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Abstract 

Camptonite dykes intrude the rift-related Mesozoic igneous body of the Ditrău Alkaline 

Massif, Eastern Carpathians, Romania. We present and discuss mineral chemical data, major 

and trace elements, and the Nd isotopic compositions of the dykes in order to define their 

nature and origin. The dykes are classified as the clinopyroxene-bearing (camptonite–I) and 

clinopyroxene-free (camptonite–II) varieties. Camptonite–I consists of aluminian–ferroan 

diopside phenocrysts accompanied by kaersutite, subordinate Ti-rich annite, albite to 

oligoclase and abundant calcite–albite ocelli. Camptonite–II comprises K-rich hastingsite to 

magnesiohastingsite, Ti-rich annite, albite to andesine, abundant accessory titanite and apatite, 

and silicate ocelli filled mainly with plagioclase (An4-34). 
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Age-corrected 143Nd/144Nd ratios vary from 0.51258 to 0.51269. The high εNd values of +4.0 

to +6.1 which are consistent with intra-plate composition, together with light rare earth 

element (LREE), large ion lithophile element (LILE) and high field strength element (HFSE) 

enrichment in the camptonites is ascribed to the formation of small melt batches of a 

metasomatised sub-lithospheric mantle source. The presence of an asthenospheric ‘high µ’ 

ocean island basalt (HIMU–OIB)-type mantle component in the source region has also been 

revealed. A 1–4% degree of partial melting of an enriched garnet lherzolite mantle source 

containing pargasitic amphibole followed by fractionation is inferred to have been involved in 

the generation of the camptonites. They are deduced to be parental melts to the Ditrău 

Alkaline Massif. 

 

Keywords: Camptonite; Ocelli; Metasomatised sub-lithosphere; HIMU–OIB mantle 

component; Intra-plate magmatism; Ditrău Alkaline Massif 

 

1. Introduction 

Camptonitic alkaline lamprophyres are usually associated with alkaline syenite-gabbro 

plutons (e.g. Monteregian Hills, Canada). In many occurrences, such as Borralan (Scotland), 

Lovozero and Khibina (Kola Peninsula, Russia), and Sokli (Finland) (Rock, 1991 and 

references therein) they are the most primitive or the only primitive rocks, or represent the 

only primitive melts to penetrate throughout some provinces (e.g. Monteregian; Iberian, 

Gorringe Bank). As such, lamprophyres have now been equated with parental melts for a 

wide range of igneous suites generated repeatedly in time and space (Mitchell, 1994; Rock, 

1991). Alkaline lamprophyres are widely recognised at divergent margins (rift valleys, triple 

junctions) and in intra-plate (oceanic islands, hot-spots) tectonic settings, and they are 

genetically associated with alkali basaltic magmatism (e.g. Kerr et al., 2010; Orejana et al., 
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2008; Tappe et al., 2006). Alkaline lamprophyres are more typical of uncontaminated, 

primary mantle-derived rocks generated at considerable depths (100–150 km) (e.g. Bédard, 

1994; Bernard-Griffiths et al., 1991). They frequently contain carbonate ocelli which may 

suggest the presence of CO2 in their upper-mantle source. Thus their study can put additional 

constrains on the role of CO2-H2O-rich fluids during mantle metasomatism (Bouabdli et al., 

1988; Hidas et al., 2010). 

Numerous camptonite dykes occur in the northern part of the Ditrău Alkaline Massif, Eastern 

Carpathians (Romania), intruding hornblendite, diorite, nepheline syenite, syenite, and 

granite. Petrogenetically, neither of the lamprophyres has been studied, although they are 

widely reported in previous papers on the geology of the massif (Kräutner and Bindea, 1998; 

Streckeisen, 1954, 1960; Streckeisen and Hunziker, 1974); only a few studies have dealt with 

the petrography and mineralogy of the lamprophyres and a few have given some whole-rock 

chemical data (Anastasiu and Constantinescu, 1982; Fellner, 1867; Mauritz, 1912; 

Streckeisen, 1954; Vendl, 1926) but no interpretation of their origin. 

This paper provides new data on mineralogy, mineral chemistry and major, trace, and rare-

earth element whole-rock chemistry, as well as on the Sr-Nd isotopic compositions of the 

Ditrău camptonites, a set of mafic alkaline volatile-rich intrusions that cross-cut the Ditrău 

Alkaline Massif. The camptonites have the potential to provide important information on the 

mantle geochemistry beneath the region of their emplacement and on the origin of parental 

melts of the massif. 

 

2. Geological setting 

The Ditrău Alkaline Massif in the Eastern Carpathians (Romania) is a Mesozoic alkaline 

igneous complex (19 km long and 14 km wide, ca. 200 km2 in size on the surface, Pál-

Molnár, 2000). In the structural system of the Alpine–Carpathian–Dinaric region it belongs to 
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the Dacia Mega-Unit (Fig. 1A). The massif intrudes Variscan metamorphic rocks which can 

be identified in the Alpine Bucovinian Nappe, Eastern Carpathians (Săndulescu, 1984). These 

Variscan nappes are built up by the Bretila lithogroup (Rarău Nappe), Rebra lithogroup 

(Rodna Nappe) and Tulghes lithogroup (Putna Nappe) (Balintoni, 1994) (Fig. 1B). The 

Bucovinian Nappe represents the upper unit of the Central Eastern Carpathian nappes, which 

formed during the Middle Cretaceous (Săndulescu, 1984). It is partly covered by Neogene-

Quaternary andesitic pyroclasts and lava flows of the Călimani–Gurghiu–Harghita volcanic 

chain and by Pliocene–Pleistocene sediments and lignite-bearing lacustrine deposits of the 

Gheorgeni and Jolotca Basins (Codarcea et al., 1957; Fig. 1B). 

The massif comprises a series of ultramafic to mafic rocks in the north- and central-west 

(hornblendite, gabbro and diorite), felsic silica-saturated and silica-oversaturated syenites and 

granites (from the north to the south-east), as well as silica-undersaturated alkaline rocks 

dominating the central and the eastern part (Fig. 1B). Numerous dykes, including 

lamprophyres, tinguaites, alkali feldspar syenites and nepheline syenites, cut the whole 

complex. 

In the last 180 years, the Ditrău Alkaline Massif has been the subject of many investigations 

(Anastasiu and Constantinescu, 1982; Codarcea et al., 1957; Dallmeyer et al., 1997; Fall et al., 

2007; Jakab, 1988; Kräutner and Bindea, 1998; Mauritz, 1912; Morogan et al., 2000; Pál-

Molnár, 2000; and references therein). However, because of its structural complexity and 

wide petrographic variability the petrogenesis is still not completely understood. Proposed 

petrogenetic models range from metasomatic to magmatic origin and from emplacement in a 

single magmatic event to multiple successive magmatic pulses. Detailed descriptions of these 

models are given by Morogan et al. (2000). 

Ultramafic rocks in the north- and central-west represent the earliest intrusive phases. Pál-

Molnár and Árva-Sós (1995) using K/Ar ages on hornblende, biotite, nepheline and feldspar 
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separates, gave dates of 216–237 Ma for hornblendites, 234 Ma for gabbros, 216–232 Ma for 

nepheline syenites, 196–217 Ma for granites and 102–113 Ma for syenites. 

Providing two additional 40Ar/39Ar hornblende ages of 231 Ma and 227 Ma for gabbro and 

diorite, respectively, Dallmeyer et al. (1997) confirmed the middle- to late-Triassic age of 

these early components. Pană et al. (2000) reported the U-Pb zircon emplacement age from 

the syenite of 229.6±1.7 Ma and suggested that the syenite and associated granite were 

formed by crustal melting during the emplacement of the mantle-derived gabbroic magma 

around 230 Ma. Morogan et al. (2000) suggested a basanitic OIB-like character for the parent 

magma, generated by small degrees of melting of asthenospheric garnet lherzolite and that the 

multistage intrusions were caused by a mantle plume; they attribute an important role to 

assimilation and fractionation, the mixing of salic and basaltic melts and the relatively 

hydrous nature of the Ditrău magmas.  

 

3. Field relations and samples 

Lamprophyre intrusions are quite common in the whole area of the Ditrău Alkaline Massif. 

They cross-cut the main intrusions of the massif, hornblendite, nepheline syenite and syenite, 

and granite, and are themselves cut by alkali feldspar syenite dykes and veins (Fig. 2). The 

lamprophyre dykes have sharp contact with the host rocks and some of them show very thin 

chilled margins. Locally all the rocks are more or less altered. Some lamprophyres are 

disintegrated mostly at the margins of the dykes (Fig. 2A). The dykes are up to several metres 

long, range in width from 20 cm to 2 m, and strike in a general east or northeast direction. 

