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Stability for Lie–Trotter products for some operator matrix semigroups
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Coupled systems of linear differential equations in Banach spaces can be often handled by the theory of C0-semigroups of
operator matrices. We study the stability of Lie–Trotter products of such matrix semigroups, and present three classes of
examples (abstract delay equations, abstract inhomogeneous equations, abstract dynamic boundary value problems) and some
open problems. This survey is based on the papers [1], [2] and [5], to which we refer the interested reader for more details
and extensive bibliographical information.
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The Lie–Trotter product formula provides the motivation and the fundamental background for operator splitting schemes in
numerical analysis. Given linear operators A,B on a Banach space E one is interested in the solution of the Cauchy problem
u̇(t) = (A + B)u(t) with fixed initial value u(0) = u0. The general theory of C0-semigroups yields that the problem is
well-posed if and only if A + B is the generator of a C0-semigroup (U(t))t≥0, and that in this case the unique solution is
given by u(t) = U(t)u0 (we refer to standard monographs on semigroup theory, such as [7]). Now suppose thatA,B generate
the C0-semigroups (S(t))t≥0, (T (t))t≥0, respectively. If (λ− A−B) has dense range and domain D(A+B), then one has
the following equivalence, stating the Lie–Trotter, or sequential splitting, formula:

Convergence: U(t)x = lim
n→∞
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x for all x ∈ E.

m

Stability: There are M,ω ≥ 0 with
∥∥∥[S( tn)T ( tn)]n∥∥∥ ≤Meωt for all t ≥ 0, n ∈ N.

The expressions
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)
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)]n
are called Lie–Trotter products and, as we see, their convergence is equivalent to their stability.

This is an instance of the Lax equivalence theorem, and because of this equivalence we shall concentrate on stability issues.
Every C0-semigroup (T (t))t≥0 obeys an exponential estimate of the kind ‖T (t)‖ ≤ Meωt for some M,ω ≥ 0, and is

called quasicontractive if M can be take to be 1. If A,B both generate quasicontractive semigroups, then the stability of the
corresponding Lie–Trotter products is a simple consequence of the submultiplicativity of the operator norm. In some cases the
space E can be renormed such that both semigroups become quasicontractive, in which case the stability is again immediate.
This is certainly so if B ∈ L (E), i.e., if B is bounded, since we can renorm E such that the semigroup (S(t))t≥0 generated
by A becomes quasicontractive, but a semigroup with bounded generator is quasicontractive.

Proposition 1 (see [1, Prop. 2.4]) LetA be a generator and letB be bounded, then the corresponding Lie–Trotter products
are stable.

The importance of splitting procedures becomes inevitable if one considers Cauchy problems (on productsE×F of Banach
spaces) given by operator matrices

Ẋ(t) = AX(t), A : D(A) ⊆ E × F → E × F, where formally A =
(
A D
C B

)
.

In general, A can be represented only formally as an operator matrix: Its domain is usually nondiagonal (i.e., contains a certain
coupling of the two coordinates). That is why, even if C = 0 andD = 0 the semigroup generated by A may not be of diagonal
but rather of upper triangular form. Here is a characterization of such matrix semigroups:

Proposition 2 (see [1, Prop. 2.1]) Let A generate the semigroup (T(t))t≥0 on E × F . Define A : D(A)→ E by

Ax := π1

(
A
(
x
0

))
for x ∈ D(A) :=

{
z ∈ E :

(
z
0

)
∈ D(A)

}
,

where πi denotes the projection onto the ith coordinate. Then the semigroup has upper triangular form, i.e.

T(t) =
(
S(t) R(t)

0 T (t)

)
for all t ≥ 0, (1)

if and only if the following two conditions are satisfied:
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(i) For all x ∈ E with
(
x
0

)
∈ D(A) we have π2

(
A
(
x
0

))
= 0.

(ii) There exists λ ∈ ρ(A) satisfying <λ > s(A) (the spectral bound of A).

