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Abstract

The energy of a molecular graph G is defined as the summation of the
absolute values of the eigenvalues of adjacency matrix of a graph G. In
this paper, an infinite class of fullerene graphs with 10n vertices, n > 2,
is considered. By proving centrosymmetricity of the adjacency matrix of
these fullerene graphs, a lower bound for its energy is given. Our method is
general and can be extended to other class of fullerene graphs.
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1. INTRODUCTION

All graphs considered in this paper are simple and connected. The vertex and
edge sets of a graph G are denoted by V(G) and E(G), respectively. Let G =
(V, E) be a simple graph and W C V. Then the induced subgraph by W is the
subgraph of G obtained by taking the vertices in W and joining those pairs of
vertices in W which are joined in G. The notation G — {v1,vg,..., v} stands
for a graph obtained by removing the vertices vy, vs, ..., v from G and all edges
incident to any of them.

Suppose M is a molecule. A molecular graph for M is a graph for which
atoms are vertices and chemical bonds are edges of the graph. From the chemical
point of view, such a graph has vertices with degrees < 4. It merits mention
here that in the Hiickel theory only pi electron molecular orbitals are included
because these determine the general properties of these molecules and the sigma
electrons are ignored. So, when we are talking about Hiickel theory we need the
molecule to have a pi system and therefore all chemical graphs should have max
degree 3 or less - a vertex of degree 4 represents a saturated carbon atom that
cannot be part of a pi system. The max degree 4 is for alkanes, which is not for
the context required for the present paper.

The adjacency matrix of a graph G is denoted by A(G). The characteristic
polynomial of A(G) is defined as ® (G,z) = det(A(G) — xI) and its roots are
named the eigenvalues of A(G) and form the spectrum of this graph. We encour-
age the interested readers to consult [2, 3]. Let A1, \a,..., A, be eigenvalues of
A(G). Then the graph energy of G, E(G), is defined as E(G) = >_1" | |\ [7, 8].
This graph parameter has important applications in Hiickel theory and so it has
some specific chemical interests and has been extensively studied. An extension
of this graph invariant was done by Zhou and Gutman [9, 15].

A fullerene graph is a cubic planar and 3-connected graph such that its faces
are pentagon and hexagon. Suppose p, h, n and m are the number of pentagons,
hexagons, vertices and edges of a fullerene graph F', respectively. Since each
vertex lies in exactly three faces and each edge lies in two faces, the number of
vertices is n = (5p + 6h)/3, the number of edges is m = (5p + 6h)/2 = 3/2n and
the number of faces is f = p + h. By the Euler’s formula n — m + f = 2 and
so (bp + 6h)/3 — (5p + 6h)/2 + p + h = 2. Therefore, p = 12,v = 2h + 20 and
e = 3h + 30.

The fullerene graphs are models of fullerene molecules. Such molecules are
constructed entirely from carbon atoms and has important applications in chem-
istry. These molecules found more interest from scientists after giving Nobel prize
to discovers of buckminsterfullerene [12]. We encourage the interested readers to
consult the famous book of Fowler and Manolopoulos [4] for more information on
this topic.
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For a matrix A of size m x n, A denotes its conjugate transpose, i.e. A7 = AT
where AT and A denote the transpose and conjugate of A, respectively. The
square roots of the eigenvalues of A# A are called singular values of A. We
denote the singular values of A by s1(A) > s2(A) > -+ > s,,(A). The energy of
this matrix is defined by e(A4) = >"7", s;(A).

The goal of this paper is to continue our earlier investigation on fullerene
graphs [6] and compute a bound for its graph energy. It merits mention here
that the energy of a fullerene is not the summation of the absolute values of the
eigenvalues but twice the summation of the first § eigenvalues in non-increasing
order. Notice that by a result in the seminal paper of Gutman [7], the energy
and graph energy for molecules with bipartite molecular graphs are the same,
but fullerenes are not bipartite.

The following classical result in algebraic graph theory [2, 3] is critical thro-
ughout this paper:

Key Fan Theorem. Let A, B and C be square matrices of order n. If C =

A + B, then
D si(A)+ ) si(B) =) si(C).

Equality holds if and only if there exists an orthogonal matriz P such that the
matrices PA and PB are positive semidefinite.