Some of the faults which cut the massif also crosscut the lamprophyre dykes. They are 

melanocratic rocks and are greenish-grey to dark grey in colour. Large biotite flakes up to 5 

mm in diameter and locally abundant felsic globular textures, ocelli reaching 1 cm in 

diameter, are visible to the naked eye (Fig. 2B). 
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Since the occurrence of lamprophyre dykes and their contact with other rock types in the 

natural outcrops can be found and studied best in the northern part of the Ditrău Massif, the 

Jolotca Creek and its northern effluents (TarniŃa, Teasc, Filep, Gudu, Turcului and Creangă 

Mare Creeks) have been chosen as the studied area. Forty-five samples were collected from 

ten dykes exposed in surface outcrops. These localities are shown in Figure 1C. 

 

4. Analytical methods 

Eighteen lamprophyres were selected for whole-rock chemical analyses, seven samples were 

analysed for their mineral composition and four were analysed for Sr and Nd isotope 

compositions. The samples were selected to cover the range of mineralogical varieties of the 

lamprophyres in a representative way. 

Minerals were analysed with a Cameca SX50 electron microprobe in wavelength-dispersion 

mode at the Department of Geosciences, Uppsala University, Sweden, using a beam current 

of 15 nA and an acceleration voltage of 20 kV. Standards used were albite (Na), periclase 

(Mg), corundum (Al), wollastonite (Ca, Si), orthoclase (K), pyrophanite (Mn, Ti) and 

magnetite (Fe). Counting times were 10–30 s for peaks and 10 s for background. Data 

correction was carried out using online PAP Cameca Software. Additional electron 

microprobe work on all the main rock-forming phases was performed at the Institute for 

Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, 

Hungarian Academy of Sciences, Budapest, Hungary using a JEOL Superprobe 733 operated 

at an acceleration voltage of 20 kV and a beam current of 15 nA. At the same place, 

cathodoluminescence studies were carried out on carbonate ocelli using Reliotron cold-

cathode equipment mounted on a Nikon E600 microscope operated at 5–7 kV accelerating 

voltage and 0.5–1.0 mA current. 
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Whole-rock major element compositions were analysed with an ICP mass spectrometer 

(Finnigan MAT Element) and trace elements were determined by ICP atomic emission 

spectrometry using a Varian Vista AX spectrometer at the Department of Geological 

Sciences, University of Stockholm, Sweden. 

Sr and Nd isotope compositions were obtained at the Laboratory of Isotope Geology, Swedish 

Museum of Natural History, Stockholm, Sweden. Sr, Sm and Nd were loaded on Re double 

filaments and analysed on a Finnigan MAT261 thermal ionisation mass spectrometer (TIMS), 

equipped with a multi-collector system encompassing five Faraday detectors. 87Sr/86Sr 

measurements were corrected for possible 87Rb interference, and for mass fractionation by 

normalisation to 86Sr/88Sr=0.1194. 143Nd/144Nd measurements were corrected for possible 

144Sm interference, and for mass fractionation by normalisation to 146Nd/144Nd=0.7219. One 

run of the NBS SRM 987 Sr standard during the measurements yielded 

87Sr/86Sr=0.710236±24 (2σm), whereas one run of LaJolla Nd standard gave a 143Nd/144Nd 

ratio of 0.511859±11 (2σm). Initial 87Sr/86Sr and 143Nd/144Nd ratios were calculated for an age 

of 200 Ma, on the basis of K/Ar ages on hornblende, biotite and nepheline from hornblendite, 

gabbro, nepheline syenite and granite of the Ditrău Alkaline Massif (Pál-Molnár and Árva-

Sós, 1995). 

 

5. Results 

5.1. Petrography 

The lamprophyres are fine grained with a typical hypocrystalline porphyritic and 

panidiomorphic texture, but mineralogically they differ from each other. There are 

clinopyroxene-bearing and clinopyroxene-free varieties. Major components of both types are 

amphibole, biotite and plagioclase. Olivine is totally decomposed to green or colourless 

secondary amphibole in radiating nests. According to their mineral assemblage, the studied 
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lamprophyres are camptonites (Le Maitre, 2002; Rock, 1991). A characteristic feature of the 

camptonites is the presence of abundant spherical or ellipsoidal leucocratic globules, ocelli, 

0.1–11 mm in size. Compositionally, camptonite–I (clinopyroxene-bearing) and camptonite–

II (clinopyroxene-free) contain different types of ocelli. 

The studied camptonites do not contain any kind of xenoliths: only occasional plagioclase 

xenocrysts can be found in a few samples. Veins filled with carbonate, epidote, sulphide and 

oxide minerals are present in the camptonite dykes. 

 

5.1.1. Camptonite–I 

Camptonite–I dykes occur in Jolotca, TarniŃa and Turcului Creeks (Fig. 1C). The dykes have 

clinopyroxene phenocrysts range from subhedral to anhedral, set in a groundmass of brown 

amphibole, subordinate biotite, anhedral plagioclase, accessory acicular apatite, opaque 

minerals and titanite. The 0.6- to 2.4-mm-diameter clinopyroxene phenocrysts (ca. 1–10%) 

vary in abundance, and have been extensively replaced by an assemblage of tremolite to 

actinolite, and biotite (Fig. 3A). Olivine in fresh state is absent. In all cases they are totally 

replaced by tremolite and actinolite ± chlorite ± calcite ± epidote ± opaque phases, and only 

fine-grained light-green-coloured or colourless pilitic pseudomorphs show their previous 

presence (up to 15%). These late-stage or subsolidus alterations of primary phenocrysts are 

developed to an extreme degree, due to their high volatile content (Rock, 1991). All brown 

hornblendes (0.3–1.8 mm in size) are zoned having a thin, greenish rim. They dominate over 

biotite. Biotite is represented by small bladed, subhedral crystals which are usually 

chloritised. Interstitial plagioclase fills up residual places between mafic components. It is 

subhedral to anhedral and variably sericitised. There are two types of ocelli, even within the 

same sample. The first type contains sparry carbonate minerals together with biotite or 

titanite, and/or oxide and sulphide minerals in the interior with albite occurring in the rim. 
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Groundmass biotite is often aligned tangentially to the rim of ocelli (Fig. 3B). Neither 

feldspathoid nor zeolite (e.g. analcime) minerals appear as would be expected in a camptonite. 

Some of the euhedral calcite crystals in the interior of these ocelli can reach a size of 2.7 mm 

(Fig. 3B, F). The second type contains abundant plagioclase with a minor amount of calcite, 

amphibole and biotite. Here, plagioclases are strongly zoned, and epidote grains occur in their 

core. At zone boundaries of the plagioclase core epidote forming always stops where probably 

the necessary amount of calcium for epidote runs out from the Ca-rich plagioclase core. Well 

crystallised grains or aggregates of carbonate–chlorite–epidote in lamprophyres (Fig. 3C) 

form, particularly in globular structures (e.g. Rock, 1991). 

 

5.1.2. Camptonite–II 

Camptonite–II dykes occur in Teasc, Filep, Gudu, Turcului and Creangă Mare Creeks (Fig. 

1C). They lack clinopyroxene and pseudomorphs of olivine, but do have subordinate 

hornblende phenocrysts settled in a groundmass composed of abundant green amphibole, 

biotite, interstitial plagioclase, accessory euhedral apatite, titanite and opaque minerals. The 

few amphibole phenocrysts are up to 2.4 mm in size. Both phenocryst and groundmass 

amphiboles form euhedral to subhedral prisms and needles, often displaying preferred 

orientation due to magma flow and contain magnetite needles indicating magmatic resorption 

of amphiboles. In some cases, the groundmass shows banded internal structures indicating 

flow differentiation, or multiple intrusions (e.g. Upton, 1965). The intergrowth of amphibole 

and biotite indicates their simultaneous crystallisation (Fig. 3G). The matrix is variably 

altered (i.e. chloritised and sericitised). Ocelli are made up of silicates (plagioclase with 

subordinate amphibole, biotite and zoned titanite) and euhedral accessory apatite. Amphibole 

occurs tangentially in the rim of the ocelli (Fig. 3D). Titanite, which is ubiquitous in all other 
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Ditrău rocks, is more abundant in camptonite–II than in camptonite–I. Titanite and apatite 

grains in the ocelli are distinctly larger than those in the groundmass. 

 

5.2 Mineral chemistry 

5.2.1. Clinopyroxene 

Representative analyses are shown in Table I of the electronic supplement. Due to the 

complete alteration of olivine in camptonite–I, their composition could not be determined 

therefore clinopyroxene is the only measurable phenocryst phase in these dykes. It is 

classified in terms of quadrilateral components (Morimoto, 1988) and is principally of 

aluminian–ferroan diopside with a narrow compositional range of Di76-93Hd1-19Aeg2-8 (Table 

1). Well defined zoning can not be identified within individual clinopyroxene grains due to 

the different degree of alteration. Compositions of cores and rims overlap (Fig. 4). All the 

diopsides exhibit high Al and Ti content (up to 7.93 wt. % Al2O3 and up to 3.30 wt. % TiO2), 

similar to the clinopyroxenes of the Catalonian (Ubide et al., 2012), Spanish Central System 

(Orejana et al., 2008) and Río Grande (Hauser et al., 2010) lamprophyres and those of the 

Carpathian–Pannonian Region lamprophyres (Harangi et al., 2003; Szabó et al., 1993). The 

highest Di-content belongs to chromian diopsides (up to 0.81 wt. % Cr2O3). Most 

clinopyroxene compositions show a clear differentiation trend, with slight to strong positive 

correlations between Al and Ti, Mg and Si, and Cr and mg#, and negative correlations 

between Mg and Al, Ti, and Ti+AlIV and Si (Fig. 4). 

