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Modelling the spatial structure of Europe* 

Abstract 

How can spatial location affect the operation of society, population or economic 
conditions? What is the role of neighbourhood and distance in social phenomena? In what 
way can a social organisation limit spatial barriers? How would spatial structures be 
affected by the attraction and repulsion of territorial units? Does society only use or also 
design regions? These questions are explored in this study. 

This work analyses some important issues, concepts and analysis procedures of the 
territorial structure of society and social processes of spatiality. It does not contain a 
comprehensive theory of spatiality and regional science; it is primarily a practical empirical 
research.  

Many theoretical works aim at defining the spatial structure of Europe. This article 
provides an overview of models describing the spatial structure of Europe. The study 
describes the economic spatial structure of Europe using bi-dimensional regression 
analysis, based on the gravity model. The spatial structure of Europe is illustrated with the 
help of the gravity model and spatial auto-correlation. With these patterns, it is possible to 
justify the appropriateness of the models based on different methodological backgrounds 
by comparing them with the results of this paper.  

The subject of field theory concepts and methods that can aid regional analyses is 
examined, and attempts to offer a synthesised knowledge with a wide variety of examples 
and methods. 

Keywords: bi-dimensional regression, Europe, gravity model, spatial autocorrelation, 
spatial models. 

Introduction 

Some of the theories, models and descriptions engaged in the socio-economic spatial 
structure of Europe are static, i.e. they focus on the current status and describing structures. 
We classify the ’European Backbone’ by Brunet (1989), including what later became 
called ‘Blue Banana’ or the ‘Central European Boomerang’ by Gorzelak (2012), into this 
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group (Figure 1). Attempts to visualise different polygons (triangles, tetragon) (Brunet 
2002) also fall into this category.  

Figure 1 

Spatial structure models 1 

 
Source: own compilation based on Brunet (1989) and Gorzelak (2012). 

Among popular spatial structure models are visualisations that highlight potential 
movements and changes in spatial structure and development. Some of these are presented, 
without any claim to completeness. One of them is the developing zone on the northern 
shore of the Mediterranean Sea, called the European Sunbelt by Kunzmann (1992) 
(discussed in Kozma 2003) through association with one of the rapidly growing southern 
zones of the United States of America. 

The model of the ‘Red Octopus’ can be classified as a dynamic model, since it focuses 
on the future and introduces potential future changes. It is a vision for 2046, showing which 
of Europe’s regions will develop the fastest (Figure 2). In this structure, the body and the 
Western arms stretch approximately between Birmingham and Barcelona, and toward 
Rome and Paris. Its form stretches towards Copenhagen–Stockholm–(Helsinki) to the 
North and Berlin–Poznan–Warsaw and Prague–Vienna–Budapest to the East (van der 
Meer 1998). Unlike earlier visualisations, this form includes the group of developed zones 
and their core cities, highlighting the possibilities for decreasing spatial differences by 
visualising polycentricity and ‘eurocorridors’ (Szabó 2009). Development is similarly 
visualised by the ‘Blue Star’ (Dommergues 1992), with arrows to indicate the directions 
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of development and the dynamic areas. Besides the triangle, other polygons are also used 
to visualise spatial structure, like the quadrangle of London-Amsterdam-Paris-Frankfurt 
by Lever (1996) or the pentagon that has increased its importance in recent years (Figure 
2). The “European Pentagon” is the region defined by London-Paris-Milan-Munich-
Hamburg in the European Spatial Development Perspective (ESDP) in 1999. 

Figure 2 

Spatial structure models 2 

 
Source: own compilation based on van der Meer (1998) and Dommergues (1992). 

