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ABSTRACT 

The variations in chemical composition and the effects of sample origin and pre-treatments represent a major 

problem in the kinetic modeling of wood pyrolysis. This study aims to a deeper understanding of these issues 

by examining a species, chestnut (Castanea sativa), that contains a higher amount of extractives than the 

common forest hardwoods of the temperate zone. Thermogravimetric and kinetic analysis were carried out on 

five chestnut samples obtained from plants grown in France, Italy and Russia. The results were compared to 

that of a widely used and investigated species (beech) belonging to the same plant family. Degradation takes 

place over a narrower range and at lower temperatures, giving higher yields of char. In all cases, hot water 

washing causes a decrease in the fixed carbon content and char yield, an increase in the peak rate, a better 

separation between pseudo-component dynamics and a displacement of the reaction zones toward higher 

temperatures. Though with some scatter and quantitatively lower, the same effects are also observed as a 

consequence of acetone extraction. Both pre-treatments act to reduce the differences between chestnut 

samples and with beech, but peculiarities due to origin and species are preserved. The three parallel reaction 

mechanism for the hemicellulose, cellulose and lignin, with the same activation energies previously 

determined for other hardwood species by Grønli et al. (Ind. Eng. Chem. Res. 2002, 41, 4201) is still 

acceptable for engineering applications. On the contrary, predictions of the process details require single 
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curves evaluations, resulting in kinetic data specific to sample origin, except for the activation energy of the 

lignin devolatilization step. Kinetic parameters also indicate that the lower char yields, associated with pre-

treatments, are chiefly due to alterations in the cellulose decomposition kinetics, whereas the effects on the 

other two components nearly compensate each other. Finally, reliable evaluations are provided of 

experimental uncertainties associated with repeatability of experiments and reproducibility of sample 

properties. 

 

INTRODUCTION 

Computer codes of detailed mathematical models, coupling the chemical kinetics of wood pyrolysis, 

gasification and combustion with the conservation equations for heat, mass and momentum transfer, are 

advanced tools for the design and optimization of chemical reactors for thermochemical conversion 

processes. Also, the knowledge of fuel reactivity is needed to formulate simple rules for empirical design and 

scale-up. A recent study carried out by Grønli et al.1 examines the thermogravimetric curves of nine wood 

species with chemical composition lying within the standard range for hardwoods and softwoods. It shows 

that a unified devolatilization mechanism, consisting of three parallel reactions and the same set of activation 

energies for the pseudo-components hemicellulose, cellulose and lignin (100, 236 and 46 kJ/mol), can 

describe well the high-temperature (> 553K) degradation. The extension of the mechanism at lower 

temperatures requires, in a few cases, two further reactions with activation energies equal to 105 and 

127kJ/mol. 

 

Previous experimental analyses2,3 on the pyrolysis of thick cylinders and packed beds of particles report 

significant differences between chestnut (a hardwood) and other (standard) hardwoods and softwoods. 

Chestnut produces char in a very high yield and undergoes significant degradation already at relatively low 

temperatures. The sample, derived from a species grown in Italy, is characterized by a high content of 

extractives, which results in a diminished holocellulose contribution, compared with other hardwoods. 

Acetone extraction is observed3 to reduce the differences between chestnut and the other wood species. 

However, no quantitative information can be obtained on the reaction kinetics, due to the dominant role 

played by transport phenomena in the experiments carried out. On the other hand, it cannot be excluded that 

the peculiarity of the chestnut sample examined is due only to the origin of the plant and/or that other sample 

pre-treatments can be more effective in eliminating the compounds responsible for the differences in the 

pyrolysis rate and products. 

 

Following the peculiar behavior previously observed,2,3 the global devolatilization kinetics of chestnut is 

examined in this study by means of thermogravimetry. More precisely, the investigation is carried out for five 

samples, of different origin, and their counterparts submitted to acetone extraction or hot water washing. 
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Such aspects have not been systematically investigated for any wood species in previous literature (especially 

no study is currently available on the effects of sample origin). The aim of the paper is twofold: 1) to quantify 

the influences of sample origin and pre-treatments on the degradation characteristics of chestnut wood when 

the process is controlled by chemical kinetics, and 2) to understand whether the unified mechanism proposed 

by Grønli et al.1 is also valid for wood species with a non-standard chemical composition/behavior. 

 

EXPERIMENTAL ANALYSIS AND KINETIC MODELING 

Material and Experimental Procedure 

The experiments have been carried out on five chestnut samples (Castanea sativa), derived from knot- and 

bark-free logs. The influences of the different parts of the plant on the decomposition process are outside the 

scope of this work, but it is acknowledged that this subject, not systematically examined in the literature, is 

worth future investigation. The plants were grown in different geographical areas: one in France (indicated in 

the following as F), two in Italy (I1 and I2), and two in Russia (R1 and R2). The sample I1 is the same used in 

the experiments reported by Di Blasi and coworkers.2,3 Its chemical composition consists of: 16% extractives, 

18% lignin and 66% holocellulose (by difference). The extractive content (1g of biomass extracted with 60ml 

of acetone in a Soxhtec HT2, using residence times for the boiling and rising stages of 90 and 20min, 

respectively, and a plate temperature of 363K) has also been determined in the other cases and reported in 

Table 1A. (The tables are collected at the end of this document.) It varies with the origin of the sample, 

resulting in quite high values for the samples I2, R2 and R1 (8.5-5.8%) and barely higher than the usual 

standards for the sample F. Beech wood is used all through the paper for comparison (the extractive content is 

listed in Table 1A). Indeed, both chemical composition and devolatilization characteristics of this species are 

roughly coincident with the average values reported for standard hardwoods.1 

 

Extractives which, for a given species, may vary owing to the site where plants are grown and the amount of 

heartwood, are a complex mixture4 of low molecular weight sugars, inositols, amino acids, simple fats, 

carboxylic acids, terpenes and phenolic compounds. Specific to chestnut extractives is the presence of 

tannins.3  In addition to the extracted chestnut samples indicated in the following with the abbreviation E (FE, 

I1E, I2E, R1E and R2E, respectively) and beech, extractives from samples I1, I2, R1 and R2 have been 

collected and investigated. 