 

5.2.2. Amphibole 

Amphibole is mostly a groundmass phase in the studied camptonites occurring as microcryst. 

Besides, some phenocrysts appear in camptonite-II. Amphibole is kaersutite with a 
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magnesiohastingsite rim in camptonite–I and hastingsite in camptonite–II (Table II of the 

electronic supplement) according to Leake et al. (1997). 

Kaersutite is characterised by high Ti and relatively low Al content (TiO2=5.1–7.1 wt. %; 

Al 2O3<13.6 wt. %), similar to the amphiboles of the Monteregian (Bédard, 1988), Tamazert 

(Bouabdli et al., 1988), Pyrenean (Azambré et al., 1992), Moravian-Silesian, Mecsek-Alföld 

(Harangi et al., 2003) and Catalonian (Ubide et al., 2012) lamprophyres. Compositional trends 

for kaersutites are consistent with early crystallisation from Si-undersaturated magma 

(Bédard, 1988; Giret et al., 1980). Kaersutite cores yield more primitive compositions while 

magnesiohastingsite rims show more evolved compositions, with decreasing Ti and AlIV p.f.u. 

and increasing Si and Fetot p.f.u. for decreasing mg# from the core towards the rim (Fig. 5); 

thus, magnesiohastingsite rims seem to have crystallised from a slightly more evolved magma 

or under different conditions. 

Both phenocryst and groundmass hastingsite in camptonite–II have high Fe and K p.f.u. 

contents (FeOtot=18–20 wt. % and K2O=1.0–2.1 wt. %). They also have lower Ti and higher 

K p.f.u. concentrations than kaersutite in camptonite–I (Fig. 5), indicating slightly higher 

pressure conditions (Adam and Green, 1994). Most hastingsite contains secondary magnetite 

needles indicating magmatic resorption of the amphibole during magma ascent. 

 

5.2.3. Biotite 

In camptonite–I, three generations of biotite are present: groundmass minerals, ocellus biotites 

(primary phases) and the breakdown products of clinopyroxene phenocrysts (secondary 

phases). In contrast, in camptonite–II there are only groundmass and ocellus biotite. 

Groundmass and ocellus biotite is annite (mg#=0.47–0.62) in all of the camptonites, while the 

breakdown products of clinopyroxenes are phlogopites (mg#=0.65–0.73). As for 

clinopyroxenes and amphiboles, the high Ti content (TiO2=1.7–3.0 wt. %) is a characteristic 
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feature of biotites, similar to the biotites of the Tamazert alkaline lamprophyres (Bouabdli et 

al., 1988) and those of the Carpathian–Pannonian Region lamprophyres (Harangi et al., 2003; 

Szabó et al., 1993). Biotites in both types of camptonite have moderate to high Al content 

(Al 2O3=14.0–16.3 wt. %), while Ti and Fe concentrations are higher (Table III of the 

electronic supplement) in camptonite–II. 

 

5.2.4. Carbonate 

Carbonate is calcite and appears in camptonite–I, mostly as ocellus, groundmass and vein 

mineral, but does also occur in pilitic pseudomorphs after olivine. The large ocellus calcite 

(up to 2.7 mm in size) coexists with titanite or albite, biotite ± oxide and/or sulphide phases 

(Fig. 3B, F). Cathodoluminescence images of calcites show a homogeneous texture and a 

lighter orange colour at the rims than in the cores (Fig. 3E, F) which reflect their variable Mn 

and/or REE content. It is generally accepted that Mn2+ and mostly trivalent REEs are the most 

important activators of extrinsic CL in carbonate minerals, while Fe2+ is a quencher of CL 

(e.g. Machel, 2000). Cathodoluminescence images also reveal that carbonate veins intersect 

both carbonate ocelli, and the pilitic pseudomorphs after olivine phenocrysts (Fig. 3E). 

In camptonite–II calcite is present only in ocelli as an accessory phase together with late-stage 

hydrothermal barite (Fig. 3H). 

 

5.2.5. Feldspar 

The feldspars are mostly plagioclases with anorthite content of An5 to An28 in camptonite–I 

and An4 to An34 in camptonite–II, corresponding to albite, oligoclase and andesine (Table III 

of the electronic supplement). They are present as ocelli minerals and interstitial grains in the 

groundmass. In silica-rich ocelli (camptonite–II) plagioclases are zoned with andesine cores 

and oligoclase to albite rims and have the same composition as the groundmass ones. In 
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contrast, in carbonate-rich ocelli (camptonite–I) albite is present and groundmass feldspars are 

albite to oligoclase in composition. 

 

5.3. Geochemistry 

5.3.1. Major and trace element geochemistry 

Geochemical descriptions for the major element composition of the Ditrău camptonites (four 

samples) were previously published by Mauritz (1912) and Vendl (1926). Morogan et al. 

(2000) also gave major, trace and REE data of two dykes, one basanite and one alkali basalt 

(Table 1). In this study, new analyses for major, trace and REEs include eighteen camptonites 

(Table 1). 

In general, there is no significant difference between the chemical composition of 

camptonite–I and camptonite–II (Fig. 6, Table 1). The Ditrău camptonites are high in alkalis 

(Na2O+K2O=5.3–8.1), TiO2 and P2O5 but low in SiO2 (Table 1), a feature common to mafic 

alkaline rocks. The high Ti/V (>50), low Y/Nb (<1) and chondrite-normalised (La/Yb)n (>11) 

ratios are also consistent with the alkaline character (according to Pearce and Cann, 1973; 

Rock, 1991). 

In the TAS diagram (Le Maitre et al., 2002), the Ditrău camptonites plot as basanites and 

trachy-basalts. Except for one sample of VRG7305, they are moderately to strongly Si-

undersaturated with 3–14% nepheline in the norms, do not contain normative hypersthene or 

quartz, and also lack normative leucite. Sample VRG7305 from the camptonite–II is Si-

saturated with normative hypersthene (hy=22%). Camptonite–I is slightly more Si-

undersaturated (ne=8–14%) than camptonite–II (ne=0–10%). Sodium dominates over 

potassium, with Na2O/K2O varying from 1 to 3. Mg values ((Mg/Mg+Fe2+) with Fe2+ 

according to Irvine and Baragar, 1971) vary from 0.44 to 0.70, indicating moderate mineral 

fractionation, and positive correlation with abundances of compatible elements (Cr, Ni, Co 
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and Sc, Fig. 7), consistent with extraction of olivine and clinopyroxene in the early stage of 

evolution. CaO and FeOt decrease with decreasing mg values (Fig. 6) suggesting the 

fractionation of clinopyroxene and calcic amphibole. TiO2 and V increase up to mg# of about 

0.5 and then decrease in both camptonite with mg#<0.5 (Figs. 6, 7), suggesting the 

fractionation of titanite and kaersutite. Al2O3 and Na2O increase with increasing SiO2 as a 

result of feldspar fractionation which is mainly albite to oligoclase (Fig. 6). 

The high Nb concentrations in the Ditrău camptonites are notable, with most of the analysed 

samples having contents ≥100 ppm (Table 1). The Zr and Hf contents are also high and fall 

within the range of alkaline lamprophyres (Rock, 1991). Nb, Hf and Y increase with 

differentiation (Fig. 7). The Zr/Hf and Zr/Nb ratios of camptonite–II correlate well with the Zr 

concentrations (R2=0.89 and R2=0.75, respectively). Nb/La and Th/La ratios are constant with 

the averages of 1.5±0.2 and 0.135±0.03, respectively. These values agree well with the data 

for alkaline lamprophyres (Rock, 1991). Most of the Zr/Hf ratios (21.0–32.2) are significantly 

lower than the chondritic ratio of 34.2 (Weyer et al., 2002). There are some exceptions with 

Zr/Hf ratios of 35.7–45.7 (VRG7286, VRG7287, VRG7296 and VRG7297). 

The studied camptonites are also rich in alkali (Rb=72–499 ppm) and alkali earth elements, 

with Ba and Sr reaching concentrations of 3020 ppm and 1411 ppm, respectively. In 

particular, there is a strong positive anomaly for Rb relative to the primitive mantle especially 

in samples VRG7286, VRG7287 and VRG7289 of camptonite–II (Fig. 8A, B). Enrichments 

in LIL elements may point to the effect of alteration (observed late-stage or subsolidus 

alterations of primary phases in most samples). However, similarly high concentrations and 

extensive variations of LIL elements were also described from several lamprophyres (e.g. 