We argue that the description ‘Bunch of Grapes’ by Kunzmann & Wegener (1991) and 
Kunzmann (1992; 1996) includes change and the visualisation of development (Figure 3). 
By focusing on the polycentric spatial structure, urban development and the dynamic 
change of urban areas can be highlighted (Szabó 2009). Polycentricity has become an 
increasingly popular idea, and a key part of the European Spatial Development Perspective 
(ESDP, agreed at the European Union’s Council of Ministers Responsible for Spatial 
Planning, in Potsdam, 10−11/05/99) (European Commission 1999). It also has an 
increasing role in the European cohesion policy (Faludi 2005, Kilper 2009). At the same 
time, however, critical statements appear against this kind of planning approach, for 
example from the point of view of economic efficiency or sustainable development 
(Vandermotten et al. 2008). 
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Figure 3 

Spatial structure models 3 

 
Source: own compilation based on Kunzmann & Wegener (1991) and Kunzmann (1992, 1996). 

In many cases, it is not the form describing the spatial structure or the quality and the 
extension of the formation – i.e. the static description – that is the crucial question, but 
rather the visualisation of the changes, processes and the relationships among regions. 
Moreover, it is important to analyse the ways and developments that can create the 
opportunity to utilise advantages and positive effects (Hospers 2003). The paper offers a 
synthesised knowledge with a broad range of visualisations of examples and methods. 
Dynamic visualisations can help in this process.  

In the following sections, the background of these spatial structural relations and 
models are examined more thoroughly with the use of the gravity model and bi-
dimensional regression. In all of the examples, gross domestic product (GDP) values are 
applied as a determining measure of territorial development, since the authors believe that 
its use allows a detailed analysis of spatial structure. GDP is used since this is the most 
widely used economic variable.  

Gravity models and examination of spatial structure 

Gravity and potential models that are based on the application of physical forces, are an 
important approach for examining spatial structure. The use of a gravity analogy in 
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examining territorial and spatial structures is not new. This approach, however, does not 
focus on descriptions by numbers and scalars but the use of vectors. With the approach 
presented here, attraction directions can be assigned to a given territorial unit that are 
caused by other units. The universal gravitational law, Newton's gravitational law, states 
that any two point-like bodies mutually attract each other by a force, the magnitude of 
which is directly proportional to the product of their mass and is inversely proportional to 
the square of the distance between them (Budó 1970) (Eq. 1): 
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where the proportionality measurement γ is the gravitational constant (regardless of space 
and time). 

If the radius vector from point mass 2 to point mass 1 is designated by r, then the unit 
vector from point 1 to point 2 is —r, and therefore the gravitational force applied on point 
mass 1 due to point mass 2 is (MacDougal 2013):  

r

r

r

mm
F







2
21

2,1 
. 

(2) 

A gravitational force field is confirmed if the direction and the size of gradient K can 
be defined at each point of the given field. To do so, if K is a vector, three pieces of data 
are necessary for each point (two in the case of a plane), such as the rectangular 
components Kx, Ky, Kz of the gradient as the function of the place. However, many force 
fields , like the gravitational force field, can be described in a much simpler way, that is, 
using instead of three variables only one scalar function, termed the potential (Figure 4) 
(Budó 1970). 

Figure 4 

Calculation of the gravitational force 

 
Source: own compilation. 

Potential has a similar relation to gradient as work or potential energy has to force. If 
in the gravitation field of gradient K, the trial mass on which a force of F=mK is applied 
is moved from point A to point B by force –F (without acceleration) along with some curve,  
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then the work of 
B

A

s dsFL  has to be done against force F based on the definition of work. 

This work is independent of the curve from A to B. Therefore it is the change of the 
potential energy of an arbitrary trial mass: 

 
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s
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Dividing by m, the potential difference between points B and A in the gravitational 
space is:  


B

A

sAB dsKUU
. 

By utilising this relationship, in most social scientific applications of the gravitational 
model, space was intended primarily to be described by only one scalar function (see for 
example the potential model) (Kincses–Tóth 2012), while in gravitational law, it is mainly 
the vectors characterising space that have an important role. The main reason for this is 
that arithmetic operations with numbers are easier to handle than calculations with vectors. 
In other words, for work with potentials, solving the problem also means avoiding 
calculation issues.  