 

Water washing has received a great deal of attention as a mean to eliminate alkali metals from herbaceous 

biomass, thus mitigating their noxious effects in relation to fouling and slagging during combustion.5-8 

Moreover, this pre-treatment has been used to improve peak resolution in thermogravimetric curves and to 

simplify in-situ investigation of cellulose decomposition kinetics.9-10 Hot-water washing (1g of wood and 

100ml of distilled water for two hours at 333K in a stirred vessel) has also been applied to chestnut samples, 
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which in the following analysis are indicated with the abbreviation W (FW, I1W, I2W, R1W and R2W, 

respectively), and beech. 

 

In order to clarify the possible role played by the chemistry of wood components on the deviations of chestnut 

wood with respect to standard hardwood species during thermal decomposition, thermogravimetric curves 

have also been measured for three lignin samples. They were obtained, following the Klason method, from 

untreated samples of beech and chestnut I1 and from an extracted sample of chestnut I1. 

 

The proximate analyses of chestnut samples are also listed in Table 1A.  Data on beech wood are included for 

comparison. Compared with beech, the fixed carbon content is higher for the chestnut samples (15-22% 

versus 13%). Variations in the proximate analyses of wood samples due to pre-treatments can also be seen. 

Hot water washing always causes a significant decrease in the fixed carbon content (factors of 18-46% for 

chestnut samples and 30% for beech). Apart from beech and the sample F, which show a small increase, the 

effects of extraction are qualitatively similar but quantitatively lower (reduction in the fixed carbon content 

between 7-32%). 

 

As shown by means and standard deviations (Table 1A), both hot water washing and acetone extraction act to 

reduce the differences between chestnut samples due to origin. Using the means as representative of chestnut 

properties, it can be observed that differences are also reduced with respect to beech for the samples subjected 

to a hot water treatment. They are also higher than those due to origin. In conclusion, both pre-treatments are 

not capable of making coincident the proximate analyses of the different chestnut samples and beech. 

 

Table 1B reports the proximate analyses of the four extractives and the three lignin samples. For both cases, 

quite high values of the fixed carbon content are found. For extractives, values are between 30-32%. As for 

lignin, the wood species does not appear to play any role (about 47% for untreated beech and chestnut) but 

extraction does (43% for extracted chestnut). 

 

A TA Instruments SDT 2960 simultaneous TG-DTA apparatus has been employed for the thermogravimetric 

tests.1 This apparatus detects the mass loss with a resolution of 0.1g and the temperature is measured in the 

sample holder. High purity nitrogen has been used for the tests at a flow rate of 150ml/min. It has been 

purged for 20 min, before starting the heating program, in order to established an inert environment. The 

experiments have been started with a drying session (a heating rate of 30K/min up to 383K with a holding 

time of 30min). The subsequent thermal decomposition has been carried out at a slow heating rate (5K/min to 

a final temperature of 773K), to keep possible heat/mass transfer intrusions at minimum, with a sample mass 

of 5mg and particle sizes below 0.25mm. These are sufficiently small to avoid intra-particle gradients given 
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that an eightfold difference in the level of grinding (1-0.12mm) has been recently found11 to have only minor 

effects on the thermal decomposition of biomass. 

 

The repeatability of pretreatments and the reproducibility of the sampling strategy (possible variations in the 

properties for samples obtained from the same tree or trees grown in the same geographical area) have also 

been investigated. As for the first point, thermogravimetric measurements have been carried out on beech 

samples previously subjected to three separate tests for acetone extraction and hot water washing, 

respectively. The tree-to tree variation of the characteristics within a forest was determined in an earlier 

project by M. G. Grønli. Birch samples from three trees growing on different types of soil were investigated 

and have been re-examined in this study. The repeatability of thermogravimetric experiments has also been 

assessed by using measurements carried out on untreated (6), extracted (5) and water washed (4) beech 

samples over a period of about two years. 

 

Kinetic modeling 

The three-step model with linear or non-linear dependence on species concentrations, for the volatile 

fractions of hemicellulose, cellulose and lignin, has been widely applied 9,10,12-19 to describe 

thermogravimetric curves of wood/biomass devolatilization obtained under dynamic conditions. Sometimes it 

has been modified to include additional steps for improving the accuracy of the predictions1,11,20. Isothermal 

measurements have been modeled either with one-step or multi-step mechanisms as shown in the literature 

reviews of two recent papers21,22. In a few cases nucleation models and discrete activation energy models 

have also been proposed.23 

 

The three-step linear model is chosen in this study as it requires a relatively low number of parameters and 

can be easily coupled with transport equations for modeling practical systems. The amount of volatiles 

produced by the jth component of a unit mass of sample between t=0 and t= is indicated by the parameters 

cj (j=hc (hemicellulose), c (cellulose), l (lignin)). These, and the corresponding kinetic constants (Aj and Ej, 

pre-exponential factor and activation energy, respectively), are estimated by means of a least squares 

evaluation of the differential curves (the final char yield can be calculated from the cj values, given that the 

summation of volatile and solid products is equal to 1). The fit between calculated (calc) and observed (obs) 

dY/dt, for each time, ti, is characterized by the following variable: 
                                   

Nk

 

 fit (%) =100 ( [dY/dt ]ik
obs (ti) – [dY/dt ]ik

calc (ti)
2 / Nk)

1/2 
/hk

 (1) 

                                  i=1 

 

where Nk is the number of points on the kth evaluated curve (Nk varied between 500 and 1000 in the 

calculations) and hk denotes the height of kth evaluated curve.  
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It has been suggested11,19 that, to avoid compensation effects in the estimation of the kinetic constants, 

different heating rates should be considered. In the present paper only one heating rate (5K/min) is examined 

because of the high number of experiments carried out to investigate the effects of sample origin and pre-

treatments (25), to evaluate the repeatability of thermogravimetric measurements (15) and pretreatments (6) 

and to assess the role of sampling strategy (3). Then, the kinetic evaluation is made only for measurements 

carried out at 5K/min. This, however, does not impugn the validity of the present results. Indeed, the three-

step linear model has already been shown to predict well thermogravimetric curves of rice hulls obtained for a 

wide range (3-100K/min) of heating rates,13 providing variations on the pre-exponential factors (the 

activation energies are barely different from those of the present study). It should also be mentioned that n-

order reaction rates for the three-step model have resulted in activation energies for the decomposition of the 

hemicellulose and lignin components16-18 significantly different from those used here. It can be understood 

that, in general, by increasing the number of parameters, the accuracy of the predictions is increased, but this 

appears to be a formal consequence of the increased number of freedom in the models. Given the global 

nature of the reaction kinetics and the composite nature of wood, it is possible that changes in the definitions 

of the pseudo-components give rise to different kinetic models and constants. These aspects should be 

investigated in future systematic studies.  

