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Abstract 

Eight European laboratories with access to five different thermogravimetric analyzers participated in 

this round-robin study of Avicel PH-105 cellulose pyrolysis at 5 and 40 C/min.  Agreement between the 

laboratories on the temperature (Tpeak) associated with the maximum rate of weight loss at 5 C/min was 

good.  Less agreement was obtained on the residual char yield.  At 40 C/min, the scatter associated with 

measurements of Tpeak and the char yield increased.  Good fits to each weight loss curve were obtained by 

use of a kinetic model based on an irreversible, first order reaction with a high (ca. 244 kJ/mol) apparent 

activation energy (E).  Variations in values of E and the pre-exponential constant (A) are attributed to 

variations in thermal lag between the various instruments, and at different heating rates.  Kinetic 

parameters are presented which offer a good fit to the 5 C/min round-robin data, and which prescribe an 

envelope that contains the data.  We recommend that future studies of biomass pyrolysis by 

thermogravimetry include an analysis of Avicel PH 105 cellulose at 5 C/min, and a comparison of the 

resulting weight loss curve with the curves presented herein. 

 

Introduction 

Almost 20 years ago Chornet and Roy1 called attention to gross disagreements in the literature concerning 

the kinetics of cellulose pyrolysis.  At about the same time, Antal et al.2 reported systematic temperature 

shifts of 20 - 25C at all heating rates in a Dupont 951 thermogravimetric analyzer, depending upon 

whether the sample thermocouple was placed slightly upstream or slightly downstream of a 2 mg 
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cellulose sample.  Since that time, many more papers have appeared in the literature, yet there is still no 

consensus concerning the kinetics of cellulose pyrolysis.3  One explanation for the disagreements is the 

potential role of varied systematic errors in temperature measurement among the various thermobalances 

used by researchers.4,5  Systematic errors comparable to those reported by Antal et al.2 can explain the 

widely scattered values of the activation energy and pre-exponential constant recorded in the literature.6   

To test this hypothesis we organized a round-robin study of cellulose pyrolysis kinetics by 

thermogravimetry, whose results are recorded in this paper.  The organization of this round-robin 

benefited from the experience gained by one of the authors (MG) in an earlier study7 that involved three 

different laboratories.  The present round-robin included five widely used thermobalances.  All 

conventional designs for accurate measurement of weight loss and temperature in a heated environment 

were represented.  We deliberately permitted each laboratory to employ its own standard procedures 

related to gas flows, buoyancy corrections, etc. (see below) in order to obtain a realistic assessment of 

scatter in the data.  Future round-robin studies may wish to strictly define these procedures at the outset.  

To the best of our knowledge, this is the first round-robin study of the kinetics of cellulose pyrolysis 

reported in the literature. 

 

Table 1.   Characteristics of the instruments used in the round robin study. 

 TA Instruments 

SDT 2960 

Perkin Elmer TGS 

2/TGA 7 

Mettler Toledo 

TGA/SDTA 851e 

NetzschSTA 409C 

Balance sensitivity: 0.1 g 0.1 g 0.1 g 1.25 g 

Sample capacity: 200 mg 130 mg 1000 mg 2000 mg 

Thermocouple 

location: 

below and in 

contact with 

crucible holder 

below sample 

holder 

below and in 

contact with 

crucible holder 

below and in 

contact with 

crucible holder 

Calibration: melting point of 

different metal 

standards 

curie point of 

different metal 

standards 

melting point of 

different metal 

standards 

melting point of 

different metal 

standards 

Flow rates employed in 

the study (ml/min): 

100 – 500 75 – 140 30 100 

Sample holder 

Material: 

 

Diameter (mm): 

Height (mm): 

 

Platinum 

 

6.0 

3.0 

 

Platinum 

 

5.2 – 6  

1.4 

 

Platinum-Rhodium 

15.0 

1.5 

 

Platinum-Rhodium 

6.0  

4.0 
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TA Instruments SDT 2960
Mettler Toledo TGA/SDTA851

Perkin Elmer  TGS 2
Perkin Elmer  TGA 7

Netzsch STA 409C

 

Figure 1.  Schematics of the thermobalances used in this round-robin.  (The dashed lines represent the 

reference sample pan of TA SDT 2960.) 