2. DEFINITIONS AND PRELIMINARIES

A matrix A,y is called centrosymmetric if a;; = an—it1n—j+1, 1 < 4,5 < n.
The mathematical properties of this special class of matrices can be found in
[13, 14, 16]. In general, if the matrix A, x, is a centrosymmetric matrix with
n = 2m, then A has the following form:

1,1 a1,2 cee a1,m a1,m+1 cee @1 2m—1 a1.2m

a21 a2 2 S a2.m a2 m+1 ... G22m—1 a2 2m

A= am,1 am,2 v Am,m Am,m+1 cer Om2m—1 Qm2m
Am,2m  Om,2m—1 s Am,m+1 Am,m s Gm,2 Gm,1
a2 2m a2.2m—1 cee a2 m+1 a2,m v az 2 az 1
a1.2m a1,2m—1 cees A1 m41 a1,m v ay.2 a1,1

and if n = 2m + 1 is an odd number, then
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ail 1,2 e a1,m a1,m+1 a1, m+2 e a1,2m—1 ai2m

a2 1 a2 2 s a2 m a2 m+41 a2 m+2 coe A22m—1 a2 2m

Gm,1 am,2 e Am,m Gm,m+1 Am,m+2 -+ Am2m—1 Am,2m

A=]| amt11  @mt+12 -+ Gmt+lm  Omt+lmtl  Gmtlm -+ Gmtl2  Gmel,l
Am,2m am,2m—1 -+ Omm42 Gm,m+1 Am,m .. am,2 Gm,1
a2 2m a2 2m—1 cee A2m42 a2 m+41 a2 m cee a2 2 a21
a1.2m a1 2m—-1 ...  G1m42 a1,m+1 a1,m <. ay,2 ai.1

Let J, be the exchange matrix of size n. This is an n x n {0,1}-matrix in
which an entry is unit if and only if it lies on counterdiagonal of .J,. It is clear
that the matrix A is centrosymmetric if and only if AJ = JA. The set of all
centrosymmetric matrices is denoted by Cen.

Theorem 1 (See [1] for details). If A,xn € Cen and n = 2m, then

B JnClp
A= ( C JmBJn >

in which B,C are m x m matrices. If n =2m + 1, then

B Jpb J,CJn
A = CLT « aTJm
C b  JnBJn

in which B,C € R™ ™ ab € R™ and a is a real number. Moreover, for
n = 2m, we have

Q'AQ= ( 7 oJmC B+0Jmc >
where Y , ,
Q=5 ( . )
If n=2m+ 1, then
B—-J,C 0 0
QTAQ = 0 o V2a" ,

0 V2J,b B+ J,,C



CENTROSYMMETRIC GRAPHS AND A LOWER BOUND FOR ... 755

where
I 0 I
2 m m
—Jm 0 Jn

A graph G is called centrosymmetric, if its vertices has a labeling such that its
adjacent matrix is centrosymmetric. We now introduce two classes of matrices,
named block centrosymmetric and centrosymmetric block. Suppose

Ay A oo A
A= ,
Ap1 Anme .. A

where its blocks are s X s, s > 2, matrices. A is called a block centrosymmetric
if for 1 < 4,5 < m, Aij = Am—it1,m—j+1. It is called centrosymmetric block if
all blocks are centrosymmetric. The set of all block centrosymmetric matrices is
denoted by BCen and the set of all centrosymmetric block matrices is denoted

by CenB.
For example the matrix

5 6 79
6 5 9 7
A= 0 3 6 2
30 6 2

belongs to CenB, but it is not a member of Cen or BCen. Also, the matrix

3 2 0 8
5 7 1 5
B= 0 8 3 2
1 5 5 7

is in BCen, but not in Cen or CenB. Finally, the matrix

1 2 3 4
9 7 0 8
C= 8 0 79
4 3 2 1
is a member of Cen, but not a member of BCen or CenB.
Let
All A12 v Alm

Ay A ... Aoy
A . . .

Aml Am2 ‘e A'mm
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be the block form of A = [a;;], 1 < i,j < n, and all blocks are s x s matrices.
The relationship between these matrices is shown in the following theorem.