 

RESULTS AND DISCUSSION 

Results are presented and discussed into two parts, the first dealing with the devolatilization characteristics 

evaluated by means of the measured thermogravimetric curves and the second with the kinetic constants 

estimated for the three-parallel reaction mechanism. 

Devolatilization Characteristics of Wood 

The mass fraction, Y, and the time derivative of the mass fraction, -dY/dt, (indicated as TG and DTG curves 

in the following) are reported as functions of temperature in Figs.1A-1B for the untreated chestnut and beech 

samples. The shape of the rate curves is qualitatively similar in all cases and allows the usual reaction zones, 

extensively discussed in the literature, to be seen. The quantitative characteristics of the thermogravimetric 

curves are summarized in Table 2A in terms of several temperatures, introduced by Grønli et al.,1 that is, 

Tinitial (the beginning of the decomposition process, corresponding to Y=0.975), Tonset (the beginning of 

hemicellulose decomposition), Tshoulder (the peak of the hemicellulose decomposition or, if it is not detectable, 

the point of the lowest slope of the DTG curve in this region), Tpeak (the maximum devolatilization rate), and 

Toffset (the beginning of the final, tailing region dominated by lignin decomposition). Table 2B reports the 

solid mass fractions and the devolatilization rates, corresponding to the characteristic temperatures, together 

with the yield of char, Y773 ( the solid mass fraction detected for T=773K). 
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Figure 1. TG (A) and DTG (B) curves of untreated beach and chestnut (F, I1, I2, R1, R2) samples. 
 

 

The origin of the sample influences quantitatively the devolatilization characteristics. The DTG curves for 

samples F, I1, I2 and R2 are similar, whereas sample R1 shows significant deviations. Indeed, degradation, 

on the average, occurs at higher temperatures and over a wider zone (Table 2A). Samples R1 and R2 exhibit 

lower peak rates than the other samples, leading to high ratios (dY/dt)shoulder /(dY/dt)peak (values of 0.47 and 

0.62, respectively). The weight loss curves of the two samples grown in Italy coincide for temperatures below 

478K and above 603K, whereas for the two Russian samples the accordance is limited to very low (<473K) 

or very high (>643K) temperatures. On the whole, differences between chestnut samples are small for the 

initial part of the degradation curve (maximum differences of 6-7K for Tinitial and Tonset(hc), respectively), 

increase in the central zone (maximum differences of 17K for Tshoulder  and Tpeak) and attain their maximum 

along the tail (maximum differences of 28K for Toffset(c)) (see also the standard deviations with respect to 

means, Tables 2A-2B). The char mass fractions are comprised between 0.28-0.22. 

 

Figures 1A-1B and Tables 2A-2B also permit a comparison between beech and chestnut. The very peculiar 

behavior of chestnut woods, already observed for thick samples,2,3 is confirmed. The differences are large for 

all the variables, in particular the position of the peak rate (Tpeak values anticipated of 22-39K) and the yields 

of char (positive deviations up to 46%).  

 

From the quantitative point of view, the differences in the characteristic devolatilization temperatures due to 

sample origin are lower than those between chestnut and beech. Indeed, standard deviations with respect to 

means for the chestnut temperatures (Table 2A) are comprised between 3-11K. On the contrary, using the 

means as representative of chestnut values, a comparison with beech leads to values between 6-23K. The 

same trend is also shown by the characteristic mass fractions with standard deviations varying between 0.02-

0.03 (chestnut samples) and 0.02-0.1 (chestnut and beech). 
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An example of the effects caused by the pre-treatments is shown in Figs. 2A-2B by means of the TG and 

DTG curves measured for the sample R1 and beech, respectively. Tables 2A-2B summarize the results in 

terms of the devolatilization parameters previously introduced. Independently of the methodology applied, 

trends are similar for both chestnut and beech with stronger effects associated with hot water washing. 

Previous findings9,10,24,31 are confirmed, that is, sample pre-treatments offer a procedure for separating and 

sharpening the peaks, with also an increase in the reaction temperature (in particular, Tpeak) and a reduction in 

the yields of char. As clearly shown by Figs. 2A-2B, hot water washing causes a displacement of the entire 

thermogravimetric curves towards higher temperatures, though the effects are less pronounced for the 

hemicellulose zone (left side of the curves). The displacement is essentially limited to the cellulose and tail 

regions (right side of the curves) in the case of extraction.  
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Figure 2. Effect of extraction and hot water washing on the thermal behavior of a chestnut (A) and the beech (B) 

sample. 

 

 

In quantitative terms, for the hemicellulose region of the chestnut samples, variations on Tinitial, Tonset(hc), and 

Tshoulder  are always below 10K for water washing and 4K for extraction. The width of the hemicellulose zone, 

TshoulderTonset(hc), remains roughly unchanged or is barely enlarged. As a consequence of the weak effects on 

the characteristic temperatures, Yshoulder  values are practically independent of sample pre-treatment. The peak 

rate in this region, (dY/dt)shoulder , is also weakly affected by pre-treatments, except for the Russian samples.  

 

As anticipated, the strongest effects caused by pre-treatments are the higher peak rates (Table 2B) and the 

improved separation (Table 2A) between the shoulder and the peak regions of the DTG curves. The 

displacement towards higher temperatures of the cellulose peak for the chestnut samples is especially high for 

hot water washing giving Tpeak=13-20K and Toffset(c)=8-17K (against 1-10K and 2-14K, respectively, for 

extraction). Similar to the hemicellulose zone, the width of the cellulose zone, Toffset(c)Tpeak, is only weakly 

affected though there is some scatter on the data. On the other hand, the entire reaction zone, Toffset(c)Tonset(hc), 
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and that of the high rates, TpeakTshoulder, are enlarged. For instance, for hot water washing, such enlargement 

corresponds to 7-12K and 9-12K, respectively. In other words, the extension of region where hemicellulose 

or cellulose degrade appears to be almost independent of the pre-treatments, which only affect the relative 

position and overlap between the two zones. Finally, the effects of pre-treatments are dependent on the 

sample origin. For instance, with reference to Tpeak and hot water washing, the lowest sensitivity is shown by 

the sample R1 and the highest by the sample I1, indicating that the nature of the eliminated compounds is 

affected by the geographical area where the plants are grown. 