Moreover, in this case (S(t))t≥0 and (T (t))t≥0 are C0-semigroups and the generator of (S(t))t≥0 is A.
For upper triangular matrix semigroups we have the following stability result:
Proposition 3 ( [1, Thm. 2.2]) Suppose that A1 and A2 generate on E×F the C0-semigroups (T1(t))t≥0 and (T2(t))t≥0

that are of upper triangular form

T1(t) =
(
S1(t) R1(t)

0 T1(t)

)
and T2(t) =

(
S2(t) R2(t)

0 T2(t)

)
,

and suppose that there exist M,ω ≥ 0 such that

‖R1(t)‖ ≤Mteωt and ‖R2(t)‖ ≤Mteωt for t ≥ 0.

Then the Lie–Trotter products of (T1(t))t≥0 and (T2(t))t≥0 are stable if and only if the Lie–Trotter products of (S1(t))t≥0

and (S2(t))t≥0 and the Lie–Trotter products of (T1(t))t≥0 and (T2(t))t≥0 are stable.
The next result characterizes those triangular matrix semigroups for which the foregoing stability result applies. For the

definition of the Favard spaces Fav0(A), Fav1(A) and the extrapolated semigroups we refer to [7, Sec. II.5]. In the situation
of Proposition 2 for an upper triangular semigroup (T(t))t≥0 of the form (1) we denote by A and B the generators of the

diagonal entries and set D =
(
A 0
0 B

)
with diagonal domain, which then generates the diagonal semigroup on E × F .

Proposition 4 (see [1, Prop. 2.6]) Let (T(t))t≥0 be a triangular semigroup of the form (1) on the product space E × F
with generator A. Then the following assertions are equivalent:

(i) There exist M,ω ≥ 0 such that ‖R(t)‖ ≤Mteωt for all t ≥ 0.

(ii) There exists P : F → Fav0(A) bounded operator such that A = (D−1 + P)|E×F where P =
(

0 P
0 0

)
.

This result implies that for reflexive spaces E, F we are just in the situation of Proposition 1, i.e., when the upper triangular
semigroup is a bounded perturbation of the diagonal one, cf. [7, Sec. III.3].

1 Delay equations

Consider the delay equation{
u̇(t) = Bu(t) + Φut, t ≥ 0

u(s) = f(s), s ∈ [−1, 0]

on a Hilbert space H , where B : D(B) ⊆ H → H is linear, f : [−1, 0] → H is a given initial function, ut : [−1, 0] → H is
the history function defined by ut(s) = u(t+s) for s ∈ [−t, 0] and ut(s) = f(t+s) for s ∈ [−1,−t), and where Φ is a linear
operator, called the delay operator, mapping H-valued functions on [−1, 0] to H . Typical choices for the delay operator are
(a) the point delays, e.g., Φv = v(−1) or (b) distributed delays, e.g., Φv =

∫ −0.5

−1
v(σ)dσ, or (c) (as a matter of fact, including

both (a) and (b)) Φv =
∫ 0

−1
v(σ)dη(σ) with η ∈ BV([−1, 0]; L (H)).

By introducing a new unknown function X(t) :=
(
ut
u(t)

)
the delay equation can be recast as an abstract Cauchy problem on

the product space Lp([−1, 0];H)×H , p ∈ [1,∞) as{
Ẋ(t) = AX(t)

X(0) =
(
f
x

) with A :=
(

d
dσ 0
Φ B

)
and D(A) :=

{(
f
x

)
∈W1,p

(
[−1, 0];H

)
×D(B) : f(0) = x

}
,

where d
dσ stands for the first derivative with domain W1,p([−1, 0];H). The delay equation is well-posed if and only if A

generates a C0-semigroup in which case the solution u is given by π2 ◦ X, see [3] and [9]. This is so if B is a generator and Φ
is any of the forms (a)–(c) above. In this setting it is natural to apply splitting to separate the delayed part from the undelayed
one. Depending on the nature of the delay two choices are possible (the coupling is incorporated in the domain of the operator
containing d

dσ ):

(a) For point delays (or for delay of the general class (c)) we can split(
d
dσ 0
Φ B

)
=
(

d
dσ 0
Φ 0

)
+
(

0 0
0 B

)
.

