). Let

FS = {F ∈

(

[n]

k

)

: F ∩ S 6= ∅}.

Then |FS | =
(n
k

)

−
(n−t

k

)

.

We split F \ FS into three (later into four) parts and will give an estimate for their sizes one by

one. We also estimate a class of missing edges, D ⊆ FS \ F , and finally compare |D| to |F \ FS |.
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Define F \ FS = G0 ∪ G1 ∪ G2, G1 = A ∪ B and D as follows.

G0 = {F ∈ F : F ⊆ Z}, i.e., F ∩ S = ∅, |F ∩W | = 0,

G1 = {F ∈ F : F ∩ S = ∅, |F ∩W | = 1},

A = {F ∈ G1 : degG1
(F \W ) < ℓ}, B = {F ∈ G1 : degG1

(F \W ) ≥ ℓ},

G2 = {F ∈ F : F ∩ S = ∅, |F ∩W | ≥ 2},

D = {F ∈

(

[n]

k

)

: |F ∩ S| = |F ∩ Z| = 1, F /∈ F}.

The family G0 does not contain a C
(k)
ℓ on z vertices so Proposition 4.3 yields

|G0| ≤ kℓ

(

z

k − 1

)

= O(zk−1) = o(znk−2). (18)

Clearly

|A| ≤ ℓ

(

|Z|

k − 1

)

= O(zk−1) = o(znk−2). (19)

Let B′ = {F \W : F ∈ B}, it is a (k − 1)-graph on Z. If B′ contains a copy L of C
(k−1)
ℓ , then

since ∀F ∈ B,degG1
(F \W ) ≥ ℓ, L can be extended to a copy of C

(k)
ℓ in F , a contradiction. So B′

contains no linear ℓ-cycle, and Proposition 4.3 gives |B′| ≤ kℓ
(

z
k−2

)

= O(zk−2). Since |B| ≤ |B′| · |W |

we get

|B| = O(zk−2n) = o(znk−2). (20)

Claim 2. For ℓ = 2t + 1 we have G2 = ∅. For ℓ = 2t + 2, if F has no linear ℓ-cycle then G2 has no

two members meeting in a singleton and if F has no minimal ℓ-cycle then |G2| ≤ 1.

Proof of Claim 2. Suppose first that ℓ = 2t+1. Suppose G2 has a member F . By definition, F∩S = ∅

and |F ∩ W | ≥ 2. Let x, y be two elements of F ∩ W . Let H denote the subgraph of Ker
(2)
s (F)

consisting of all of its edges between S and W . By our choice of W , H is a complete bipartite graph.

Since |W | ≥ n − o(n) > t + k, for large n, we can find an x, y-path P of length 2t in H such that

P ∩ F = {x, y}. Since each edge on P has kernel degree at least s = kℓ in F , we can expand F ∪ P

into a linear ℓ-cycle in F , a contradiction. So G2 = ∅.

Next, consider the case ℓ = 2t + 2. Suppose that F has no linear ℓ-cycle and G2 contains two

members F and F ′ that intersect in exactly one element u. Let x be a vertex in (F ∩W ) \{u} and y

a vertex in (F ′∩W )\{u}. Like before, since H has all the edges between S and W and |W | is large,

we can find an x, y-path in H of length 2t such that P ∩ (F ∪F ′) = {x, y}. We can expand F ∪F ′∪P

into a linear cycle of length 2t + 2 = ℓ in F , a contradiction. Suppose F contains no minimal

ℓ-cycle instead and G2 contains two different edges F and F ′. Then we can get a contradiction by

constructing a minimal ℓ-cycle in F using a procedure similar to above. We omit the details.

For ℓ = 2t + 1, by Claim 2 we have |G2| = 0. For ℓ = 2t + 2, if F has no linear ℓ-cycle, then

Claim 2 and Frankl’s theorem (4) yield |G2| ≤
(n−t−2

k−2

)

(for large enough n) and if F has no minimal

ℓ-cycle then |G2| ≤ 1.

Finally, consider D. Let u ∈ Z. The maximality of W implies that there exists an x ∈ S such

that xu /∈ Ker
(2)
s (F) and hence deg∗F ({x, u}) < s. Then (3) implies that the degF ({x, u}) ≤ s

(|W |−1
k−3

)

.
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Hence degD({x, u}) ≥
( |W |
k−2

)

− s
(|W |−1

k−3

)

≥ Ω(nk−2). Since this holds for every u ∈ Z we get

|D| ≥ |Z| ×

((

|W |

k − 2

)

− s

(

|W | − 1

k − 3

))

≥ Ω(znk−2). (21)

Now, we are ready to prove the desired bound on |F|. By our definition, F ⊆ (FS\D)∪G0∪G1∪G2.

For ℓ = 2t + 1 we have |G2| = 0. So, for sufficiently large n, (18)–(21) yield

|F| ≤ |FS | − Ω(znk−2) + o(znk−2) ≤ |FS | − Ω(znk−2) ≤ |FS | =

(

n

k

)

−

(

n− t

k

)

. (22)

For ℓ = 2t + 2, if we assume that k ≥ 5 and F has no linear ℓ-cycle, then |G2| ≤
(

n−t−2
k−2

)

and by

(18)–(21) we have

|F| ≤ |FS | − Ω(znk−2) + o(znk−2) +

(

n− t− 2

k − 2

)

≤

(

n

k

)

−

(

n− t

k

)

+

(

n− t− 2

k − 2

)

, (23)

for large n. If we assume that k ≥ 4 and F has no minimal ℓ-cycle, then |G2| ≤ 1 and we have

|F| ≤ |FS | + 1 =
(

n
k

)

−
(

n−t
k

)

+ 1.

11 Stability and concluding remarks

By (22) and (23), we also have the following stability statement.

Proposition 11.1 Let k, ℓ be positive integers, where ℓ ≥ 3 and k ≥ 4. Let ε be any small positive

real. There exists a positive real δ such that for all n ≥ n2(k, ℓ) the follows holds. Let F ⊆
([n]
k

)

be a

family that contains no copy of C
(k)
ℓ if k ≥ 5 and no member of C

(k)
ℓ if k = 4 and |F| ≥ (1− δ)t

( n
k−1

)

.

Then there exists a set S ⊆ [n], where |S| = t, such that all except at most ε
(n
k

)

of the members of

F intersect S.

In Section 3 we observed that the 3-uniform linear cycle C
(3)
ℓ is a subgraph of the triangulated

cycle T
(3)
ℓ and C

(k)
ℓ is a k-expansion of C

(3)
ℓ . The triangulated cycle T

(k)
ℓ is an example of a so-called

q-forest where q = 3. A q-forest is a q-graph whose edges can be linearly ordered as E1, . . . , Em such

that for all i ≥ 2 there exists some a(i) < i such that Ei ∩ ((
⋃

j<iEj) ⊆ Ea(i). A subgraph of a

q-forest is called a partial q-forest. So C
(3)
ℓ is a partial 3-forest. In a forthcoming paper, for all k, q

satisfying q ≥ 3 and k ≥ 2q − 1, we will asymptotically determine the Turán numbers for the rather

wide family of hypergraphs that are k-expansions of partial q-forests.
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[2] P. Erdős, T. Gallai: On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959),

337–356.
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[11] Z. Füredi: On finite set-systems whose every intersection is a kernel of a star, Discrete Math. 47 (1983),

129–132.
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