 

In agreement with the results previously reported,3 extraction and mainly hot water washing cause a 

significant decrease in the yield of char from chestnut decomposition. Measurements show reductions in the 

range 14-28% (extraction) or 18-39% (hot water washing), with an increase in the peak rates. The exception 

is represented by the extracted sample F, when a very small increase is observed (4.%). It is worth observing 

that the dependence of the char yield on the sample origin or pre-treatment is the same as that of the fixed 

carbon content of the wood samples. This finding is a further confirmation of the direct correlation proposed 

by Antal et al.25 between these two parameters.  

 

The differences in the hemicellulose zone of the DTG curves, already small for the untreated chestnut 

samples, are further reduced as a consequence of the pre-treatments (standard deviations for Tinitial, Tonset(hc) 

and Tshoulder  become smaller (Table 2A), except for Ypeak). Hot water washing also reduces the differences for 

the right side of the curves, especially for Toffset(c). The same trend is shown by the extracted chestnuts if the 

sample R1 is disregarded. However, it is worth observing that none of the two pre-treatments is capable of 

eliminating the effects due to sample origin.  

 

Compared with chestnut, the effects of pre-treatments are smaller for beech wood. Indeed, Tinitial, and Tonset(hc) 

show a small increase (2 and 4K), Tshoulder (as well as the width of the holocellulose degradation zone) 

remains unchanged, Tpeak is constant (extraction) or slightly increases (by 9K, hot water washing) and the 

enlargement of the entire reaction zone is quite narrow (7K). In the case of hot water washing, a decrease in 

the char yield (by a factor of 35%) is also observed. 

 

The properties of extracted and washed beech (Tables 2A-2B) can be compared with the means reported for 

the chestnut samples. Both pretreatment reduced the difference between the two species.  Nevertheless, the 

difference between the means of the chestnut properties and beech is still higher than the variation within the 

chestnut samples. 

 

Tables 2A-2B also report the experimental uncertainties of the devolatilization characteristics. These values 
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are the root mean squares of the corresponding standard deviations calculated for 9 tests concerning the 

repeatability of pretreatments and reproducibility of sampling strategy (Estimation 1 of the experimental 

uncertainty) and 15 thermogravimetric tests on beech wood (Estimation 2 of the experimental uncertainty). In 

all cases they are much lower than the standard deviations of the chestnut devolatilization characteristics, that 

is, the differences caused by sample origin are much higher than those associated with the 

repeatability/reproducibility of the experimental data. Comparable values of the experimental uncertainties of 

the thermogravimetric measurements (Estimation 2) and the standard deviations for the water washed 

chestnut samples are observed only for the characteristic mass fractions (Table 2B). 

 

Very scarce information is available on the thermal response of extractives and specifically on their intrinsic 

degradation characteristics. The measured TG and DTG curves of extractives from samples I1, I2, R1 and R2 

are reported in Fig. 3. Degradation takes place with very slow (about one order of magnitude below those of 

the wood samples) and flat (three barely visible peaks at about 470-490K, 560-570K and 660-680K) rates 

over a very broad temperature range. These features, that is, a pyrolytic behavior comparable to a baseline, 

can be partially responsible for the limited effects caused by extraction on the weight loss characteristics of 

chestnut samples originated from different geographical areas. The yields of char from extractives are high, a 

finding which again correlates well with the fixed carbon content. It also supports the speculation2,3 that 

extractives intrinsically contribute in product distribution from the wood degradation. They have also been 

reported26,27 to favor the formation of gaseous and solid (char) products (at the expense of liquids), owing to 

physical effects, that is, the prolonged residence times of vapors within the reacting sample. 
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Figure 3. Thermal decomposition of the extractives prepared from various chestnut samples. 

 

Some information on the weight loss characteristics of chestnut lignin (from untreated and extracted sample 

I1) can be obtained from Fig.4 (beech wood lignin is included for comparison). Extraction gives rise to 

slightly higher rates and lower yields of char, in accordance with the findings reported above for wood and 
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the proximate analyses of the two samples. Common to both chestnut and beech lignin are the slow 

devolatilization rates over a very wide range of temperatures and the very high char yields. These results 

could suggest that the chemico-physical properties of the holocellulose fractions may be among the factors 

responsible for the significant differences still observed between the pre-treated chestnut and beech samples. 
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Figure 4. Thermal decomposition of lignins prepared from beech and chestnut. 

 

The variations in the devolatilization characteristics, following pre-treatments, are a consequence of 

alterations in the chemical composition and probably the molecular structure of the woods. Hot water 

washing and acetone extraction mainly remove inorganics and extractives, respectively. In the former case, 

some sugars and phenolic compounds are also eliminated28 whereas, in the latter case, the loss of some 

inorganic matter has to be considered.29 Moreover, it can be expected that, in the case of hot water treatment, 

hydrolysis of some organic compounds takes place at a certain extent. All these factors highly affect the 

products and degradation rate of the lignocellulosic fuels. It is reported30-32 that the metallic ions of the 

biomass exert a catalytic action which makes the degradation to occur at lower temperature and favors char 

formation. The important role played by the physico-chemical properties of cellulose on the decomposition 

kinetics is also well known.33 Actually, for the wood samples examined here, the partial removal of 

inorganics eliminates the associated catalytic action, the extraction of organic compounds eliminate the 

related intrinsic behavior/products and the possible cleavage of chemical bounds may influence reaction 

selectivity and rate. All these effects occur simultaneously though at a different extent depending on the 

specific treatment applied.  