In this way we can separate the delay part, and we only need to solve a delayed ordinary differential equation and a decou-
pled abstract Cauchy problem. The corresponding Lie–Trotter products are stable because the space can be renormed, if
the delay operator contains the point evaluation at−1, such that both semigroups become contractive, see [9], and also [2].
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(b) For distributed delays (continuous delay operator) we can split(
d
dσ 0
Φ B

)
=
(

d
dσ 0
0 B

)
+
(

0 0
Φ 0

)
,

which has the advantage that the semigroups generated by the two operators have particularly simple structure. The
Lie–Trotter products are stable because one of the generators is bounded, see Proposition 1, and also [5].

2 Inhomogeneous Abstract Cauchy Problems

Consider the inhomogeneous Cauchy problem{
u̇(t) = Au(t) + f(t), t ≥ 0,

u(0) = u0

(iACP)

for a linear operatorA on a Banach spaceE. A standard method to is to rewrite the inhomogeneous equation as a homogeneous
one the product space E × F , where F = F (R+;E) denotes a Banach space of E-valued functions defined on R+ on which
the left-shift semigroup (S(t))t≥0 is strongly continuous. Consider

A =
(
A δ0
0 d

ds

)
with diagonal domain D(A) = D(A)× F1(R+;E),

where F1 := F1(R+;E) is the domain of the generator of the left-shift semigroup, and δ0(v) := v(0) is the point evaluation
at 0. By [7, Sec. VI.7] for the choices F (R+;E) = C0(R+;E) or Lp(R+;E) (p ∈ [1,∞)) we have F1 = C1

0(R+;E) and
F1 = W1,p(R+;E), respectively, and the inhomogeneous equation (iACP) is equivalent to the abstract Cauchy problem{

Ẋ(t) = AX(t), t ≥ 0,

X(0) =
(
u0

f

)
,

with the new unknown function X(t) = (u(t), x(t)). If A is a generator then so is A and the solution u(t) is given by
u = π1 ◦ X. We apply splitting to (iACP):{

u̇(t) = (A1 +A2)u(t) + (f1 + f2)(t), t ≥ 0,

u(0) = u0.

and obtain two inhomogeneous equations v̇1(t) = A1v1(t) +f1(t) and v̇2(t) = A2v2(t) +f2(t). By rewriting these problems
on the product space E × F × F we arrive at{

Ẋ(t) = (A1 + A2)X(t), t ≥ 0,

X(0) = (u0, f1, f2)>
with A1 :=

(
A1 δ0 0
0 d

ds 0
0 0 0

)
and A2 :=

(
A2 0 δ0
0 0 0
0 0 d

ds

)
with respective domains D(A1)× F1 × F and D(A2)× F × F1, and new unknown function X(t) = (u(t), x(t), y(t)).

Proposition 1 (see [1, Prop. 3.1, Prop. 3.4]) In either of the cases F = C0(R+;E) or F = Lp(R+;E) the Lie–Trotter
products of the semigroups generated by A1 and A2 are stable if and only if the Lie–Trotter products for the semigroups
generated by A1 and A2 are stable.

The case when F = C0(R+;E) follows by an application of Proposition 1, the other case is proved by direct calculation
exploiting special properties of the norm on Lp. Informally, the previous proposition means that the sequential splitting for
the inhomogeneous problem is stable if and only if it is stable for the homogeneous one.

3 Abstract Boundary Feedback Systems

Consider the following problem
ẋ(t) = Amx(t), t ≥ 0,

ẏ(t) = By(t) + Cx(t), t ≥ 0,

Lx(t) = y(t), t ≥ 0,

x(0) = x0, y(0) = y0,

(ABFS)

called abstract boundary feedback system, where the unknown functions x : [0,∞)→ E, y : [0,∞)→ F have values in the
Banach spaces E, F , the operators Am, B act on E and F , respectively, and L : E → F is linear. The operator Am is an
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operator with a large (maximal) domain (e.g., Am is differential operator without boundary conditions) and is typically not a
generator. This enlargment of the domain is neccessary because of the coupling condition Lx = y. Interpreting the dynamics
given by Am as interior dynamics and the one corresponding to B as the boundary dynamics, where the coupling is given by
Lx = y, the operator C may be thought of as a feedback effect from the interior to the boundary, see Example 3 below for
an explanation. In [4, Sec. 2] it is shown that under next set of conditions the problem can be equivalently formulated as an
abstract Cauchy problem on the product space E × F :