Even if potential models show, often correctly, the concentration focus of the 
population or GDP and the space structure, they are not able to provide any information 
on the direction towards which the social attributes of the other regions attract a specified 
region, or on the force with which they attract it. 

Therefore, by using vectors, we are trying to demonstrate in which direction the 
European regions are attracted by other regions in the economic space compared to their 
real geographical position.  

With this analysis, it is possible to reveal the centres and fault lines representing the 
most important areas of attractiveness, and it is possible to visualise the differences in 
respect of the gravitational orientation of the regions.  

In the traditional gravitational model (Stewart 1948), the ‘population force’ between i 
and j is expressed in Dij, where Wi and Wj are the populations of the settlements (regions), 
dij is the distance between i and j, and g is the empirical constant: 
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Spatial structure analyses applying potential often present not the gravitation force law 
but analogous procedures; they define different potential functions. 

Of these, we examine those in the form 
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k=1, 1.5, 2,..... in more detail. These potentials are transformed using the formula – detailed 
above – between potential and forces into forces. 

With the generalisation of formula (3), the following relationship is given in Eqs. (5) 
and (6): 
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where Wi and Wj indicate the masses taken into consideration, dij is the distance between 
them and c is the constant, which is the change in the intensity of the inter-territorial 
relations as a function of the distance. With the increase of the force, the intensity of the 
inter-territorial relations becomes more sensitive to the distance and at the same time, the 
importance of the masses gradually decreases (Wilson 1981, Dusek 2003). 

With this extension of the formula, not only the force between the two regions but also 
its direction can be defined. In the calculations, it is worth dividing the vectors into x and 
y components and then summarising them separately. In order to calculate this effect (the 
horizontal and vertical components of the forces), the necessary formulas can be deduced 
from equations 5 and 6: 
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where xi, xj, yi, yj are the coordinates of centroids of regions i and j.  
If, however, the calculation is carried out for each region included in the analysis, the 

direction and the force of the effect on the given territorial unit can be defined using Eqs. 
(9) and (10): 
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With these equations, the magnitude and the direction of the force due to the other 
regions can be defined in each territorial unit. The direction of the vector assigned to the 
regions determines the attraction direction of the other regions, while the magnitude of the 
vector is related to the magnitude of the force. In order to make visualisation possible, the 
forces are transformed to proportionate movements in Eqs. (11) and (12): 
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where Xi mod and Yi mod are the coordinates of the new points modified by gravitational 
force, x and y are the coordinates of the original point set, their extreme values are xmax, 
ymax, xmin, and ymin, Dij are the forces along the axis and k is a constant, in this case its value 
is 0.5. This value was obtained as a result of an iteration process. 

Linear projection can also be approached in another way, which will be considered as 
the second method in the following. The direction of the vector assigned to the regions also 
determines the direction of attraction of the other territorial units, while the length of the 
vector will be proportionate to the magnitude of the effect of force. In order to make 
mapping and visualisation possible, the forces obtained are transformed to proportionate 
movements in the following way (Eqs. (13) and (14)): 
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Xi mod and Yi mod are the coordinates of the new points modified by gravitational force, x 
and y are the coordinates of the original point set, their extreme values are xmax, ymax, xmin 
and ymin, Dij are the forces along the axes x and y, and their maximums are  and 

. 
The simultaneous applicability of the two types of projection attempts to eliminate 

incidental mode effects, and intends to guarantee common results independent of the 
projections. 

It is worth comparing the point set obtained by the gravitational calculation (using GDP 
as mass with the baseline point set, that is, with the actual real-world geographic 
coordinates (and later with each other), and examining how space is changed and distorted 
by the field of force. In this comparison, not only conventional gravitational fields may be 
located as shown in other models, but also gravity direction. With this analysis, it is 
possible to reveal the centres and fault lines representing the most important areas of 
attractiveness, and it is possible to visualise the differences in the gravitational orientation 
of regions. In order to realise this in practice, two-dimensional regression needs to be used. 