 

Kinetic Evaluation 

The three parallel reaction model for the pseudo-components hemicellulose, cellulose and lignin is used to 

describe the degradation behavior of all the chestnut samples. The evaluation has been carried out over the 

temperature range 423-763K, by means of the DTG curves. On the basis of the similarity in the degradation 
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behavior of lignins obtained from chestnut and beech woods, and in accordance with the kinetic analysis 

reported by Grønli et al.,1 the activation energy for the volatile fraction of this component in wood has been 

taken constant and equal to 46kJ/mol. A first evaluation has been carried out to assess the validity of the 

unified devolatilization mechanism previously proposed by Grønli et al.1 for standard hardwoods and 

softwoods. Hence, all the fifteen curves (untreated and pre-treated chestnut samples) have been evaluated 

with constraints on the activation energies for the hemicellulose and cellulose fractions. These have been 

taken constant and equal to 100 and 236kJ/mol, respectively. The variation on the remaining parameters takes 

into account the sample differences illustrated above. Successively, in a more accurate analysis, the 

differential curves have been evaluated one by one, with no constraint apart from El, in order to quantify the 

influences of sample origin and pre-treatments in terms of kinetic parameters.  

 

The result of the simultaneous evaluation of the chestnut curves with assigned activation energies are listed in 

Table 3 (three-step unified model) and examples of the best (fit=1.2%, FW), typical (fit=2.2%, I2) and worse 

(fit=3.3%, I1E) agreement between model predictions and measurements are shown in Figs. 5A-5C. Table 4 

reports the model predictions of the devolatilization parameters in terms of means and standard deviations. 

This description appears to be sufficient for the engineering practice but fails to predicts the details of the 

curves. The component dynamics reproduce trends in agreement with previous literature  (for instance, see 

Grønli et al.1). The pre-exponential factors are less affected than the parameters cj by the origin and pre-

treatments of the samples. Compared with the results previously obtained for other woods,1 the unified model 

provides a less accurate fit (the mean of the fit is 2% with  =0.5 against 1.25% with  =0.7). 
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Figure 5. Comparison between the observed (o o o) and simulated (—) DTG curves employing the three-step unified 

model. The best fit (A), a typical fit (B) and the worse fit (C) are shown. Thin lines of different styles denote the 

simulated curves of the partial reactions. (See Table 3 for the corresponding parameters.) 

 

The results of the evaluations carried out with no constraint on the activation energies of the hemicellulose 

and cellulose fractions are listed in Table 4 (three-step model) and examples of the best (fit=0.6%, I2W), 

typical (fit=1.0%, I2) and worse (fit=1.4%, R1E) agreement between model predictions and measurements 

are shown in Figs. 6A-6C. Other information, obtained from the simulation of component dynamics, is 

summarized in Table 6 in terms means and standard deviations of peak height, width and temperature. As 

expected, the agreement between predictions and measurements improves significantly and is better than that 

of the unified model applied for standard woods1 (the mean of the fit is 0.98% with  =0.21 against 1.25% 

with =0.7).  
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Figure 6. Comparison between the observed (o o o) and simulated (—) DTG curves employing the three-step model 

with variable E1 and E2 parameters. The best fit (A), an average fit (B) and the worse fit (C) are shown. Thin lines of 

different styles denote the simulated curves of the partial reactions. (See Table 5 for the corresponding parameters.) 

 

The activation energies, Ehc and Ec, do not vary to a large extent with the pre-treatments and appear to be 

essentially dependent on the sample origin. For instance, the values estimated for the cellulose fraction are 

always high for the sample F and low for the sample R1. As learned from extensive studies on the thermal 

behavior of cellulose,33 high activation energies can be associated with more homogenous holocellulose 

fractions (for instance, higher chemical homogeneity in the case of hemicelluloses, or a more uniform degree 

of polymerization and/or a more even distribution of catalytic ions in the case of cellulose). The pre-

exponential factors are essentially related to the peak temperatures of the three components (a given couple of 

activation energy and peak temperature defines uniquely the pre-exponential factor).  

 

The kinetic parameters estimated for the pre-treated samples confirm the trends already observed from the 

analysis of the experimental curves. They are again qualitatively similar, though smaller variations and with 

some scatter are found for acetone extraction. For simplicity, the discussion is limited to hot water washing 

only. The most important effect is an increase in the amount of volatiles generated from the cellulose fraction 
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(means for cc vary from 42 to 50%), whose peak is well defined and only slightly covered by the other two 

pseudo-components. The stoichiometric coefficients for the hemicellulose and lignin zone are less affected 

(means for ch and cl vary from 18 to 20 and from 16 to 12%, respectively). Furthermore, in relation to the 

amount of volatiles generated, it can be noted that the augmentation in the former zone is roughly 

compensated by the diminution in the latter. However, given the significant overlap between these two 

reaction zones and the increase in the amount of volatiles generated from extracted lignin observed in the 

experiments (Fig.3), the truly meaningful information that can be gained from the model results is that the 

total amount of volatiles generated (ch + cl) remains roughly constant (33.8 and 32.6% for untreated and hot 

water washed samples). Hence, the alterations induced in the cellulose fraction are the most important factors  

directly responsible for the observed diminution in the char yields.  

 

Part of the information reported in Tables 4, 6 can be used to evaluate the consistence between model 

predictions and experimental measurement. For instance, the displacement at higher temperatures of the 

hemicellulose and cellulose zone, following extraction and hot water washing, is both observed and 

predicted. The peak widths provide information about the dynamics of the three volatile fractions. In 

accordance with the observed enlargement of the temperature range, Toffset(c)Tonset(hc), caused by hot water 

washing, the peak widths for the hemicellulose and cellulose components increase. 

 

The experimental uncertainties have also been evaluated for the kinetic parameters (Tables 3, 5) and the 

model predictions (Tables 4, 6) using the same definitions as in Tables 2A-2B. The experimental 

uncertainties of Estimation 1 are always much lower than the standard deviations on both kinetic parameters 

and predictions of the characteristic variables. The same results are also obtained for the experimental 

uncertainties of Estimation 2 in relation to the hemicellulose and cellulose pseudo-components. In some 

cases, for the lignin pseudo-component, standard deviations and experimental uncertainties present 

comparable values. This feature is most likely ensuing from the excessive simplification introduced by the 

one-step model for the complicated degradation kinetics of the lignin macromolecule and the significant 

sensitivity of its low decomposition rate to small alterations in the base line of the thermogravimetric 

experiments. 

 

CONCLUSIONS 

The widely recognized importance of renewable energy leads to an increased exploitation of biomass 

materials with  chemico-physical properties often highly different from those of the species usually 

investigated.  This study represent the first attempt to quantify, in terms of kinetic constants, these effects 

using chestnut which, following the results of previous experimental analyses2,3, report significant differences 

in the chemical composition and degradation characteristics with respect to standard hardwoods (i.e. beech). 