Theorem 2. The following are equivalent.
(a) AX W =W x A in which ¥ = J,, ® Js the tensor product of matrices Jp,

and Js.
(b) Aij x Js = Js X Apm—it1,m—jt1-
(c) A €Cen.
Proof. For equivalence of (a) and (b) notice that
O 0 JS A11 A12 Alm
0 e JS 0 A21 A22 N Agm
T A — e . «
Js 0 .. .0 Ap1 Ame ... Amm
JsAm,l JsAm,2 s JsAm,m
JsAm—l,l JsAm—l,Q s JsAm—l,m
JsAl,l J5A1,2 e JsAl,m
A11 Alg Alm 0 0 Js
A21 A22 N AQnL 0 e Js 0
Ax ¥ — . . . . «
Apt Amo ... A Js 0 ... 0
Al,sz Al,mfljs e Al,ljs
AZ,sz AQ,mflt]s o A271Js
Am,sz Am,mfljs e Am,le
and so the equality A x ¥ = W x A holds if and only if 4; ;Js = JsApm—it1,m—j+1-
Since
A(i—1)s+1,(j—1)s+1  Q(i—1)s+1,(j—1)s+2 -+ Q(i—1)s+1,5s
Ai—1)s4+2,(j—1)s+1  Q(i—1)s+2,(j—1)s+2 -+ Q(i—1)s+2,5s
Ay = . . . ’

Qis, (j—1)s+1 Qis, (j—1)s+2 e Ajs js
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we have
A(i—1)s+1,j5  A(i—1)s+1,5s—1 -+ O(i—1)s+1,(j—1)s+1
A(i—1)s+2,5s A(i—1)s+2,js—1 -+ Q(i—1)s4+2,(j—1)s+1
Ay, = . . .
Qs js Qs js—1 e Qis (j—1)s+1
On the other hand,
A(m—i)s+1,(m—j)s+1  A(m—i)s+1,(m—j)s+2 -+ O(m—i)s+1,(m—j+1)s
A(m—i)s+2,(m—j)s+1  A(m—i)s+2,(m—j)s+2 -+ O(m—i)s+2,(m—j+1)s
Am7i+1,m7j+1 — ' ' '
A(m—it+1)s,(m—j)s+1  A(m—it1)s,(m—j5)s+2 -+ O(m—itl)s,(m—j+1)s
and so
JsAm—it1,m—j+1
A(m—i+1)s+1,(m—j)s+1  A(m—it+1)s+1,(m—j)s+2 -+ Q(m—it+1)s+1,(m—j+1)s
A(m—i)s+s—1,(m—j)s+1  A(m—i)s+s—1,(m—j)s+2 -+ Q(m—i)s+s—1,(m—j+1)s
A(m—i)s+1,(m—j)s+1 A(m—i)s+1,(m—j)s+2 cee A(m—i)s+1,(m—j+1)s
Ap—(is—s+1)s+1,n—js+1 On—(is—s+1)s+1,n—(js—1)+1 -+ On—(is—s+1)s+1,n—(js—s+1)+1
An—(is—s+2)s+1,n—js+1 On—(is—s+2)s+1,n—(js—1)+1 -+ On—(is—s+2)s+1,n—(js—s+1)+1
An—is+1,n—js+1 An—is+1,mn—(js—1)+1 cee Un—is+1n—(js—s+1)+1
Now if Ai,jJs = JSAm,iJrl,m,jJrl, then Qi j = Op—i+1n—j+1 and so A € Cen. The
converse is trivial. So, b and ¢ are equivalent. [

In Theorem 2, if A € BCen, then all statements are equivalent to A € CenB.
Furthermore, if A € CenB, then they are equivalent to A € BCen.

Theorem 3. Let
Al ... A

A21 . Agm
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be the block form of A. If m = 2k and A;;J = JAok_iy12k—j+1, then A is
orthogonally similar to the following block matriz:

L]+vU O
@ L-vU
i which
A171 Al,k
Ak:,l Ak,k
and
Aps11 o Atk
Ao .. Aok
Proof. Put small
Atprr - Ao At -0 Arpi2k
B — s D =
Apji+1 - Apok Aok i1 - Askok
So,
0 0 0 1
0 L\, (U BY_ 0 0 1 0
Js 0 Upb)~ 0 1 0 0
1 0 0 0



A

)

i

Apy11

Agp 1

Js Aok 1
JsAok_1,1

JsAkJrl,l
JsAk: 1

)

JsAk—l,l

JsA1 1

On the other hand,

0 0
0 0
0 1
1 0

A

)

Ag ke
Apyik

Aok ke

JsAok_11
Js Aok 1

JsAki1k
JAp i

)

JsAp—1.