Azambré et al., 1992; Dostal and Owen, 1998; Rock, 1991; Szabó et al., 1993). K2O, Rb, Ba 

and Sr show wide scatter with mg#, without obvious evolution with the differentiation, which 

can be explained by their mobility (Fig. 7). Compared to alkaline lamprophyres worldwide 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 15

(Rock, 1991), the Ditrău camptonites have significantly lower K/Rb and Ba/Rb ratios 

however they have similar values of Ba/La ratios. 

Primitive mantle-normalised REE patterns are steeply sloping, typical of alkaline rocks, lack 

Eu anomaly and display a strong enrichment of LREE and significant fractionation of HREE 

with an La/Yb ratio ranging from 15 to 38 (Fig. 8D, E). These values are similar to those of 

the average alkaline lamprophyres (La/Yb=37; Rock, 1991). The absence of positive Eu 

anomaly supports the lack of crustal contamination (e.g. Srivastava and Chalapathi Rao, 

2007). The REE content increases with the decrease in mg values but the increase is more 

distinct for La, Ce, Sm and Eu than for Yb (and Y), which results in a decrease in the Yb/Eu 

and Y/Ce ratios with differentiation (Fig. 7). Calcic amphibole can take up considerable Y 

(Bédard, 1994), thus the decrease in the Yb/Eu and Y/Ce ratios suggests fractionation of the 

amphibole (Bouabdli et al., 1988). 

 

5.3.2. Isotope geochemistry 

Four Ditrău camptonites together with a hornblendite, a diorite, a monzonite and a syenite 

from the Ditrău Alkaline Massif for comparison were analysed for Sr and Nd isotope ratios 

(Table 2). 

The 87Sr/86Sri compositions of the Ditrău camptonites vary from 0.70148 to 0.70211 (Table 

2). Hydrothermal activity and mineralisation in the massif are already well known from 

previous studies (e.g. Fall et al., 2007; Kräutner and Bindea, 1998; Streckeisen and Hunziker, 

1974). The unreasonably low initial Sr values, below mantle value, and high Rb content (and 

thus, higher Rb/Sr ratios) are probably due to hydrothermal alteration. Since the Rb-Sr system 

is easily disturbed because of the mobility of Rb, it does not remain a closed system, which is 

not uncommon with disturbed samples showing such unreasonably low initial Sr values 

(White, 2009). Disturbance can be caused by crustal contamination or hydrothermal activity. 
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The studied camptonites most likely have undergone some disturbance in the Rb/Sr ratio by 

later hydrothermal alteration, making their initial Sr values uncertain. A small increase in the 

Rb/Sr ratio (by Rb gain or Sr loss) could lead to such low initial Sr values. Since neither Sm 

nor Nd is particularly mobile, initial ratios are relatively insensitive to weathering, therefore 

we rely more on the Sm-Nd results. The 143Nd/144Ndi ratios have a variable range of 0.51258–

0.51269 (Table 2). The age–corrected εNd values of +4.0 to +6.1 of the Ditrău camptonites are 

within the range of other alkaline lamprophyres (e.g. Bernard-Griffiths et al., 1991; Dostal 

and Owen, 1998; Harangi et al., 2003; Orejana et al., 2008) and fall near to the average for 

alkaline lamprophyres worldwide published by Rock (1991) (Fig. 9). The high and relatively 

homogeneous initial εNd values are typical of enriched intra-plate compositions and are 

comparable to values observed in continental alkaline volcanic suites from extension and rift 

settings (e.g. Andronikov and Foley, 2001; Dostal and Owen, 1998; Orejana et al., 2008; 

Tappe et al., 2006). 

 

6. Discussion 

6.1. Mantle source and enrichment processes 

The Ditrău lamprophyres compositionally resemble basanites and trachy-basalts, although 

they seem to present volatile-rich equivalents of these rocks (e.g. Rock, 1991). They contain 

kaersutite or hastingsite, Ti-rich annite, albite, oligoclase, andesine, apatite, titanite and 

magnetite in the groundmass with silicate–carbonate or silicate ocelli ± Al-Fe-diopside 

phenocrysts and pilitic pseudomorphs after olivine. They are significantly enriched in volatile 

elements (H2O, CO2), in LILE and in LREE. 

According to Rock’s definition (1991) alkaline lamprophyres, thus camptonites, are 

considered to represent primary mantle-derived magmas generated at considerable depths 

(e.g. Bédard, 1994; Bernard-Griffiths et al., 1991; Rock, 1991). Mantle-derived magmas are 
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characterized by low Lu/Yb ratios of 0.14–0.16 (Sun and McDonough, 1989), whereas 

continental crust possesses comparatively higher Lu/Yb ratios (0.16–0.18). The high LILE 

(e.g. Ba, Sr, Zr and Nb), LREE and low HREE, together with low Lu/Yb ratios of 0.12–0.16 

and the absence of positive Eu anomaly point to the lack of crustal contamination in the 

studied camptonites. 

The small variation in trace and REE characteristics implies that the Ditrău camptonites are 

formed by variable degrees of partial melting of the same mantle source. Since Y and the 

HREE are compatible in garnet, the depletion of these elements in camptonites is consistent 

with low degree fractional melting in a garnet-bearing source region (e.g. Downes et al., 

2005; Koglin et al., 2009; White, 2009). The primitive mantle-normalised Sm/Yb ratios in the 

Ditrău camptonites vary between 2.1 and 4.9, confirming the presence of residual garnet 

during melting processes (e.g. McKenzie and O’Nions, 1991; Orejana et al., 2008). The high 

concentrations of incompatible elements indicate a metasomatised mantle source previously 

enriched in LILE and HFSE (e.g. Beard et al., 1996; Bouabdli et al, 1988; Hauser et al., 

2010). In general, a relative depletion in Nb, Ta and/or Ti is typical of arc rocks; therefore, the 

absence of a significant Nb–Ta negative anomaly in the Ditrău camptonites means that a 

subduction component was not involved in the enrichment process of the source region. 

However, mantle metasomatism has also been attributed to partial melts and/or metasomatic 

fluids that migrate from the asthenospheric mantle and freeze in thin zones within the 

mechanical boundary layer of the continental lithosphere for long periods of geological time 

(McKenzie, 1989). Re-melting of the metasomatic zone, consisting of veins (with 

clinopyroxene, amphibole ± mica ± apatite ± carbonate ± oxides) enriched in volatiles and 

incompatible elements hybridised with variable amounts of partial melts from their less 

enriched peridotite wall rock, can produce alkaline magmas (e.g. Foley, 1992). Partial melting 

of the phlogopite-bearing mantle would generate potassic magmas with K2O/Na2O>1 (Wilson 
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and Downes, 1991). High Na/K ratios of the Ditrău camptonites suggest that the metasomatic 

mineral in the source region was rather amphibole than phlogopite. The presence of pargasitic 

amphibole in the source region can account for the high Nb–Ta concentrations observed in the 

studied camptonites (Table 1) since the Nb/Ta ratio in the melt is controlled by amphibole 

during melting, as shown by Tiepolo et al. (2000). 

The extremely low Zr/Hf ratio (21.0–32.2) and the positive correlation of Zr/Nb with the Zr 

concentration (Fig. 7) (also) indicates an enrichment process which could be produced if a 

constant amount of Nb is added to the variably depleted source region (Weyer et al., 2003). 

The low Zr/Nb ratio (0.7–5.3) confirms the strong enrichment of incompatible trace elements 

(Tappe et al., 2006). High initial 143Nd/144Nd ratios (εNd values of +4.0 to +6.1) of the Ditrău 

camptonites indicate that the analysed lamprophyre has experienced time-integrated 

enrichment in Sm or loss of Nd, relative to CHUR (Rock, 1991).  

Figure 9 shows the initial εNd values vs La/Nb ratios of the camptonites and other igneous 

rocks from the Ditrău Alkaline Massif, together with fields for HIMU (Zindler and Hart, 

1986; Weaver, 1991), alkaline lamprophyres from Moravia (Dostal and Owen, 1998; Harangi 

et al., 2003), the Spanish Central System (Orejana et al., 2008), the Tamazert Complex 

(Bernard-Griffiths et al., 1991), the Mecsek-Alföld Igneous Field (Harangi et al., 2003) and 

the worldwide average (Rock, 1991) for comparison. Ditrău camptonites are within or plot 

near to the fields of the alkaline lamprophyres from Moravia, the Tamazert alkaline complex 

and the Spanish Central System (group of PREMA-like dykes). Camptonites from the 

Spanish Central System are differentiated into an isotopically depleted (PREMA-like) and an 

isotopically enriched (BSE-like) groups (Orejana et al., 2008). The depleted isotopic 

signatures have been interpreted with the involvement of a sub-lithospheric source (probably 

asthenospheric-related) and the enriched isotopic compositions have been explained by 

participation of a lithospheric mantle. The close similarity to the isotopically depleted Spanish 
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lamprophyres suggests a sub-lithospheric mantle source for the Ditrău camptonites as well. In 

the source region of the Moravian, Mecsek-Alföld and Tamazert lamprophyres, the HIMU 

OIB mantle component has been identified (Bernard-Griffiths et al., 1991; Dostal and Owen, 

1998; Harangi et al., 2003). Ditrău camptonites fall near to the field of the HIMU OIB mantle 

component, as well as the alkaline lamprophyres mentioned above, proposing that a HIMU-

type mantle source was involved in the generation of the studied lamprophyres which is 

consistent with a sub-lithospheric–asthenospheric origin. The relatively homogeneous Nd 

isotopic compositions with slight differences can also be compatible with variable partial 

melting of a homogeneous mantle source as suggested by Bernard-Griffiths et al. (1991). REE 

and Nd isotopic compositional fields for camptonite–I and camptonite–II overlap (Figs. 8 and 

9), inferring that they were generated from similar mafic alkaline magma batches of the 

metasomatised zone in the mantle source with only slight differences in their modal 

mineralogy (e.g. Orejana et al., 2008). 