Bi-dimensional regression 

It is possible to compare the new point set with the original one by applying this analysis. 
This comparison can be carried out with visualisation, but in the case of such a large 
number of points, this is unlikely to provide a promising result by itself. More constructive 
results can be obtained by applying bidimensional regression analysis (see the equations 
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related to the Euclidean version in Table 1), which is a quantifiable method. In this 
examination, GDP is applied as a weighting variable. 

Table 1 

Equations of the bidimensional Euclidean regression 
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Sources: Tobler (1994) and Friedman & Kohler (2003), cited by Dusek (2012 64). 

In the equations in Table 1, x and y refer to the coordinates of the independent form, a 
and b designate the coordinates of the dependent form, and a  and b  are the coordinates 
of the independent form in the dependent form. α1 refers to the extent of the horizontal 
shift, while α2 defines the extent of the vertical shift. β1 and β2 are used to determine the 
scale difference (Ф) and Θ is the rotation angle. SST is the total sum of squares, SSR is the 
sum of squares due to regression and SSE is the explained sum of squares of 
errors/residuals that is not explained by the regression.  

To visualise the bidimensional regression, the Darcy program (Vuidel 2009) can be 
useful. The grid is fitted to the coordinate system of the dependent form, and its modified 
interpolated position makes it possible to further generalise the information about the 
points of the regression. 

Empirical analysis 

The arrows in Figure 5 show the direction of movement, and the grid shading refers to the 
nature of the distortion. Dark shaded areas refer to concentration and to movements in the 
same directions (convergence), which can be considered to be the most important 
gravitational centres.  
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Our analysis is carried out at NUTS 2 level. The comparison of the results (between 
real and modified coordinates) with those of bidimensional regression can be found in 
Table 2.  

Table 2 

Bidimensional regression between gravitational and geographical spaces 

Methods r α1 α2 β1 β2 Ф Θ SST SSR SSE 

1st method 0.96 0.01   0.04 1.00 0.00 1.00 0.00   35,223   34,856 367 

2nd method 0.94 0.07   0.30 0.99 0.00 0.99 0.00   55,829   53,141 2,687 

Sources: own calculation. 

As seen in Table 2, the difference between the two methods is not significant, 
visualisation results can be considered with certain constraints independent of projections. 
The relationship between gravitational and geographical coordinates is closer in the case 
of the first method. The reason for this is that horizontal and vertical shifts as well as scale 
difference and the angle of rotation is smaller in the case of the first one. Because of these, 
naturally, the sum of squares of the difference is also substantially lower. 

Figure 5 

Directions of distortion of gravitational space compared to  
geographical space for European regions (NUTS 2), 1st method 

 
Sources: own compilation. 
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As shown in Fig. 5, regional concentrations can be unambiguously seen, and these are 
considered to be the core regions. Based on the analysis carried out at NUTS 2 level, five 
gravitational centres, slightly related to each other, can be found in the European space. 
Gravitational centres are regions that attract other regions, and the gravitational movement 
is toward them. These five centres or cores are: 1) the region including Switzerland, 
Northern Italy and the French regions neighbouring Switzerland; 2) the region including 
the Benelux countries, Paris and its surroundings and most of the regions in England;  
3) the region including Berlin and Brandenburg; 4) the region including Central Italy and 
5) the region including Languedoc-Roussillon, Midi-Pyrénées and Catalonia. Primarily, it 
is these core areas have an effect on the regions in the examined area.  

We find that the key element of the economic spatial structure of Europe is the structure 
reflected by the Blue Banana and the German Hump theory.  