Assumption 1 (i) A := Am|kerL is a generator on E. (ii) L : D(Am)→ F is surjective. (iii)
(
Am
L

)
: D(Am)→ E ×F is

closed. (iv) B is a generator on F .
More precisely, to study well-posedness of (ABFS) one needs to study the generator property of the operator

AC :=
(
Am 0
C B

)
with domain D(AC) :=

{(
x
y

)
∈ D(Am)×D(B) : Lx = y

}
.

Example 2 Let H be a Hilbert space, E = Lp([−1, 0];H) (p ∈ [1,∞)), let Am = d
dσ be the first derivative with domain

D(Am) = W1,p([−1, 0];H), L : W1,p([−1, 0];H) the trace at 0, Lf = f(0), let B be the generator of a C0-semigroup on
F = H , and Cf = Φf =

∫ 0

−1
f(s)dη(s) as in Section 1. Then A = Am|kerL is the generator of the nilpotent left-shift on

Lp([−1, 0];H) and AC is a generator. We see that delay equations are included in this setting.
Example 3 (see [4]) Let Ω be a bounded domain with smooth boundary. Let E = L2(Ω), F = L2(∂Ω), Am = ∆Ω the

maximal Laplace operator, D(Am) = {f ∈ H
1
2 (Ω) ∩ H2

loc(Ω) : ∆f ∈ L2(Ω)}, L = the trace operator, B = ∆∂Ω − µ, ∆∂Ω

the Laplace–Beltrami operator. The operator C may describe a feedback (e.g., cooling) from the heat transfer inside Ω to the
boundary ∂Ω. In [4] it is shown that for bounded C the problem is well-posed.

We consider first the situation without feedback, i.e., when C = 0. We apply splitting to separate the interior and boundary
dynamics and consider A0 = A1 + A2 for

A1 :=
(
Am 0
0 0

)
, D(A1) :=

{(
x
y

)
∈ D(Am)× F : Lx = y

}
, A2 :=

(
0 0
0 B

)
, D(A2) := E ×D(B).

Then by [4, Cor. 2.9] the operator A1 generates a semigroup, which is upper triangular by Proposition 2. The operator A2

evidently generates a diagonal semigroup.
Proposition 4 (see [1, Prop. 3.9]) Suppose that Assumptions 1 are satisfied, 0 ∈ ρ(A), and C = 0. If D(Am) ⊂ Fav1(A),

then the Lie–Trotter products of the semigroup generated by A1 and A2 are stable.
The proof relies on Proposition 3 and on a result of Desch and Schappacher about perturbations of semigroups, see [6]. If

we add a bounded feedback to the problem (ABFS), i.e., C 6= 0, by Proposition 1 we obtain the next result:

Proposition 5 (see [1, Prop. 3.10]) Let C :=
(

0 0
C 0

)
for someC ∈ L (E,F ). Then Lie–Trotter products of the semigroups

generated by A0 and C are stable.

Remarks and problems: 1. The results presented in the preceding are valid for the Strang and for the weighted splittings,
see [1]. What about other types of splittings?
2. Can one relax, or under which conditions, the growth assumption O(1) near t = 0 in Proposition 3?
3. What about nontriangular matrices? Can one give abstract but applicable neccessary conditions for the stability of the
corresponding Lie–Trotter products?
4. Second order problems can also be handled by operator matrix semigroups. What about the stability of Lie–Trotter products
in this case? In [8] there are already some partial results by S. Orzlowski.
5. Can one put the Lp-result for inhomogeneous equations in a more general abstract setting?
6. Proposition 4 is not applicable for Example 3. Are the Lie–Trotter products as in Proposition 4 stable for this example?
Can one put this in a more abstract framework?
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