 

Apparatus and Experimental Procedures 

Eight laboratories participated in this round-robin study (see the Acknowledgments section).  These 

laboratories employed the following thermogravimetric analyzers: three TA Instruments model SDT 2960, 

two Perkin Elmer model TGA7, a Perkin Elmer model TGS2, a Mettler Toledo model TGA/SDTA 851e, 

and a Netzsch STA 409C instrument.  Figure 1 displays schematics of these five thermobalances, and Table 

1 summarizes the manufacturers’ technical specifications of these instruments.  Table 1 also lists some 

details of the experimental conditions and procedures employed by each laboratory.  We remark that each 

participant in this study has had considerable experience with thermogravimetric analysis.  

The results we present represent each laboratory’s independent analysis of the sample, without 

knowledge of the results obtained from the other laboratories (except those results that were already 

available in the archival literature). 

Prior to the initiation of the round-robin we selected heating rates of 5 and 40C/min for study.  The 

lower rate was chosen to minimize systematic errors in temperature measurement due to thermal lag 

during pyrolysis; whereas the higher rate was employed to evoke some thermal lag.  Likewise, we asked 

our collaborators to use small sample masses ( 5 mg) in the experiments to further minimize the 

influences of heat and mass transfer.  The actual sample masses (m0) employed by the different 

laboratories at the two heating rates are displayed in Tables 2 and 3.  Note that many of the participants 

reduced the sample mass that they employed at the higher heating rate (see Table 3) to decrease the 

impact of heat and mass transfer limitations on the experimental measurements.  Also, the Hungarian 

Academy of Sciences (HAS) executed additional experiments with sample masses in the range 0.1 to 1.0 

mg to offer insight into the effects of sample size on results at the higher heating rate.  All the participants 

(except the HAS) used flowing nitrogen as the inert purge gas.  The HAS used high purity argon to 

maintain consistency with its earlier work. 
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All analyses reported in this paper employed Avicel PH-105 microcrystalline cellulose samples taken 

from the same can, that was obtained from FMC Corporation in 1985.  This can was first opened in 1996, 

and (except for occasional withdrawals of sample), has remained sealed and stored at room temperature in 

Honolulu during the past two years.  In an earlier paper3 we compared studies of samples taken from this 

can to samples of Avicel PH-105 cellulose taken from other cans stored in Honolulu and opened in 1990 

and 1986.  Over the ten year period the reproducibility of thermogravimetric analyses of samples taken 

from these three different lots of Avicel cellulose was good.3  Thus, a considerable amount of evidence 

exists to support the hypothesis that the thermal properties of Avicel cellulose remain unchanged during 

storage in air at room temperature over a period of years.  Also, Avicel cellulose is available in bulk and is 

not expensive.  For these reasons, we believe it to be a suitable standard sample for use within the 

biomass community. 

 

    

Figure 2.  TG curves recorded by the round-robin participants at 5 C/min (a) and 40 C/min (b). 

 

 

Kinetic Analysis 

The kinetic analyses presented in this paper are based on the first-order rate equation: 

)(1k
dt

d



          (1) 

where  = 1-(m(t) – mf)/(m0 – mf), k = A exp(-E/RT), m(t) is the time dependent sample mass, m0 is the 

initial, dry sample mass, mf is the final sample mass, A is the pre-exponential constant, E is the apparent 

activation energy, R is the gas constant, and T is the sample temperature.  Earlier work has shown that a 

first-order model offers a good fit to weight loss curves obtained at a single heating rate,3 and that 

differences in kinetic parameters obtained at different heating rates can be attributed to thermal lag.3,4  

These matters will be examined in greater detail below. 
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In addition to the parameters A and E, equation (1) depends upon the measured values of the initial 

sample mass (m0) and the mass of the char residual (mf).  In spite of our efforts to standardize the 

procedures employed by the round-robin participants, minor ambiguities appeared in the determination of 

m0 and mf.  These ambiguities resulted from the following instrumental and procedural subtleties.  (i) The 

slope of the baseline (empty pan) thermogravimetric (TG) curve of each participant differed slightly due 

to differing sensitivities of each instrument to the buoyancy effect.  (ii) Some of the participants 

automatically subtracted the TG curve of an empty pan experiment from their Avicel data to correct for 