 

6.2. Partial melting 

To evaluate the generation of such an enriched camptonitic magma, partial melting 

calculations have been undertaken on garnet (curve A) and spinel (curve B) peridotite mantle 

sources (according to Kostopoulos and James, 1992) using non-modal batch melting 

equations integrated with a melting model of an enriched asthenospheric mantle source 

(EAM) (Seghedi et al., 2004). Melting curves using EAM as the source material have been 

calculated for different mantle facies including garnet lherzolite (Kostopoulos and James, 

1992, curve C), garnet-amphibole lherzolite (Barry et al., 2003, curve D) and another garnet-

amphibole lherzolite with slightly different composition than the latter (new calculations, 

curve E) (Fig. 10). The calculations suggest 1–4% degrees of partial melting of an enriched 

garnet peridotite mantle source with Ol (58%), Opx (18%), Cpx (13.4%), Grt (6.6%) and 
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Amph (4.0%). Four percent of amphibole in the modal mineralogy of the source region can 

explain the volatile enrichment in the primary magma. The composition of samples VRG7292 

and VRG7299 (Table 1) may represent this primary magma. Morogan et al. (2000) also point 

to the hydrous nature of the Ditrau magmas and their generation by small degrees of melting 

of asthenospheric garnet lherzolite. A small to moderate degree of fractional crystallisation 

(Fmax=46.8) for the generation of Ditrău camptonites is also indicated by 4% melting of the 

enriched garnet-amphibole lherzolite mantle source (Fig. 10). This melt generation 

corresponds to approximately 80 km depth. 

 

6.3. Fractional crystallisation 

Some samples of the Ditrău camptonites (VRG7292, VRG7296 and VRG7297) containing ca. 

15% olivine pseudomorphs and ca. 10% clinopyroxene phenocrysts fulfil the compositional 

criteria for identifying primary upper-mantle partial melts with concentrations of mg#=0.7, 

Cr=277 ppm, and Ni=214 ppm. However, all the other Ditrău camptonites show various 

whole-rock mg values (0.44 to 0.70), generally low concentrations of Ni and Cr (6–74 ppm 

and 4–100 ppm, respectively), indicating that they have undergone variable fractional 

crystallisation during their ascent, and were probably generated from the more primitive 

camptonites. The distribution of whole-rock major and trace elements together with the 

petrographic observations suggest the fractionation of olivine and clinopyroxene in the range 

of mg# between 0.70 and 0.53 in camptonite–I. During this stage TiO2 increases and starts to 

decrease, together with V, from mg# 0.55, while the CaO, FeOt and Yb/Eu ratios decrease 

during differentiation which indicates crystallisation of kaersutite in camptonite–I and titanite 

together with hastingsite in camptonite–II. 

Correlations between diopside Cr and mg# and between Si and Ti+AlIV indicate a more 

primitive melt and/or higher temperature at the beginning of crystallisation (Fig. 4). The Ti/Al 
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ratio falls between 0.125 and 0.250 indicating a relatively high crystallisation pressure (Fig 4). 

The high AlVI and the slightly high Na p.f.u. content also confirm that they probably 

crystallised under higher pressure and temperature (e.g. Adam and Green, 1994; Ubide et al., 

2012). Based on the high mg# and Cr content (up to 0.81 wt. % Cr2O3), and the aluminian-

ferroan diopsidic composition of the pyroxenes, it is supposed that they might have 

crystallised following olivine at 1200–1250 °C (Thompson, 1974) and 10–15 kbar (Aoki and 

Kushiro, 1968). According to the thermobarometric calculation developed by Putirka (2008) 

(RiM69_Ch03_cpx_P-T.xls spreadsheet), diopside in camptonite–I was formed under 

approximately 1220–1300 °C and 12–20 kbar which is comparable to the literature data 

estimated above. Clinopyroxene with such chemical features can be considered to be a 

cognate phase in alkali basaltic volcanics (e.g. Wass, 1979) and probably crystallised under 

upper-mantle conditions, in accordance with the above assessed PT values (Szabó et al., 

1993). 

In the further process of crystallisation, two distinct groundmass amphiboles formed under 

slightly different physical conditions. Different thermobarometric methods were applied 

(RiM69_Ch04_hbld_plag_thermo-jla.xls spreadsheet). The Al-in-hornblende barometry of 

Hollister et al. (1987) and Schmidt (1992) show 7–9 kbar for the kaersutite core formation 

and 5.4–6.9 kbar towards the magnesiohastingsite rim; while for hastingsite formation the 

calculated pressure is 6–9 kbar. The hornblende-plagioclase thermometer, developed by 

Blundy and Holland (1990) and Holland and Blundy (1994), shows 755–838 ˚C for the 

kaersutite and 666–779 ˚C for the hastingsite crystallisation temperatures in the studied 

camptonites. The estimated PT values for amphiboles are consistent with early crystallisation 

from the ascending magma, as suggested previously based on mineral chemical data. The 

frequent intergrowth of amphibole with biotite in the groundmass suggests that these OH-

bearing Fe-Mg silicates crystallised at the same time. 
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6.4. Formation of ocelli 

Sub-rounded, leucocratic structures, ocelli distinguished from their host by a lower colour 

index filled with carbonate and/or felsic silicate minerals are common features of 

lamprophyres and some alkali basalts (e.g. Azbej et al., 2006; Hauser et al., 2010; Szabó et 

al., 1993; Rock, 1991). Ocelli in igneous rocks have been interpreted as amygdales, 

nucleation cores of felsic minerals, or vesicles filled by late-stage minerals (e.g. Cooper, 

1979; Foley, 1984) or as products of silicate–carbonate or silicate–silicate liquid immiscibility 

(e.g. Eby, 1980; Ferguson and Currie, 1971; Philpotts, 1976). 

Ditrău camptonites contain both silicate–carbonate ocelli (camptonite–I), and silicate ocelli 

(camptonite–II). Ocelli found in camptonite–I are similar to ocelli described from worldwide 

lamprophyres (e.g. Azbej et al., 2006; Foley, 1984; Szabó et al., 1993) consisting of carbonate 

cores rimmed by albite, biotite with opaque minerals or, rarely, titanite (Fig. 3B, F). They are 

likely to have been formed by the segregation of a CO2-rich late-stage melt to produce gas 

vesicles after much of the groundmass had crystallised (Andronikov and Foley, 2001; Azbej 

et al., 2006). They lack early formed minerals, such as olivine or clinopyroxene which 

confirms their generation by late-stage segregation processes (Foley, 1984). Tangential 

alignment of biotites often occurring around ocelli can be interpreted as a result of expansion 

of gas bubbles in the partially crystallised magma (Phillips, 1973). Carbonate veins 

intersecting carbonate ocelli and the pilitic pseudomorphs after olivine phenocrysts represent 

late-stage fluids transported through the fractures of the solidified camptonites (Azbej et al., 

2006). 

Silicate ocelli in camptonite–II consist of dominantly plagioclase feldspar with minor amounts 

of amphibole, biotite, titanite and apatite (Fig. 3D, G, H). Ocelli silicates have very similar 

chemical compositions compared to their groundmass equivalents. The chemical similarity of 
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the mineral assemblages found in silicate ocelli to those occurring in the groundmass support 

their similar evolution and is inconsistent with the theory of silicate–silicate liquid 

immiscibility, but is consistent with the hypothesis that ocelli are segregations of residual 

interstitial melt as suggested by Bédard (1994), Cooper (1979) and Foley (1984). The texture 

of the lamprophyres (Fig. 3D) indicates that after about 40–50 % crystallisation, the magmas 

(of camptonite–II) consisted of euhedral ferromagnesian minerals and interstitial 

syenomonzonitic to phonolitic melt (Bédard et al., 1988; Bédard, 1994). 

The high amount of ocelli in the Ditrău camptonites refers to the high volatile content of the 

injected magma. The predominance of carbonate minerals over biotite in the camptonite–I 

ocelli indicates that CO2 dominated over H2O during the late-stage of the crystallisation. In 

camptonite–II, ocelli plagioclase dominates over amphibole and biotite in contrast to the 

groundmass, suggesting that the role of H2O was significantly higher during the formation of 

the groundmass than of the ocelli, because the high volatile content of the alkaline 

lamprophyre melt suppresses feldspars to the latest stages of crystallisation (Rock, 1991). 