The influences of sample origin (five samples from different geographical areas) and pre-treatments 
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(extraction, which mainly removes extractives, and hot water washing, which mainly eliminates inorganic 

matter) have been examined by means of thermogravimetry. Furthermore, experimental uncertainties about 

the repeatability of experiments/procedures and reproducibility of sample properties have been accurately 

evaluated. 

 

The thermogravimetric curves, measured for a heating rate of 5K/min, show a significant influence of the 

origin. In all cases, the differences between chestnut and beech have been confirmed, that is, an anticipation 

in the peak rate of about 20-40K and higher yields of char (22-28% versus 17%). Furthermore, though 

extraction and hot water washing act to reduce differences, peculiarities due to species (chestnut versus 

beech) and sample origin are preserved. Compared with hot water washing, extraction is less effective for the 

modification of the characteristic reaction temperatures, most likely as consequence of the very slow and flat 

degradation rates attained by extractives over the entire temperature range examined. The char yield is always 

significantly reduced by the two pre-treatments, as a consequence of the reduction in the catalytic action 

exerted by the inorganic matter for the selectivity and rate of the charring reactions and the intrinsic 

contribution of extractives to product distribution (these components degrade to char for about 50%). 

Cleavage of some chemical bonds may also play a role in these issues. 

 

The thermogravimetric curves of chestnut samples obtained with and without pre-treatment are interpreted by 

the widely used three-step devolatilization mechanism for the pseudo-components hemicellulose, cellulose 

and lignin. The applicability of a low value (46kJ/mol) for the activation energy for the volatiles released by 

the lignin component is confirmed. Accurate predictions of the rate curves require single curve evaluations 

which produce activation energies for the hemicellulose and cellulose fractions affected mainly by sample 

origin. On the contrary, pre-treatments (especially hot water washing) affect the amount of volatiles generated 

from the three components. Alterations in the decomposition kinetics of the cellulose fraction appear to be 

responsible for the diminution in the char yield. 

 

The unified devolatilization mechanism, proposed by Grønli et al.1 and based on the same activation energies 

for all the samples, is still applicable when, for the engineering practice, higher deviations (about twice of the 

ones observed earlier for woods with more standard properties) can be accepted. Variability in the other 

model parameters, especially in the stoichiometric coefficients, takes into account sample peculiarities. 

 

Based on the evaluation of a significant number of experiments, it can be stated that the experimental 

uncertainties associated with the execution of pre-treatments and thermogravimetric runs and sampling 

strategy are, in general, very small for both kinetic parameters and devolatilization characteristics .  
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NOMENCLATURE 

Symbols 

   volatile fraction 

A   pre-exponential factor  

cj   fraction of volatiles produced by the jth component 

E   activation energy  

FWHM   full width at half maximum of the DTG curve 

h   absolute value of the maximum of the observed variable  

M   number of components  

Nexp   number of experimental curves  

Nk   number of points for the generic thermogravimetric curve  

m   sample mass  

T   temperature  

Tinitial   temperature corresponding to Y=0.975  

Tpeak   temperature of the maximum devolatilization rate  

Tonset(hc)   extrapolated temperature for the beginning of hemicellullose decomposition  

Tshoulder   temperature corresponding to the hemicellulose shoulder  

Toffset(c)   extrapolated temperature for the termination of cellulose decomposition (and the beginning of lignin 

tail) 

t   time 

Y   solid mass fraction 

Y773   char yield as percent of the initial solid mass 

Subscripts  

c    cellulose  

e1   first fraction of extractives  

e2   second fraction of extractives  

hc   hemicellulose  

l   lignin  

peak   peak of the DTG (devolatilization rate) curve 

shoulder   hemicellulose shoulder  

offset(c)   cellulose offset 

onset(hc)   hemicellulose onset   

Superscripts 

calc   calculated 

obs   observed 
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Table 1.  Proximate analysis and extractive content of the samples 

A. Chestnut wood and beech 

Sample 

 

VM 

(wt%) 

Fix-C 

(wt%) 

Ash 

(wt%) 

Extractives 

(wt%) 

F (untreated chestnut wood from France) 84.5 15.4 0.2 3.3 

FE (F after extraction) 83.7 16.2 0.2 - 

FW (H2O-washed F) 88.5 11.2 0.3 - 

I1 (untreated chestnut wood from Italy) 76.4 22.4 1.2 16.0 

I1E (I1 after extraction) 83.2 15.3 1.5 - 

I1W (H2O-washed I1) 87.2 12.1 0.7 - 

I2 (untreated chestnut wood from Italy) 79.2 19.9 0.9 8.5 

I2E (I2 after extraction) 80.5 18.5 1.0 - 

I2W (H2O-washed R1) 87.0 12.3 0.7 - 

R1 (untreated chestnut wood from Russia) 82.0 17.9 0.1 5.8 

R1E (R1 after extraction) 84.7 15.2 0.1 - 

R1W (H2O-washed R1) 85.1 14.7 0.2  

R2 (untreated chestnut wood from Russia) 82.4 17.4 0.2 8.1 

R2E (R2 after extraction) 84.9 14.9 0.2 - 

R2W (H2O-washed R1) 86.0 13.7 0.3 - 

Means and standard deviations calculated from the chestnut samples: 

Untreated 80.9 18.6 0.5 8.3 

 3.1 2.7 0.5 4.8 

Extracted 83.4 16.0 0.6 - 

   1.8   1.5 0.6 - 

H2O-washed 86.8 12.8 0.4 - 

   1.3   1.4 0.2 - 

A forest wood for comparison: 

Beech 86.5 13.1 0.4 2.2 

Extracted Beech 85.4 14.2 0.4 - 

H2O-washed beech 90.6 9.1 0.3 - 

 

B. Proximate analysis of extracted matter and lignin 

Sample VM 

(wt%) 

Fix-C 

(wt%) 

Ash (wt%) 

Extractives from I1 66.9 32.7 0.4 

Extractives from I2 67.4 31.8 0.8 

Extractives from R1 69.0 29.8 1.2 

Extractives from R2 67.5 31.2 1.3 

Lignin from I1 51.5 47 1.5 

Lignin from I1E 52.7 43.1 4.2 

Lignin from beech 51.5 47.1 1.3 
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Table 2. Degradation Characteristics of the Wood Samples: Temperatures, Mass Fractions, and 