baseline drift.  (iii) Some of the participants employed an isothermal drying period prior to the onset of 

heating at the prescribed rate.  To minimize the effects of these factors on the kinetic analysis, we defined 

the mass of the dry cellulose sample (m0) to be the measured TG value at a temperature safely above that 

needed to ensure dryness, but before the onset of pyrolysis (see below).  We also employed mf/m0 as a 

parameter in the non-linear least squares kinetic analysis of the data.  This approach incorporates 

ambiguities in the determination of mf and m0 into the parameter mf/m0, and frees the parameters E and A 

from the impact of these ambiguities.  In the Tables containing the results we list the last observed value 

of m/m0 in the interval of evaluation, mlast/m0, as well as the mf/m0 parameter determined by the kinetic 

evaluation. 

Our kinetic analysis of the participants’ data used non-linear least squares (NLS) algorithms which 

identified parameters (A, E, and mf/m0) that minimized values of the objective functions STG given below. 

    



N

1j

2calc

j

exp

jTG mmS         (2) 

In equation 2 (m)exp is the experimentally observed TG mass measurement, and (m)calc is the 

calculated mass value obtained by numerical solution of the first-order rate equation with the given set of 

parameters.  Subscript j denotes discrete values of m, and N is the number of data points used in the least 

squares evaluation.  To account for different systematic errors in sample temperature measurement 

manifested by each of the different instruments (see below), values of the objective function STG were 

evaluated within an interval that was defined relative to the value of the differential thermogravimetric 

(DTG) peak temperature (Tpeak).  The starting point of the interval was given by the time at which the 

measured sample temperature reached Tpeak - 80C; whereas the ending point of the interval was given by 

the time at which the temperature reached Tpeak + 50C.  Likewise, the initial dry sample mass (m0) was 

determined to be the TG value at Tpeak - 80 C.  The fit of the calculated TG curve to the experimental 

curve at the optimal set of parameters is given by: 

dev(%) = 100 (STG/N)0.5 / m0        (3) 

Two independently developed programs were used for the NLS analysis.  The Norwegian University 

of Science and Technology (NTNU) program was written in Matlab 4.0 operating under Windows NT.7  

The HAS program was written in Fortran 90 operating under Windows 95.8,9  This program runs as a 
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“console application” and passes the results to another Windows application program written in C++ for 

graphic display. Although the algorithms employed by the two laboratories were different, the values of 

the best-fit parameters identified by each program were essentially identical. 

 

    

 

Figure 3.  Kinetic evaluations of the TG curves.  Kinetic parameters used to create the best-fitting curves 

(  ) for each instrument are listed in Table 2 (5 C/min) and Table 3 (40 C/min).  (a) Instruments #1 

and 2.  (b) Instruments #3, 4, and 5.  (c) Instruments #6, 7, and 8. 
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Table 2. Kinetic evaluation of Avicel cellulose TG curves at a nominal heating rate of 5C/min. (See Figure 3.) 

Instrument 

number and 

graphic 

symbol 

 

m0 

(mg) 

 

dT/dt 

(C/min) 

 

Tpeak 

(C) 

 

100 mlast/m0 

(% of m0) 

 

E 

(kJ/mol) 

 

log A 

(log s-1) 

 

100 mf/m0 

(% of m0) 

 

Fit 

(%) 

#1 (-) 4.7 5.0 319a 10.9 263 21.1 13.0 0.9 

#2 () 5.1 5.0 326a 10.9 242 18.9 12.0 0.5 

#3 (o) 2.0 4.8 328b   6.0 236 18.3   6.7 0.4 

#4 () 5.1 5.0 327a   6.9 241 18.8   8.2 0.6 

#5 () 4.8 5.1 336a   6.8 234 17.8   8.0 0.5 

#6 () 4.2 5.0 328b   6.4 257 20.1   7.4 0.6 

#7 () 2.2 5.0 324b   4.0 241 18.8   5.2 0.6 

#8 (+) 4.7 5.0 326b   5.9 238 18.5   7.0 0.6 

Means 4.1 5.0 327   7.2 244 19.0   8.4 0.6 

Deviations 1.3 0.1   5   2.4   10   1.1   2.7 0.2 

a The DTG curve was calculated by the authors. 
b The DTG values were provided by the participants. 