 

6.5. Tectonic setting 

Alkaline mafic magmas are usually produced as a response to lithospheric thinning or due to 

uprising mantle plumes (Wilson, 1993). We use incompatible and rare earth elements, widely 

accepted as immobile during post-magmatic alteration processes, to define the geotectonic 

setting in which the Ditrău camptonites were generated. The distribution of HFS elements (Zr, 

Y and Ti) in Pearce and Cann’s (1973) diagram (Fig. 11) and the primitive mantle-normalised 

REE patterns indicate a within-plate origin for the studied camptonites (Fig. 8D, E) which 

agree well with the high initial εNd values of the Ditrău camptonites typical of enriched intra-

plate compositions. According to Leterrier et al.’s (1992) discrimination diagram, the Ti+Cr 

vs. Ca distribution of clinopyroxene shows an anorogenic setting for the camptonites (Fig. 4). 
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All these element distributions suggest the relation of Ditrău camptonites to intra-plate 

magmatic activity which corresponds well with the formation of the massif during an 

extensional phase associated with a rifted continental margin, as suggested by Kräutner and 

Bindea (1998). The authors concluded that the massif formed in three main stages in the mid-

Triassic and Jurassic, from mantle-derived melts during extensional tectonism on the south-

western European passive margin; the final stage of these extensions involved separation of 

the Bucovino-Getic microplate from the European continental margin. Morogan et al. (2000) 

also concluded the OIB-like character of the Ditrău magmas and suggested a mantle plume 

origin as was assumed previously by Dallmeyer et al. (1997). 

 

6.6. Relation to the Ditrău Alkaline Massif 

In the north-western part of the Ditrău Alkaline Massif, small ultramafic to mafic bodies 

occur, consisting of kaersutite peridotite, olivine hornblendite, hornblendite and gabbro. The 

mineral composition and chemistry of hornblendites and gabbros strongly resemble the 

studied camptonites. All three possess apatite, titanite, Fe-Ti oxide, clinopyroxene, 

amphibole, plagioclase, ± olivine and ± biotite. Amphiboles in hornblendite and gabbro are 

kaersutite grading to hastingsite, magnesiohastingsite and pargasite (Morogan et al., 2000; 

Pál-Molnár, 2000), comparable to those observed in camptonites. As well as their whole-rock 

REE (Fig.8), the compositions of diopside in hornblendites (Di63-81Hd14-27Aeg2-10; Pál-Molnár, 

2000), gabbros (Di72-73Hd16-19Aeg8-12; Morogan et al., 2000) and camptonites (Di76-93Hd1-

24Aeg1-8) also overlap. The ultramafic and mafic rocks are inferred to represent cumulates 

(Morogan et al., 2000; Pál-Molnár, 2000) and were derived through fractional crystallisation 

from a basanitic parental magma (Morogan et al., 2000). Based on the trace element, REE and 

Nd isotopic data (Fig. 9), in conjunction with the petrographic and mineral chemical evidence, 

the ultramafic and mafic bodies in the Ditrău Alkaline Massif are interpreted, with the studied 
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camptonites, as a suite of co-magmatic and co-genetic rocks. The Ditrău lamprophyres 

represent the only basic melt that penetrated throughout the massif and are in close magmatic 

and genetic relation with the ultramafic and mafic rocks, and, as such, they are defined as 

parental melts to the igneous body of the Ditrău Alkaline Massif. Morogan et al. (2000) also 

suggested that large volumes of basanite magma were involved over a long time interval in 

the formation of the Ditrău complex. 

 

7. Conclusions 

Camptonite dykes intrude a wide range of igneous rock of the Ditrău Alkaline Massif, namely 

hornblendite, diorite, syenite, nepheline syenite and granite. Two amphibole populations are 

present in the lamprophyres with steady reduction in Yb/Eu, CaO and FeOt and similar 

crystallisation conditions. Camptonite–I contains kaersutite formed under 7–9 kbar and 755–

838 °C, while hastingsite formation in camptonite–II shows 6–9 kbar and 666–779 °C. In 

turn, fractionation of olivine and clinopyroxene are observed only in camptonite–I. The 

aluminian-ferroan diopside is inferred to form under high pressure and temperature, 

approximately between 12–20 kbar and 1220–1300 °C. Decreasing TiO2 and V during 

differentiation is attributed to abundant titanite crystallisation in camptonite–II, while the 

significant Ti–phase in camptonite–I is kaersutite. The dykes contain silicate–carbonate and 

silicate ocelli. Calcite–albite ocelli with subordinate biotite and opaque minerals or, rarely, 

titanite in camptonite–I are most likely to have generated by late-stage segregation processes 

producing CO2-rich gas vesicles after much of the groundmass amphibole had crystallised. In 

camptonite–II, ocelli and groundmass plagioclases have similar compositions. Thus, they had 

similar evolutions in the melt, so the plagioclase-dominant ocelli are interpreted as 

segregations of residual syenomonzonitic interstitial melt. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 26

Ditrău camptonites are inferred to have been generated by 1–4 % partial melting of an 

enriched garnet lherzolite mantle source containing 4% of pargasitic amphibole. The source 

enrichment is attributed to a sub-lithospheric metasomatic zone consisting of variable 

amphibole-rich ± carbonate ± oxides ± apatite ± clinopyroxene-bearing veins, which can 

account for the volatile enrichment in the camptonitic magmas of the strongly to moderately 

Si-undersaturated grading to Si-saturated character. An asthenospheric HIMU-OIB-type 

mantle component was also involved in the generation of the camptonite melt. Chemical 

composition of the Ditrău camptonites corresponds to an intra-plate magmatism, comparable 

to an extensional phase of the Alpine evolution, from mid-Triassic to Jurassic involving 

separation of the Bucovino-Getic microplate from the south-western (Bucovinian) European 

passive margin by the Civcin-Severin rift system, as assumed previously by Kräutner and 

Bindea (1998), Pál-Molnár and Árva-Sós (1995), and Pál-Molnár (2000). 

Ditrău hornblendites, gabbros and diorites show strong mineral and petrochemical similarities 

with the alkaline lamprophyres, pointing to a petrogenetic relationship. Furthermore, 

camptonites represent the only basanitic melt penetrating throughout the complex, thus, they 

are defined as parental melts to the plutonic suites of the Ditrău Alkaline Massif. 
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Figure captions 

Fig. 1. (A) Location of the Ditrău Alkaline Massif in the structural system of the Alpine–

Carpathian–Dinaric region (Pál-Molnár, 2010). (B) Schematic geological map of the Ditrău 

Alkaline Massif. (C) Sample locations in the northern part of the Ditrău Alkaline Massif with 

the same legend as in figure B. 

 

Fig. 2. (A) Field relation of the camptonite dykes with the wall rock (granite), Ditrău Alkaline 

Massif, Creangă Mare Creek. (B) Camptonite containing ocelli cut by a carbonate vein, 

Ditrău Alkaline Massif, Jolotca Creek. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 37

Fig. 3. Characteristic petrographic features of camptonite–I and –II from the Ditrău Alkaline 

Massif. (A) Clinopyroxene phenocryst extensively replaced by tremolite, actinolite and biotite 

in camptonite–I VRG7292, 1N. (B) Ocellus containing sparry calcite crystals with biotite in 

the interior rimmed by albite in camptonite–I VRG7294, 1N. (C) Ocellus plagioclase with 

epidote core in camptonite–I VRG7297, +N. (D) Silicate ocelli filled with zoned plagioclase, 

hastingsite inter-grown with biotite and apatite in camptonite–II VRG7305, 1N. (E) and (F) 

Cathodoluminescence images of large ocellus calcites and veins in camptonite–I VRG7294 

showing a lighter orange colour at the rims reflecting their variable Mn and/or REE-content. 

(G) and (H) BSE images of ocellus hastingsite, biotite, andesine, titanite and calcite partly 

replaced by barite in camptonite–II VRG7305. Mineral abbreviations are after Kretz (1983). 

 

Fig. 4. Compositional variations in clinopyroxene of camptonite–I from the Ditrău Alkaline 

Massif. Equation of Ti+Cr=0.08Ca-0.04 is after Leterrier et al., (1992). Full circles: cores; 

open circles: rims. 

 

Fig. 5. Compositional trends in amphibole for the Ditrău camptonites. Circles: camptonite–I; 

full squares: camptonite–II groundmass; open squares: camptonite-II phenocrysts. 

 

Fig. 6. Correlation diagrams of major elements vs. mg# for the Ditrău camptonites. 

 

Fig. 7. Correlation diagrams of selected trace elements and trace element ratios vs. mg# and 

Zr for the Ditrău camptonites. 

 

Fig. 8. Plots of trace element and rare-earth element abundances normalised to primitive 

mantle (Sun and McDonough, 1989) for (A, D) camptonite–I and (B, E) camptonite–II (this 
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study). One basanite and one alkali basalt dyke (Morogan et al., 2000), and (C, F) 

hornblendite and diorite (Pál-Molnár, 2000) from the Ditrău Alkaline Massif, the average for 

alkaline lamprophyres (Rock, 1991) and OIB (Sun and McDonough, 1989) shown for 

comparison. 