Issue of distance 

In the presented gravitation models, diverse approaches were applied to distance. This is 
an accepted practice in social scientific analyses even if it differs somewhat from the 
original physical analogy, since the square of distance is applied in that, number 2 here 
means the law, and the value here is not 1.99 or 2.01 but exactly 2. Therefore, the models 
are not gravitational models but ones based on gravitational analogy, so distance 
dependences were calculated taking into account other distance exponents in order to 
examine the roles of masses and distance in modelling the European gravitational space. 
As found by Tamás Dusek (2003, p. 47) in his work on the gravitational model: “With the 
increase of the exponent, the intensity of inter-territorial relations becomes more sensitive 
to distance, in parallel with which the significance of masses gradually declines.” 

Table 3 

Correlation coefficients in case of the two methods,  
taking into account different exponents 

c 1st method 2nd method 

0.0 0.752964844 0.693314218 

0.5 0.738790230 0.922820959 

1.0 0.859542280 0.790773055 

1.5 0.860785077 0.725618881 

2.0 0.860891879 0.717864602 

2.5 0.860918153 0.715549296 

3.0 0.860926003 0.714371559 

Source: own compilation. 

The c values presented here are the c values in formulas 4 and 5, and k=c-1 (and this k 
is k in the new formula!) 

Cases c=0, c=0.5 and c=1 are difficult to reconcile with traditional approaches to space, 
it can be seen that by increasing c values, the impact area of forces is reduced, which 
implies the quasi-convergence of correlation coefficients when applying projections. 
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Change of spatial structure 

The following section attempts to take into account the change of the structure through the 
gravity calculations for 2000 and 2011. In order to measure changes, the two gravity sets 
of points are compared and analysed (2000 and 2011). The two-dimensional regression 
calculations are shown in Tables 4 and 5. Although we are aware of changes in spatial 
structure taking more than a decade, it was not possible to take into consideration a longer 
period than this. This is due to the latest change in the NUTS nomenclature, and that data 
corresponding to the present territorial breakdown is only available for the years between 
2000 and 2011. 

Table 4 

Bidimensional regression between gravitational and geographical spaces 

Years r α1 α2 β1 β2 Ф Θ SST SSR SSE 

2000 0.96 0.01   0.03 1.00 0.00 1.00 0.00   35,243   34,876 367 

2011 0.96 0.01   0.04 1.00 0.00 1.00 0.00   35,223   34,856 367 

Source: own compilation. 

Table 5 

Bidimensional regression between gravitational spaces 

Years r α1 α2 β1 β2 Ф Θ SST SSR SSE 

2011/2000 1.00 0.00   0.01 1.00 0.00 1.00 0.00   35,223   35,223 0 

Source: own compilation. 

The results show that there is a strong relationship between the two-point systems; the 
transformed version of the original set of points can be obtained without using rotation  
(Θ = 0). No essential ratio difference is observed between the two shapes.  

As can be seen, there was no marked change in the European spatial structure in the 
past period. Despite this, it is yet worth examining the spatial picture of the change in the 
period between 2000 and 2011, since the changes taking shape during this time may form 
the core elements of the modification of the spatial structure. In terms of the changes from 
2000 to 2011, seven gravity centres are shown on the map, indicated by shaded ellipses 
(Figure 6). They show a crucial part of the economic potential of big cities. Such hubs are 
the surroundings of Rome, Marseille-Zurich, Madrid, Toulouse, Brussels, Gothenburg, 
Praha-Chemnitz, etc. Gravity ‘breaklines’ can be seen in Germany, around Berlin, and in 
central France.  

In general, the change was not fundamental in the examined period but rather focused 
on only a few areas. These areas are parts of the Bunch of Grapes fields, which may show 
the increasing importance of this theory. However, there are fewer nodes or ‘grapes’ than 
the model predicts.  

Regarding the analysis of change, the closest connection is to the Red Octopus model, 
as most gravity nodes were directly affected by the octopus arms. The analysis confirms 
the favourable position of certain regions, e.g. the Sunbelt zone and the Blue Banana. The 
results do not confirm the existence of the Central European Boomerang (Gorzelak 2012), 
and hence this area is not considered a favourable region at European level. 
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Figure 6 

Results of gravity method 

 
Source: own compilation. 