 

Table 3. Kinetic evaluation of Avicel cellulose TG curves at a nominal heating rate of 40C/min. (See Figure 3.) 

Instrument 

number and 

graphic symbol 

 

m0 

(mg) 

 

dT/dt 

(C/min) 

 

Tpeak 

(C) 

 

100 mlast/m0 

(% of m0) 

 

E 

(kJ/mol) 

 

log A 

(log s-1) 

 

100 mf/m0 

(% of m0) 

 

Fit 

(%) 

#1 (-) 2.7 40.0 350a   3.1 211 16.3   3.9 0.4 

#2 () 5.0 43.0 363a 10.5 212 16.1 11.3 0.3 

#3 (o) 0.9 38.5 354b   3.0 217 16.6   3.3 0.3 

#4 () 1.2 41.7 354a   2.9 230 17.9   3.4 0.4 

#5 () 1.1 41.8 367a   3.8 232 17.5   4.8 0.6 

#6 () 1.0 39.8 359b   8.3 222 16.9   9.1 0.5 

#7 () 1.7 39.5 358b   5.2 227 17.4   6.0 0.4 

#8 (+) 1.2 39.0 359b   7.4 223 17.0   8.3 0.6 

Means 1.8 40.4 358   5.5 222 17.0   6.3 0.4 

Deviations 1.4   1.6   5   2.9     8   0.6   3.0 0.1 

a The DTG curve was calculated by the authors. 
b The DTG values were provided by the participants. 

 

 

Results and Discussion 

Figures 2a and 2b display results obtained by the round-robin participants at 5 and 40 C/min 

(respectively).  As expected, the 5 C/min curves enjoy generally good agreement: values of Tpeak (see 

Table 2) fall within a range of 17 C.  Instrument #5 recorded weight loss at the highest temperatures, and 

Instrument #1 at the lowest temperatures.  Differences in temperature measurement can result from 

different temperature correction algorithms employed by the operators.  The operator of Instrument #5 
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mentioned to us that the thermocouple employed in his instrument had not been re-calibrated for several 

months prior to the Avicel experiment.  Similarly, Instruments #1 and 2 recorded the highest value of the 

char residue (mlast/m0), and Instrument #7 the lowest char residue.  These differences can result from 

small errors in the specification of the initial (dry) sample mass, or baseline drift during heating.  Note 

that the values of mlast/m0 (see Table 2) span a range of 4.0 to 10.9%.  Obviously, the measurement of the 

very small Avicel char residue by thermogravimetry lacks precision. 

The 40 C/min curves evidence more scatter.  Nevertheless, Instrument #5 continued to record weight 

loss at the highest temperatures, and Instrument #1 at the lowest temperatures.  Likewise, Instrument #2 

continued to report the largest value of the char residue; whereas several different instruments concurred 

on the lowest value (see Table 3).  Note that the values of Tpeak at 40 C/min span a range of 17 C, which 

is identical to the scattering of values at 5 C/min.  These observations suggest that the differences in 

sample temperature measurement are largely due to different systematic errors in the calibration of the 

sample thermocouples used by the different instruments.  Also, the scatter in the measured values of the 

char residue remained large: values of mlast/m0 range from 2.9 to 10.5%. 

Tables 2 and 3 also display the results of a first order kinetic analysis of the individual weight loss 

curves at 5 and 40 C/min (respectively).  Fits of the kinetic model (with parameters listed in Tables 2 and 

3) to the experimental data are displayed in Figures 3a – 3c.  In all cases, the fit of the first order model to 

an individual weight loss curve is nearly perfect.  Values of the apparent activation energy associated with 

the 5 C/min data range from 234 to 263 kJ/mol, and values of log (A/s-1) lie between 17.8 and 21.1.  (We 

employ the notation A/s-1 to indicate the value of A divided by its unit; hence A/s-1 is a unitless number.)  