 

Fig. 9. εNd vs La/Nb for the Ditrău camptonites and other igneous rocks from the massif. 

Initial εNd is calculated at the age of 200 Ma. Alkaline lamprophyres (AL) from Moravia 

(Dostal and Owen, 1998; Harangi et al., 2003), Spanish Central System (Orejana et al., 2008), 

Tamazert Complex (Bernard-Griffiths et al., 1991), Mecsek-Alföld Igneous Field (Harangi et 

al., 2003) and the worldwide average given by Rock (1991) shown for comparison as well as 

fields for HIMU, MORB and EM I (Zindler and Hart, 1986; Weaver, 1991). 

 

Fig. 10. La/Yb vs Yb (ppm) diagram for the Ditrău camptonites. Melting curves for garnet 

lherzolite (A, C), spinel lherzolite (B) and garnet–amphibole lherzolite (D, E) calculated using 

a non-modal batch melting equation. Partition coefficients for olivine, orthopyroxene, garnet 

and spinel are from Kostopoulos and James (1992), for clinopyroxene is according to Foley et 

al., (1996), and for amphibole follow Dalpe and Baker (1994). Source compositions: for PM 

(primitive mantle) (curves A, B) according to Palme and O’Neill (2004); for EAM (enriched 

asthenospheric mantle) (curves C, D, E) according to Seghedi et al., 2004. Initial garnet 

(curves A, C) and spinel (curve B) lherzolite mantle modal compositions are 

ol60.1+opx18.9+cpx13.7+grt7.3 and ol57+opx25.5+cpx15+sp2.5; melting modes are 

ol1.2+opx8.1+cpx36.4+grt54.3 and ol1.2+opx8.1+cpx76.4+sp14.3 (Kostopoulos and James, 

1992). Garnet–amphibole lherzolite (Barry et al., 2003, curve D) mantle modal composition is 

ol55+opx22+cpx15+grt5+amph1; melting mode is ol5+opx5+cpx30+grt20+amph40. Melting 

curve E (source mode: ol58+opx18+cpx13.4+grt6.6+amph4, melting mode: 
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ol2+opx7+cpx30+grt21+amph40) indicates that the lamprophyric magma could be generated 

by 1% to 4 % partial melting of an enriched garnet–amphibole lherzolite mantle source 

followed by fractional crystallisation (FC). The calculated trend for FC of the camptonitic 

magma is produced by 4% melting of the enriched garnet–amphibole lherzolite mantle source. 

 

Fig. 11. Ti/100 vs. Zr vs Y*3 distribution following Pearce and Cann (1973) for camptonites 

from the Ditrău Alkaline Massif. A–B: low K-tholeiites, B: ocean floor basalts, B–C: calc-

alkaline basalts, D: within-plate basalts. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Table 1. Whole-rock analyses of camptonites from the northern part of the Ditrău Alkaline Massif 

 

Location 
Tarnica 
Creek 

Török     
Creek 

Jolotca 
Creek 

Jolotca 
Creek 

Jolotca 
Creek 

Tarnica 
Creek 

Tarnica 
Creek 

Tarnica 
Creek 

Tarnica 
Creek 

Nagyág 
Creek 

Nagyág 
Creek 

Török     
Creek 

Török     
Creek 

Sample 
nr. 

VRG VRG VRG VRG VRG VRG VRG VRG VRG VRG VRG VRG VRG 

6715 6765 7292 7296 7297 7299 7300 7301 7302 7286 7287 7289 7290 

wt. % camptonite-I camptonite-II 
 

SiO2 45.29 41.79 45.22 46.26 48.61 45.63 46.46 43.27 46.54 48.39 50.80 44.35 43.32 

TiO2 3.59 3.47 2.07 2.16 2.12 3.40 3.34 3.42 2.93 2.68 2.85 3.42 3.45 

Al2O3 14.7 14.64 12.52 15.68 15.16 15.39 15.97 14.47 16.07 18.20 16.67 15.42 14.82 

Fe2O3 2.49 2.60 1.88 1.80 1.81 2.22 2.25 2.45 2.03 1.84 1.78 2.61 2.57 

FeO 9.46 10.15 7.73 7.21 7.33 8.26 8.49 9.42 7.71 6.98 6.52 10.24 9.98 

MnO 0.16 0.25 0.16 0.17 0.15 0.17 0.17 0.20 0.18 0.27 0.18 0.26 0.25 

MgO 7.05 6.24 10.01 6.52 7.14 6.01 5.63 6.60 4.87 3.79 5.37 5.91 6.01 

CaO 8.88 8.54 8.85 8.28 7.30 8.43 8.62 8.83 8.79 7.53 6.83 7.68 9.49 

Na2O 3.99 3.57 3.01 4.56 4.49 4.28 4.40 3.02 4.08 4.12 5.35 2.92 3.45 

K2O 1.96 2.29 2.36 2.36 2.25 2.23 2.29 3.57 2.43 3.52 1.63 3.29 1.89 

P2O5 — — — — — 0.66 — — — — — — — 

LOI — — — — — 1.90 — — — — — — — 

Total 98.64 95.46 94.67 95.81 97.18 99.50 98.57 96.30 96.49 98.08 98.71 97.25 96.35 

mg# 0.57 0.52 0.70 0.61 0.63 0.56 0.54 0.55 0.53 0.49 0.60 0.51 0.52 

Normative 

ne 10.8 11.4 8.3 13.8 8.2 10.0 11.8 13.6 9.9 9.5 5.6 8.2 10.3 

ol 12.2 14.3 17.6 11.2 13.6 10.9 9.2 11.6 7.6 7.6 9.5 14.2 11.4 

ppm 

Be 1.2 2.4 1.2 1.6 1.4 2 1.6 1.1 2.1 4.9 5.2 3.3 2.2 

Sc 15.4 14 17.1 12.6 13.3 18 14.9 17.2 13.3 7.1 9.0 12.3 13.4 

V 233 202 150 164 142 246 211 224 192 143 155 214 208 

Cr 100 13 277 208 201 62 53 138 69 4.1 58 51 53 

Co 38 41 45 28 36 38 34 40 30 22 28 32 32 

Ni 72 34 214 101 134 63 56 74 41 11.6 40 43 50 

Cu 32 41 49 31 51 14 26 32 32 17 22 17 25 

Zn 146 141 104 105 104 81 111 146 111 198 145 137 124 

Sr 903 931 695 1142 826 1411 1118 1049 837 898 1047 725 875 

Ba 442 633 597 1816 781 768 615 620 597 325 377 816 680 

Rb 147 229 184 172 174 72 166 215 186 499 279 437 186 

Pb 11.6 

Th — — — — — 10.6 — — — — — — — 

U — — — — — 2.8 — — — — — — — 

Zr 264 307 168 230 358 322 293 179 338 539 357 306 277 

Nb 93 117 53 94 68 94 97 69 105 120 125 108 106 

Ta — — — — — 5.8 — — — — — — — 

Y 26.2 27 14.7 16.9 16.8 26.0 23.6 20.2 21.9 24.1 27.0 27.3 27.0 

Hf 12.1 10 8.0 5.2 9.0 7.6 9.2 7.9 10.5 11.8 10.0 10.7 9.2 

Mo 4.5 — 7.8 1.9 5.9 1.4 4.0 3.2 7.0 — 11.0 2.8 3.4 

S 541 110 595 393 288 — 275 703 566 118 86 87 164 

La 58 77 32 56 38 65 56 40 59 75 69 74 72 

Ce 118 135 55 107 78 120 109 80 110 135 127 134 130 

Pr — — — — 13.6 — — — — — — — 

Nd 53 59 22 38 24 52 41 40 34 40 48 56 54 

Sm 11.0 12 4.8 7.0 5.8 9.4 9.4 8.8 8.5 8 9.7 12.0 11.0 

Eu 3.3 3.2 1.5 2.1 1.8 2.8 2.8 2.7 2.4 1.9 2.6 3.3 3.3 

Gd — — — — 8.1 — — — — — — — 

Tb — — — — 1.1 — — — — — — — 

Dy 5.9 6.6 4.0 3.6 3.6 5.3 5.7 5.1 5.0 5.6 5.4 6.7 6.5 

Ho — — — — 1.0 — — — — — — — 

Er — — — — 2.5 — — — — — — — 

Tm — — — — 0.3 — — — — — — — 

Yb 3.2 3.1 2.2 2.5 2.4 2.1 2.9 2.6 2.8 2.9 2.9 3.1 3.2 

Lu — — — — 0.3 — — — — — — — 

ΣREE 252 296 122 216 154 284 227 179 222 268 265 289 280 

mg#: Mg/(Mg+Fe2+), Fe2+ calculated according to Irvine and Baragar (1971) (continued) 
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Table 1. (continued) 

Location 
Török     
Creek 

Török     
Creek 

Török     
Creek 

Fülöp     
Creek 

Gudu 
Creek 

Jolotca 
Creek 

Várpatak 
Creek 

Tölgyes 
road 

Várpatak 
Creek 

Jolotca 
Creek 

Jolotca 
Creek 

Average 
AL 

Sample 
nr. 