JsAl k

s

Ay

Ao

—_
o -

CENTROSYMMETRIC GRAPHS AND A LOWER BOUND FOR ...

At k41 Ax 2k
Ap k1 Ap 2k
Akt1,k+1 Akt1,2k
Aok k1 Asg 2k
Js Aok k41 JsAzk 2k
JsAok_1 k1 JsAok 1,25
JsAk11 k+1 JsAkt1 2k
Js Ak k41 Js Ak ok
JoAk—1,1+1 JsAk—1,2k
Js A1 k1 Js A1 2
Ak At 1
Ap e Ak k+1
A1,k Ap41,k+1
Aoge ke Aok kt1

A 2k
Akt1,2k

Asg 2k

759
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A1 wds .. Aiads
Agopds ... Agpirds Kds .. 1
. e . Aprds oo Agads
= Ak72k7JS ce Ak,k}-‘rl Js ksk k,1
Ak+1,2kJs Ak+1,k+1Js Ak+1,kJs Ak—&-l,lr]s
Apy2oks o Aryairrrds Aptords .. Agtoads
Aogords ... Aggp+1ds Aok kds ... AoskaJs

Therefore,

P
c=
ow
~
A
S o
SIS
~
I
A
S~ o
o =
~
A~
cc=
ow
~

A_ (U YU
U vyw
We now put
I, 0 [0 J
V2 I Js 0

»

0
Q= 2 0 J I, 0
Js 0 0 I
It is clear that Q is an orthonormal matrix and has the following property

QAQ= ( UJFO\PU \IIU\IIOU\I/ >

In a similar way, we have U| |[¥ — JV¥ = | |-¥J. Hence Q*AQ is similar to

the following matrix:
L+ 0
o u-vy )
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3. A LoweEr BOUND FOR THE ENERGY OF Cig,

In this section, we consider an infinite class of fullerene graphs C1g, with exactly
10n vertices. The fullerene graph Cjg, is constructed by a pentagon surrounding
by five pentagons. Then we continue by adding hexagons until we obtain 5n
vertices. Two copies of this figure will construct the fullerene graph Cig,. We
use an special labeling depicted in Figure 1 to prove that the adjacency matrix
of this graph is centrosymmetric.

Figure 1. A Labeling of Cigy.

By a tedious calculation, we can compute the adjacency matrix of this graph as
follows

X I 0 0 0 0
I 0 P O . 0 0
0 Q 0 I 0

0o . .

I 0 0
0 . 0 I 0 P 0
0 0 0Q 0 I
0 0 0 I X




G.Y. KATONA, M. FAGHANI AND A.R. ASHRAFI

762

P! and all blocks are 5 x 5 matrices given by

in which @

By Theorem 3, the adjacency matrix is as follows

mA
<O

in which

oo o oo oo
o o oo oo
o oo oo
o o
o o
oo o
o oo
o oo oo
o oo O RO
Il
M
oo o NeNal o)
o o O RO~
o~ o
-~ O
.O 0
o O~
o R, o
~ o @ o o
o~ o o oo
I
<

o oo .OOIX
o o CORN O~
Lo~ o
N~ O
o o
S O~
o RO
~ o Q@ o o
o~ O Lo oo
Il
o)
oo Lo o0 oo
o o oo oo
oo o oo
Lo o
o o
oo o
c oo
oo o oo
o oo Lo oo
I
@)

So, the matrix A(C1py) is similar to the matrix

0

A—-wC

0

A+vC

(
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Furthermore,

S O~

o RO

~o & -

<o~ O

.OO.I_AJW

o Ry o~

o~ o

i~ o

O OO

A+PC =

and

S O~

o RO

~oQ -

<~ o

O ONMN

O RO~

co~NO Qo

N O

A-9C=

e(A+P¥C)+ (A — ¥C). Notice that

So, e(A(Cion))

0 0 0 O

0 0 0 O

0 00 0O

OO

O O O

00 X—-JQ

0

P

0
0 @ 0 I 0

0
A |
0 1 0 P

0 @ 0

0 I JQ

S O~

o R o

~oQ -

M~ o

SO O N

OO~

co~NOo o
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Hence, by Key-Fan theorem,