At 40 C/min the values of E range from 211 to 232 kJ/mol, and values of log (A/s-1) lie between 16.1 and 

17.9.  Although the range of kinetic parameters at each heating rate may appear to be large, in fact it 

represents only a small difference in experimental data.  To illustrate this fact, we used the mean values, 

and the highest and lowest values of the kinetic parameters taken from the central six curves in Figure 2a 

to generate simulated weight loss curves and their derivatives at 5 C/min (see Figure 4).  Obviously, 

differences between the three calculated curves displayed in Figure 4 are small relative to actual 

differences in the experimental curves displayed in Figure 2a.  From this it is evident that the locations 

and shapes of the experimental weight loss curves at a given heating rate are not overly sensitive to 

reasonable changes in the values of E, log A, and mf/m0. 
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Figure 4.  Sensitivity of simulated weight loss at 5 C/min to values of the kinetic parameters.  We 

display mcalc(t) and m0
-1(-dmcalc/dt) using the largest parameters ( - - - ; E = 256.79, log (A / s-1) = 20.102, 

mf/m0 = 0.1196), the smallest parameters (  ; E = 236.09, log (A / s-1) = 18.262, mf/m0 = 0.0517), and 

the mean values of the parameters (○ ○ ○ ; E = 242.52, log (A / s-1) = 18.892, mf/m0 = 0.0775) from kinetic 

analyses of the data provided by six of the round-robin participants (see text). 

 

 

 

The decrease in the values of both E and log A at higher heating rates (compare values in Table 3 to 

those in Table 2) is a familiar manifestation of the compensation effect.  Both this decrease, and the 

related compensation effect, can result from increased thermal lag at higher heating rates.6  Systematic 

errors in temperature measurement, which result from thermal lag, can be reduced by decreasing the size 

of the sample.  Figure 5 illustrates this approach.  As the sample size is reduced from 0.95 to 0.11 mg, the 

thermal lag decreases by 8 C.  Note that this 8 C decrease represents half of the range of values of Tpeak 

determined by the various instruments at 40 C/min.  Table 4 displays kinetic analyses of the curves in 

Figure 5.  Note how the decrease in thermal lag increases the values of E and log A. 
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Figure 5.  Effect of sample mass on thermal lag inherent in the TG curves measured by Instrument #3 at 

40 C/min. 

 

Table 4.  Effect on the sample mass on the kinetic evaluation at a nominal heating rate of 40C/min as measured 

by Instrument #3.  (See Figure 5). 

 

m0 

(mg) 

 

dT/dt 

(C/min) 

 

Tpeak 

(C) 

 

100 mlast/m0 

(% of m0) 

 

E 

(kJ/mol) 

 

log A 

(log s-1) 

 

100 mf/m0 

(% of m0) 

 

Fit 

(%) 

0.11 38.4 346 2.2 224 17.5 2.8 0.4 

0.53 38.3 350 2.9 221 17.1 3.4 0.4 

0.94 38.5 354 3.0 217 16.7 3.3 0.3 

Means: 38.4 350 2.7 220 17.1 3.2 0.4 

 

Our readers may wonder if the temperature shifts displayed in Figure 5 (and elsewhere in this paper) 

could result from mass transport limitations.10  It is well known that mass transport limitations can 

strongly affect the char yield.  It is also possible that differences in the gas flow rates, and the exposure of 

the sample to the gas flow, might explain some of the observed differences between the different 

instruments employed in this study.  Nevertheless, we remark that an increase in resistance to mass 

transfer lowers the value of Tpeak for cellulose pyrolysis at a given heating rate.11-13  But in Figure 5 the 

values of Tpeak increase as the sample size (i.e. the resistance to mass transfer) increases.  Consequently, 

we doubt that the temperature shifts displayed in Figure 5 are a result of mass transfer resistances. 

One approach to representing the effects of thermal lag on pyrolysis kinetics is to incorporate the 

uncertainty in the temperature measurement into an uncertainty in the value of log A.  As discussed in 

earlier papers,3,4,9 this approach has merit because small changes in the value of log A (at constant E) 

result in temperature shifts of the weight loss curve without significant changes in the actual shape of the 

curve.  Thus the uncertainty in the temperature measurement is represented as an uncertainty in the value 

of log A.  Following this procedure, we fixed the value of the parameter E at the mean value (i.e. 244 

kJ/mol) listed in Table 2, and calculated new values of the parameters log A and mf/m0 to give a best fit to 
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each individual weight loss curve (see Table 5).  As shown in Figure 6a, the curve which results from the 

mean values of log A and mf/m0 listed in Table 5 offers a good fit to all the weight loss curves at 5 