Devolatilization Rates 

A. Temperatures 

Sample Tinitial 

 

(K) 

Tonset(hc) 

 

(K) 

Tshoulder 

 

(K) 

Tpeak 

 

(K) 

Toffset(c) 

 

(K) 

Tshoulder-

Tonset(hc) 

(K) 

Toffset(c)-

Tpeak 

(K) 

F 505 500 548 587 605 48 18 

FE 508 502 549 588 607 47 19 

FW 511 505 553 601 622 48 22 

I1 505 501 553 587 615 52 28 

I1E 507 499 555 595 629 56 34 

I1W 514 508 560 607 631 52 24 

I2 505 501 544 583 611 43 28 

I2E 508 503 548 586 613 45 28 

I2W 514 507 551 599 624 44 25 

R1 511 507 561 600 633 54 34 

R1E 513 508 562 610 639 54 30 

R1W 516 506 562 613 641 56 28 

R2 505 502 548 587 611 46 24 

R2E 508 504 548 590 616 44 26 

R2W 515 508 553 604 627 45 24 

Means and standard deviations calculated for the chestnut samples: 

Untreated 506 502 551 589 615 49 26 

     3     3     7     6   11   4   6 

Extracted 509 503 553 594 621 49 27 

     2     3     6   10   13   5   5 

H2O-washed 514 507 556 605 629 49 24 

     2     1     5     6     8   5   2 

A forest wood for comparison:      

Beech 519 512 567 623 644 55 21 

Extracted beech 521 512 563 624 644 51 21 

H2O-washed 

beech 

524 514 562 631 651 48 20 

Experimental uncertainty: 

Estimation 1  1.1  0.5  1.4  0.6  0.5  1.6  0.3 

Estimation 2  0.8  0.6  1.3  0.8  0.6  1.2  1.0 
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Table 2, continued: 

B. Mass Fractions and Devolatilization Rates 

Sample Yshoulder Ypeak Y773 -(dY/dt)shoulder 

 

×103 (s-1) 

-(dY/dt)peak 

 

×103 (s-1) 

(dY/dt)shoulder / 

(dY/dt)peak 

F 0.83 0.51 0.22 0.43 1.29 0.33 

FE 0.84 0.52 0.23 0.41 1.28 0.32 

FW 0.84 0.46 0.17 0.40 1.28 0.31 

I1 0.82 0.58 0.28 0.42 0.89 0.47 

I1E 0.81 0.52 0.20 0.42 0.88 0.48 

I1W 0.82 0.45 0.17 0.40 1.17 0.34 

I2 0.85 0.54 0.24 0.44 0.98 0.45 

I2E 0.84 0.53 0.22 0.46 1.03 0.45 

I2W 0.85 0.45 0.16 0.41 1.18 0.35 

R1 0.80 0.52 0.23 0.47 0.77 0.62 

R1E 0.80 0.44 0.19 0.48 0.77 0.61 

R1W 0.83 0.45 0.19 0.40 0.94 0.43 

R2 0.83 0.51 0.22 0.44 1.12 0.40 

R2E 0.84 0.50 0.19 0.44 1.16 0.37 

R2W 0.85 0.46 0.18 0.40 1.17 0.34 

Means and standard deviations calculated for the chestnut samples: 

Untreated 0.83 0.53 0.24 0.44 1.01 0.45 

 0.02 0.03 0.02 0.02 0.20 0.11 

Extracted 0.83 0.50 0.21 0.44 1.03 0.45 

 0.02 0.04 0.02 0.03 0.21 0.11 

H2O-washed 0.84 0.45 0.17 0.40 1.15 0.36 

 0.01 0.00 0.01 0.01 0.13 0.05 

A forest wood for comparison: 

Beech 0.81 0.40 0.19 0.41 0.99 0.42 

Extracted beech 0.83 0.40 0.18 0.40 1.03 0.39 

H2O-washed 

beech 

0.85 0.36 0.12 0.38 1.21 0.31 

Experimental uncertainty: 

Estimation 1 0.005 0.005 0.006 0.007 0.024 0.009 

Estimation 2 0.010 0.014 0.016 0.007 0.016 0.006 
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Table 3.  Parameters for the three-step unified devolatilization mechanism using activation energies from an 

earlier worka 

Sample Fit 

(%) 

log Ahc 

(log s-1) 

log Ac 

(log s-1) 

log Al 

(log s-1) 

chc cc cl 

F 2.2 7.2 18.8 0.7 0.21 0.43 0.15 

FE 2.2 7.2 18.8 0.7 0.20 0.43 0.14 

FW 1.2 7.0 18.3 0.7 0.23 0.48 0.13 

I1 2.3 7.0 18.6 0.6 0.25 0.31 0.17 

I1E 3.5 6.8 18.3 0.9 0.28 0.31 0.20 

I1W 1.4 6.9 18.0 0.7 0.26 0.46 0.13 

I2 2.2 7.0 18.8 0.8 0.27 0.31 0.18 

I2E 2.5 6.9 18.7 0.9 0.30 0.31 0.17 

I2W 1.5 6.8 18.3 0.8 0.27 0.43 0.14 

R1 1.7 6.6 18.0 0.7 0.38 0.24 0.15 

R1E 2.0 6.6 17.8 0.8 0.40 0.26 0.15 

R1W 2.1 6.6 17.8 0.9 0.30 0.35 0.16 

R2 1.8 7.1 18.7 0.8 0.24 0.38 0.17 

R2E 2.3 7.0 18.6 0.8 0.24 0.41 0.17 

R2W 1.5 6.9 18.2 0.8 0.25 0.45 0.13 

Means and standard deviations calculated for the chestnut samples: 

Untreated 2.1 7.0 18.6 0.7 0.27 0.33 0.16 

 0.3 0.2 0.3 0.1 0.07 0.08 0.01 

Extracted 2.5 6.9 18.4 0.8 0.29 0.34 0.17 

 0.6 0.2 0.4 0.1 0.07 0.07 0.02 

H2O-washed 1.6 6.9 18.1 0.8 0.26 0.43 0.14 

 0.3 0.1 0.2 0.1 0.02 0.05 0.01 

A forest wood for comparison: 

Beech 1.4 6.7 17.6 0.7 0.31 0.40 0.10 

Extracted beech 1.5 6.7 17.6 0.7 0.31 0.42 0.10 

H2O-washed 

beech 

1.7 6.6 17.3 0.6 0.30 0.51 0.08 

Experimental uncertainty: 