&
~
oo o o o
>
o o oo o
o oo o
Lo o
o )
o oo
oo o
oo o o o
oo o o oo
w
IT
—
oo o O.I.mv
o o AL o~
o oo
)
o o
O O~
oo
~o Q@ o o
XIO O OO

oo o O O~ X

o o OO~

Lo~NO Qo

L~ O

- o o

o O~
oo

~ o o

Mo~ o o o

Using similar argument as above, we have

<
J
o oo coo
>
o o NeNoNoNe
NoNoNoNoNo)
o o
o )
o oo
o oo
o oo o o
o oo Lo oo
l_l
o oo OOIAJ_w
o o OO~
o~o Qo
TN )
o -o
o O~
o RO
~o Q@ o o
Mo~ o Lo oo

S O~

o RO

~o & -

<~ o

O O N

oo

S~ O

»

~

o~ Qo

o

e}
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Again by applying Key-Fan theorem, we have

<3
J
o oo coo
o o Lo 0o o
N eNeNo oo
Lo o
o O
o oo
o oo
o oo o o
=N=N Lo oo
S~—
[
A_v
—~
&3
o oo oo~
|
o o OO~
o~No Qo
)
Lo o
O O~
o Lo
~o Q@ o o
M~ O NN

o oo OO~

o o O RO~
o~No o

L~ O
o o

o O~

o RO

~o Q@ o o

M~ o o oo
W
Al

Notice that

Py
<
S
I
o)
X
oo o R
oo oo oo
o oo oo
oo
o - o
coco
coc o
oo o oo
o oo oo o
I
&
~
oo o o oo
b
oo oo oo
o oo oo
o o
o - o
oo o
oo o
coo o o
oo o oo o

Thus, the eigenvalues of

0 0 0O
0 0 0 O

0 0 00O

OO

O OO

00 X-JQ

are equivalent to the eigenvalues of X — J@ and so e(X — J@Q) ~ 6.4721. By a
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similar argument, the energy of

oo0oo0oo0 . . .0 0
0 0 0 0 . 0 0
0 00 00 0
0 . .
0 0 0
o . . . 00O0O0 0
oo . . . 000 0
0 0 00 X+JQ
is equal to the energy of e(X + J@Q) ~ 10.4721. Therefore,
X I 00 . . . 0 O
I 0o PO . . . 0 O
0 Q 0TI 0 . . . 0
E((A(Clon))) > 25( 0 . ) — 16.9442.
. I 0 0
. 0 I 0 P O
0 0 0Q 0 I
0 O 0 I X

The right hand side matrix is again centrosymmetric and its size is half of the size
of A(Cion). So, if n is even, then by repeating the above procedure we obtain
the following lower bound for the energy of A(Cigp,).

Theorem 4. If n = 2Fm, then
(A(Cion)) = (A(Croarmy)) > 2°(A(Crom)) — 16.9442(2" — 1).

With the best of our knowledge there is just one result in the literature on the
energy of fullerenes. In fact, Gutman et al. [10, Theorem 6] proved that the
energy E of the molecular graph of a fullerene or a nanotube with n carbon
atoms is bounded, % < E < v/3n. We now record in Table 1, our calculations
of the graph energy and bounds of the fullerene graph Cg,, » > 2. From Table 1
we can see that our bound given in Theorem 4 is better than the bound presented
by Gutman et al. [10], in the case of n = 100, 140, 220, 260. We conjecture that
if n = 2m, m is odd, then our bound is better than the mentioned bound in [10].

In [11, Conjecture 1], the authors conjectured that the adjacency matrix of
a fullerene graph is centrosymmetric. One of the referees of this paper pointed
out that there is an infinite number of fullerenes that do not have any centrosym-
metric labeling in the sense of the present paper. The symmetry requirements
characterising the minority of fullerenes that have not a centrosymmetric adja-
cency matrix are discussed in paper [5].
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n Energy Our Bound | 1.34n

40 | 61.6085 | 41.8886 53.60
60 | 93.1815 | 74.4630 80.40
80 | 124.6957 | 66.8330 107.20

100 | 156.2026 | 137.8784 134.00
120 | 187.7085 | 131.9818 160.80
140 | 219.2143 | 200.9370 187.60
160 | 250.7201 | 116.7218 214.40
180 | 282.2259 | 263.9546 241.20
200 | 313.7317 | 258.8126 268.00
220 | 345.2374 | 326.9670 294.80
260 | 408.2490 | 389.9786 348.40

Table 1. Calculations of the energy and two bounds for Cyg,,.
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