C/min.  Furthermore, we can construct an envelope for all the experimental curves displayed in Figure 2a 

by use of the largest and smallest values of log A and mf/m0 listed in Table 5, and the fixed value E = 244 

kJ/mol.  This envelope is also displayed in Figure 6a.  Note that this envelope nicely incorporates the 

results of all the participants in this study.  Our readers may wonder how the shape and placement of the 

three calculated weight loss curves change when the heating rate is increased from 5 to 40 C/min.  Figure 

6b displays these three curves (which are based on the 5 C/min parameters), as well as the round-robin 

experimental data at 40 C/min, and a similar, first order fit to the high heating rate data.  Considering the 

spread in the round-robin data, the low heating rate kinetic parameters offer a reasonable fit to the higher 

heating rate data.  For example, the curve (open circles) derived from the mean values of the 5 C/min 

data in Table 5 is shifted to lower temperatures by only 4 C from the curve (closed circles) that 

represents a good fit to the 40 C/min data.  Likewise, the high temperature envelope curve is only about 4 

C lower than the highest temperature experimental data.  We believe that thermal lag is responsible for 

the small differences (ca. 4 C) that separate the 40 C/min experimental curves from the calculated 

curves obtained by use of the 5 C/min kinetic parameters. 

 

Table 5. Kinetic evaluation of Avicel cellulose TG curves at a nominal heating rate of 5C/min using the mean 

value of the apparent activation energy given in Table 2 as a fixed parameter.a 

Instrument 

number 

Ea 

(kJ/mol) 

log A 

(log s-1) 

100 mf/m0 

(% of m0) 

Fit 

(%) 

#1 244 19.4 12.6 1.1 

#2 244 19.0 12.0 0.5 

#3 244 19.0 6.9 0.5 

#4 244 19.0 8.3 0.6 

#5 244 18.7 8.3 0.7 

#6 244 19.0 7.1 0.8 

#7 244 19.1 5.3 0.6 

#8 244 19.1 7.2 0.6 

Means – 19.0 8.5 0.7 

Deviations –   0.2 2.6 0.2 

a The tables show only the significant digits of the parameters.  In the actual calculations the values were not 

rounded to three digits.  Exact values of the parameters are listed in Table 6.  
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Table 6.  List of the mean parameter values with five-digit precision, as they were used in the calculations. 

Description E 

(kJ/mol) 

log A 

(log s-1) 

100 mf/m0 

(% of m0) 

Means of the parameters in Table 2.  (Kinetic evaluation of 

the 5C/min experiments.) 

243.95 19.027   8.431 

Means of the parameters in Table 2 without the experiments 

with the highest and lowest Tpeak.  (See curve    in Figure 

4.)  

242.52 18.892   7.747 

Means of the parameters in Table 5. (Kinetic evaluation with 

a fixed E value.  See curve    in Figure 6.) 

243.95 19.023   8.451 

Highest log A and lowest mf/m0 in Table 5. (See curves   

 in Figures 6a and 6b.) 

243.95 19.360   5.250 

Lowest log A and highest mf/m0 in Table 5. (See curves    

in Figures 6a and 6b.) 

243.95 18.710 12.570 

Means of the parameters in Table 3.  (Kinetic evaluation of 

the 40C/min experiments.  See curve    in Figure 6b.) 

221.63 16.964   6.261 

 

 

    

Figure 6.  Accord of the first order rate law    (E = 243.95 kJ/mol, log (A / s-1) = 19.023, and mf/m0 = 

0.0845; which are exact values of the means listed in Table 5, with the round-robin results (–––) at 5 

C/min (a) and 40 C/min (b).  Kinetic parameters for the two curves    (E = 243.95 kJ/mol, log (A / 

s-1) = 18.710, and mf/m0 = 0.1257) and    (E = 243.95 kJ/mol, log (A / s-1) = 19.360, and mf/m0 = 

0.0525), which prescribe an envelope for the round-robin results, are the maximum and minimum values 

of the parameters listed in Table 5.  The curve    (E = 221.63 kJ/mol, log (A / s-1) = 16.966, and mf/m0 

= 0.0626; which are exact values of the means listed in Table 3) in panel (b) represents a good fit to all the 

round-robin data at 40 C/min. 
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Conclusions 

1. Good agreement was obtained between all the participants of this round-robin at a low heating rate (5 

C/min).  For a fixed value of weight loss, the scatter in the temperature measurement was about 17 

C.  Measured values of the char yield lay between 4.0 and 10.9%. 

2. All the low heating rate data can be well fit by an irreversible, single step, first order rate equation 

with a high activation energy (244 kJ/mol).  Uncertainty in the temperature measurement can be well 

represented by a statement of the uncertainty in the value of log A (i.e. log A = 19.0  0.2).  Likewise, 

uncertainty in the residual char measurement can be well represented by a statement of the uncertainty 

in the value of mf/m0. 