Estimation 1 0.07 0.01 0.02 0.01 0.004 0.007 0.004 

Estimation 2 0.06 0.01 0.03 0.10 0.007 0.007 0.004 

 
a Ehc (kJ/mol) = 100, Ec (kJ/mol) = 236, and El (kJ/mol) = 46. 
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Table 4.  Characteristics of the partial peaks belonging to the parameters of Table 3 

 

Sample Tpeak,hc 

(K) 

FWHMhc
a
 

(K) 

Heighthc 

(s-1) ×100 

Tpeak,c 

(K) 

FWHMc 

(K) 

Heightc 

(s-1) ×100 

Tpeak,c 

(K) 

FWHMl 

(K) 

Heightl 

(s-1) ×100 

Means and standard deviations calculated for the chestnut samples: 

Untreated 553 59 0.130 593 30 0.255 650 162 0.048 

   12   3 0.005   9   1 0.010   10     5 0.001 

Extracted 557 60 0.128 598 30 0.253 640 158 0.049 

   12   3 0.005   11   1 0.009   11     5 0.002 

H2O-washed 559 60 0.128 606 31 0.245 645 160 0.049 

     8   2 0.003     6   1 0.005   13     6 0.002 

A forest wood for comparison: 

Beech 570 62 0.123 623 33 0.235 654 165 0.047 

Extracted beech 569 62 0.123 623 32 0.234 661 167 0.047 

H2O-washed beech 571 62 0.123 630 34 0.226 676 174 0.045 

Experimental uncertainty: 

Estimation 1 0.6 0.3 0.0010 0.6 0.1 0.0007 2.4 0.9 0.0003 

Estimation 2 0.9 0.2 0.001 0.9 0.3 0.001 15.2 7.5 0.002 

 
a Full width at half maximum 
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Table 5.  Parameters for the three-step devolatilization mechanism without constraints on Ehc and Ec
a 

Sample Fit 

(%) 

Ehc 

(kJ/mol) 

Ec 

(kJ/mol) 

log Ahc 

(log s-1) 

log Ac 

(log s-1) 

log Al 

(log s-1) 

chc cc cl 

F 1.1 133 268 10.4 21.7 0.8 0.20 0.40 0.17 

FE 1.2 138 257 10.9 20.7 0.8 0.18 0.42 0.16 

FW 0.8 124 230 9.4 17.8 0.8 0.20 0.49 0.13 

I1 1.1 137 182 10.9 13.9 0.6 0.15 0.41 0.16 

I1E 0.7 130 154 10.2 11.1 0.7 0.16 0.50 0.14 

I1W 0.8 122 224 9.1 17.0 0.7 0.22 0.48 0.13 

I2 1.0 140 182 11.3 14.1 0.8 0.15 0.44 0.16 

I2E 1.2 148 171 12.0 13.0 0.8 0.13 0.48 0.15 

I2W 0.6 127 194 9.7 14.7 0.7 0.18 0.54 0.12 

R1 0.9 108 160 7.7 11.5 0.7 0.22 0.42 0.13 

R1E 1.4 101 172 6.9 12.4 0.6 0.28 0.41 0.12 

R1W 0.8 109 175 7.7 12.6 0.7 0.21 0.50 0.11 

R2 1.1 137 213 10.8 16.7 0.8 0.18 0.43 0.17 

R2E 1.3 144 200 11.5 15.5 0.8 0.17 0.48 0.16 

R2W 0.8 126 209 9.6 15.9 0.7 0.20 0.50 0.12 

Means and standard deviations calculated for the chestnut samples: 

Untreated 1.0 131 201 10.2 15.6 0.7 0.18 0.42 0.16 

 0.1   13   42   1.5   3.9 0.1 0.03 0.01 0.02 

Extracted 1.1 132 191 10.3 14.5 0.7 0.19 0.46 0.15 

 0.3   19   41   2.0   3.8 0.1 0.06 0.04 0.02 

H2O-washed 0.8 122 206 9.1 15.6 0.7 0.20 0.50 0.12 

 0.1   8   22   0.8   2.0 0.0 0.01 0.02 0.01 

A forest wood for comparison: 

Beech 1.4 97 234 6.4 17.4 0.7 0.32 0.41 0.10 

Extracted beech 1.4 98 244 6.5 18.3 0.7 0.32 0.40 0.11 

H2O-washed beech 1.6 91 257 5.8 19.1 0.6 0.33 0.47 0.09 

Experimental uncertainty: 

Estimation1 0.04 1.2 4.1 0.14 0.33 0.01 0.006 0.004 0.004 

Estimation2 0.04 0.6 4.8 0.06 0.42 0.08 0.007 0.011 0.004 

 
a A fixed value from earlier work (46 kJ/mol) was used for E1 



 

 

Table 6.  Characteristics of the partial peaks belonging to the parameters of Table 5 

 

Sample Tpeak,hc 

(K) 

FWHMhc
a
 

(K) 

Heighthc 

(s-1) ×100 

Tpeak,c 

(K) 

FWHMc 

(K) 

Heightc 

(s-1) ×100 

Tpeak,c 

(K) 

FWHMl 

(K) 

Heightl 

(s-1) ×100 

Means and standard deviations calculated for the chestnut samples: 

Untreated 545 45 0.172 590 35 0.223 652 164 0.048 

   7   6 0.020   7   7 0.046   15   7 0.002 

Extracted 547 45 0.173 594 38 0.209 650 162 0.048 

   9   9 0.027   9   7 0.046   11   5 0.001 

H2O-washed 553 49 0.157 605 35 0.217 654 164 0.048 

   4   4 0.010   5   4 0.024   6   3 0.001 

A forest wood for comparison: 

Beech 570 64 0.120 623 33 0.233 661 167 0.047 

Extracted beech 571 63 0.121 624 31 0.242 658 166 0.047 

H2O-washed beech 574 69 0.111 631 31 0.245 665 170 0.046 

Experimental uncertainty: 

Estimation 1 1.5 0.9 0.0022 0.9 0.5 0.0045 0.6 0.3 0.0002 

Estimation 2 0.9 0.3 0.0008 0.7 0.6 0.0049 12.6 6.0 0.0016 

 
a Full width at half maximum 