VRG VRG VRG VRG VRG   
Vendl, 
1926 

DT123 DT116A 
Rock, 
1991 7291 7305 7320 7351 7357 

Mauritz, 1912 
Morogan et al., 

2000 

wt. % camptonite-II 
        

basanite 
dyke 

alk bas 
dyke 

AL 
average 

SiO2 43.05 46.70 47.84 44.79 50.50 45.97 47.52 48.70 44.66 44.82 47.79 42.5 
TiO2 3.58 4.00 2.78 3.77 1.74 4.59 2.55 4.31 4.62 3.29 2.79 2.90 
Al2O3 14.81 15.10 16.40 15.64 17.64 17.67 18.00 17.09 14.19 16.01 15.20 13.70 
Fe2O3 2.60 12.00 2.07 2.49 8.91 4.74 4.26 2.00 3.23 

11.09 11.57 12.00 
FeO 10.04 8.06 9.28 5.60 3.69 6.80 7.39 
MnO 0.26 0.24 0.15 0.19 0.52 0.11 0.10 0.12 — 0.21 0.17 0.20 
MgO 6.50 5.20 4.54 6.41 2.89 4.76 4.46 5.18 6.71 5.04 6.58 7.10 
CaO 9.64 5.00 7.38 9.56 4.85 8.43 7.35 7.94 8.52 7.60 7.12 10.30 
Na2O 3.39 3.40 3.92 3.24 5.49 5.87 5.08 4.84 4.04 4.23 4.27 3.00 
K2O 1.87 1.90 2.00 2.59 2.59 1.58 3.14 1.34 1.56 2.56 0.75 2.00 
P2O5 1.06 0.98 — — — 0.09 0.31 0.73 0.64 0.69 0.40 0.74 
H2O — — — — — 0.54 2.10 1.29 3.35 — — 3.10 

CO2 — — — — — 1.21 — 1.15 — — 2.00 
LOI 1.50 — — — — — — — — 4.29 3.08 

Total 99.42 94.52 96.05 99.01 95.13 99.95 99.77 100.34 100.06 99.85 99.75 

mg# 0.54 0.52 0.50 0.55 0.44 0.60 0.68 0.58 0.62 0.53 0.58 0.67 
Normative 

ne 8.2 0 2.7 10.2 6.2 15.4 12.8 3.5 5.9 10.04 0.24 9.5 
ol 13.8 0 10.7 10.7 9.9 2.3 3.5 8.3 8.6 12.5 17.4 13.7 

ppm 
Be 4.0 5.4 1.3 1.6 2.1 — — — — — — 1.0 
Sc 17 — 10.4 16.3 6.6 — — — — 17 21 21.0 
V 276 261 173 249 97 — — — — 246 240 285 
Cr 56 66 18 42 6 — — — — 48 145 97 
Co 37 33 30 37 10 — — — — — — 38 
Ni 57 — 36 52 6 — — — — 45 85 65 
Cu 11 22 39 35 18 — — — — 54 44 50 
Zn 74 — 101 126 242 — — — — 124 97 98 
Sr 1234 834 723 873 998 — — — — 859 979 990 
Ba 799 — 492 851 3020 — — — — 650 494 930 

Rb 87 115 206 173 133 — — — — 83 20 50 
Pb 3.0 — — — — 2.3 8.0 — 

Th 10.1 — — — — — — — — 8.9 4.8 9.0 
Zr 371 244 200 302 144 — — — — 267 169 313 

Nb 120 106 65 112 222 — — — — 91 49 101 
Ta 7.3 — — — — — — — — 4.8 5.9 5.0 

Y 35.1 29 18.4 26.4 132 — — — — 27 23 31.0 
Hf 8.6 — 7.5 10.3 11.6 — — — — 7.7 5.4 6.9 
Mo 0.1 — 1.8 2.7 5.5 — — — — — — 8.5 
S — 208 82 254 352 — — — — — — — 
La 94 — 43 63 71 — — — — 57 30 66 
Ce 169 — 80 123 196 — — — — 111 61 125 
Pr 19.8 — — — — — — — — 12.6 7.6 14.0 
Nd 74 — 32 50 118 — — — — 45 29 54 
Sm 13.1 — 6.8 11.0 37 — — — — 8.6 6.0 10.8 
Eu 3.9 — 2.3 3.0 11.9 — — — — 2.7 2.2 3.1 
Gd 11.1 — — — — — — — — 7.5 5.9 8.2 
Dy 7.6 — 4.6 6.1 32.6 — — — — 5.0 4.2 5.4 
Ho 1.3 — — — — — — — — 1.0 0.8 0.9 
Er 3.4 — — — — — — — — 2.2 1.9 2.7 

Yb 2.5 — 2.4 3.3 7.8 — — — — 1.8 1.6 1.8 
Lu 0.3 — — — — — — — — 0.3 0.2 0.3 

ΣREE 400 — 171 259 474 — — — — 255 150 292 
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Table 2. Rb-Sr and Sm-Nd isotope data for camptonites, hornblendite, diorite, monzonite and syenite of the 
Ditrău Alkaline Massif, Romania 
Rock type Sample Rb  

(ppm) 
1 

Sr  
(ppm) 

1 

87Rb/86Sr 
1 

87Sr/86Sr ± 
2σm 2 

(measured) 

87Sr/86Sr 
(initial) 

Sm 
(ppm)3 

Nd 
(ppm)3 

147Sm/144Nd 
3 

143Nd/144Nd 
± 2σm 4 

(measured) 

143Nd/144Nd 
(initial) 

εNd 
5 

(initial)

Camptonite–
I 

VRG6765 229 931 0.7113 0.703512 
± 17 

0.70148 13.1 75.6 0.1049 0.512832 ± 
30 

0.512695 6.1 

Camptonite–
I 

VRG7300 166 1117 0.4294 0.703337 
± 19 

0.70211 9.90 53.4 0.1121 0.512773 ± 
5 

0.512626 4.8 

Camptonite–
II 

VRG7287 278 1047 0.7706 0.703673 
± 27 

0.70148 10.8 61.4 0.1063 0.512786 ± 
7 

0.512647 5.2 

Camptonite–
II 

VRG7351 173 873 0.5731 0.703714 
± 12 

0.70208 11.8 64.8 0.1103 0.512729 ± 
22 

0.512585 4.0 

Hornblendite VRG6745 199 633 0.9092 0.704010 
± 15 

0.70142 11.6 60.3 0.1172 0.512791 ± 
5 

0.512638 5.0 

Diorite VRG6775 65 2146 0.0875 0.702926 
± 13 

0.70267 12.3 78.2 0.0950 0.512744 ± 
8 

0.512620 4.7 

Monzonite VRG6679 284 906 0.9065 0.703755 
± 18 

0.70117 4.33 30.3 0.0865 0.512722 ± 
11 

0.512609 4.4 

Syenite VRG6766 197 566 1.0066 0.704181 
± 26 

0.70131 7.08 46.4 0.0923 0.512720 ± 
26 

0.512599 4.3 

1) Rb and Sr contents and 
87

Rb/
86

Sr ratio from ICP-MS analyses at the Department of Geology and 
Geochemistry, Stockholm University. 
2) 87Sr/86Sr ratio corrected for Rb interference and normalised to 86Sr/88Sr = 0.1194. One run of the NBS SRM 
987 Sr standard during the measurement period gave an 87Sr/86Sr ratio of 0.710236 ± 24 (2σm). Error given as 2 
standard deviations of the mean from the mass spectrometer run int he last digits. 

3) Sm and Nd contents and 
147

Sm/
144

Nd ratio from isotope dilution analysis with combined 
147

Sm-
150

Nd tracer. 

Estimated analytical uncertainty of 
147

Sm/
144

Nd ratio is ±0.5 % 
4) 143Nd/144Nd ratios calculated from ID run, corrected to Sm interference and normalised to 146Nd/144Nd = 
0.7219. One run of the La Jolla Nd-standard during the measurement period gave a 143Nd/144Nd ratio of 0.511859 
± 11 (2σm). Error given as 2 standard deviations of the mean from the mass spectrometer run in the last digits. 
5) Initial εNd values (at 200 Ma), according to Jacobsen and Wasserburg (1984): present-day chondritic 
147

Sm/
144

Nd ratio 0.1967; present-day chondritic 
143

Nd/
144

Nd ratio 0.512638. 
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Highlights 

1. Ditrău camptonites have been generated by 1–4 % partial melting of an enriched 
mantle 

2. The source region is garnet lherzolite containing 4% of pargasitic amphibole 
3. The source enrichment is attributed to a sub-lithospheric metasomatic zone 
4. An asthenospheric HIMU-OIB-type mantle component was involved in the melt 

generation 
5. They are deduced to be parental melts to the Ditrău Alkaline Massif 

 