3. At a higher heating rate (40 C/min) the agreement was somewhat less good.  Scatter in the 

temperature measurements remained at 17 C; while the range (2.9 to 10.5%) of values of the char 

yield increased. 

4. Kinetic analyses of the 40 C/min data resulted in values of E and log A that were somewhat lower 

than those obtained at 5 C/min.  This decrease in E and log A was attributed to the increased impact 

of thermal lag on the experimental temperature measurement at the higher heating rate. 

5. A decrease in the sample size from 0.95 to 0.11 mg decreased the systematic error due to thermal lag, 

and increased the values of E and log A.  This result is consistent with the hypothesis that thermal lag 

is largely responsible for the decrease in values of E and log A at higher heating rates. 

6. Avicel PH 105 microcrystalline cellulose is stable during storage in air at room temperature over a 

period of years, and it is widely available in bulk at a low price.  We recommend its adoption as a 

standard for use by scientists concerned with the pyrolysis of organic materials. 

7. Mean values of the kinetic parameters listed in Table 5 can be used with the rate law given by 

Equation 1 to create a curve (see Figure 6a) which represents a good fit to all the experimental data 

obtained in this round-robin at 5 C/min.  Similarly, the high and low values of log A and mf/m0 given 

in Table 5, together with the fixed value E = 244 kJ/mol, can be used to create curves which prescribe 

an envelope (see Figure 6a) that contains all the weight loss curves displayed in Figure 2.  The exact 

kinetic parameters used to create these three curves are listed in Table 6.  We recommend that future 

studies of biomass pyrolysis by thermogravimetry include an analysis of Avicel PH 105 cellulose at 5 

C/min, and a comparison of the resulting weight loss curve with the good fit curve, and the envelope 

of curves discussed above. 

8. One reviewer commented: “If a study of this care, with such capable authors, reveals such a 

significant effect of TGA apparatus, it may be that readers will shy away from TGA as a tool for 

kinetics analysis, with or without Avicel PH 105 cellulose.  I wonder if the authors could comment on 

this.”  In our experience, the scatter in experimental data displayed in this paper well represents the 
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current state-of-the-art.  Careful work reported by esteemed colleagues in the prior literature no doubt 

incurred similar (if not worse) instrumental errors.  Modern thermobalance data are beguilingly simple 

to generate, but not necessarily accurate.  Significant uncertainties are present in data obtained from 

the best state-of-the-art instruments.  Unfortunately, we are not aware of any other experimental 

techniques which offer more reliable data.  We are inclined to acknowledge the fact that biomass 

pyrolysis kinetics are inherently difficult to study by any technique, and these difficulties contribute 

significant uncertainties to our understanding of the phenomena.  In light of this fact, we recommend 

that all researchers heed the impact of systematic errors on their interpretation of thermobalance data. 
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Nomenclature 

 reacted mole fraction 

A preexponential factor  (s-1) 

DTG m0
-1 (-dmexp/dt)  (s-1) 

E apparent activation energy  (kJ/mol)  

fit deviation between mcalc(t) and mexp(t) 

mcalc(t) sample mass calculated from the kinetic equation  (mg) 

mexp(t) experimental sample mass  (mg) 

m0 dry sample mass before the start of cellulose decomposition (defined as mexp at 80C below 

Tpeak) 

mf the char yield obtained from the least squares kinetic evaluation 

mlast the last observed value of m in the interval of evaluation (i.e. mexp at 50C above Tpeak) 

R gas constant  (kJ mol-1 K-1) 
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STG objective function of the least squares evaluation 

t time  (s) 

T temperature  (C or K) 

Tpeak DTG peak temperature  (C) 
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