The European Commission’s NUTS classification is utilised (Nomenclature des unités 
territoriales statistiques=Nomenclature of Territorial Units for Statistics) on NUTS 2 level 
(Eurostat 2012). Note is taken that NUTS regions – although defined within minimum and 
maximum population thresholds at each level – vary considerably in geographical size, 
with the result that in many cases the use of this system (e.g. in the case of Nordic regions) 
raises the modifiable area unit problem (Openshaw 1983). This study makes use of the 
official system, despite its imperfections.  

Gravity centers, 2011 
Gravity centers, 2000/211 
Clusters 
Not significant 

High – High 

Low – Low 

Low – High 

High – Low 
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In order to treat problems and to analyse the results from another aspect, it was also felt 
necessary to map spatial autocorrelations. Luc Anselin (1995) developed the Local Moran's 
I statistic, which is one of the most commonly used methods to quantify and visualise spatial 
autocorrelation; in this article, it is used to explore the spatial economic relations of large 
cities. Using the designation (1996) of Getis and Ord, I is defined as (Eq. 15): 
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where Z is the average of all units, Zi is the value of unit I, Sz
2 is the dispersion of variable 

z for all observed units and Wij is the distance weighting factor between units i and j, which 
comes from the Wij neighbourhood matrix (basically Wij = 1 if i and j are neighbours and 
0 if they are not). The neighbourhood matrix approach applied in this study examined the 
straight line distance between the geometrical centres of regions. The smallest threshold 
distances were used that ensured each region had at least one neighbour. All regions within 
this are neighbours, while those outside this are not. 

If the Local Moran's I value is utilised, the negative values mean a negative 
autocorrelation and the positive ones a positive autocorrelation. At the same time, the 
function has a wider range of values than the interval of –1; +1. The indicator also has a 
standardised version, although currently, this paper is not concerned with this. The Local 
Moran’s statistic is suitable for showing the areas that are similar to or different from their 
neighbours. The greater the Local Moran’s I value, the closer the spatial similarity. 
However, in case of negative values, it may be concluded that the spatial distribution of 
the variables is close to a random distribution. Concerning Local Moran’s I, the GDP per 
capita at NUTS 2 level for 2011 was calculated were performed. During the work, the 
results of the Local Moran’s statistic were compared with the initial data in order to 
examine whether the high degree of similarity is caused by the concentration of the high 
or low values of the variable (Moran Scatterplots). As a first step, on the horizontal axis of 
a graph the standardised values of the observation units were plotted, while on the y-axis 
the corresponding standardised Local Moran's I values (average neighbour values) were 
plotted. The scatterplot puts the regions into four groups according to their location in the 
particular quarters of the plane: 

1. High–High: area units with a high value, where the neighbourhood also has a high value. 
2. High–Low: area units with a high value, where the neighbourhood has a low value. 
3. Low–Low: area units with a low value, where the neighbourhood also has a low value. 
4. Low–High: area units with a low value, where the neighbourhood has a high value. 
The odd-numbered groups show a positive autocorrelation, while the even-numbered 

groups a negative one.  
Of the local spatial autocorrelation indices, it is appropriate to choose a Local Moran’s 

I to search for spatially outlying values. Namely, on the one hand, it shows where the 
high/low values are grouped in the space (HH–LL) and, on the other hand, it shows where 
those territorial units are that are significantly different from their neighbours (HL–LH).  

Because of the modifiable areal unit problem (Openshaw 1983) it was important when 
delimiting clusters to consider not only the level of development, i.e. income per capita, 
but also the population size of the regions where the particular value of GDP per capita 
could be observed. So with this, it is possible to treat the differences between regions with 
differing size, and point within the European spatial structure at the most developed zones, 
which belong to the High–High cluster. The calculations were carried out with GeoDa 
software, by applying the LISA with EB rates method. 
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Our results are identical with those referred to earlier on in many respects, but also 
differ somewhat from them. Specifically, this model reflects the results of the Sunbelt zone, 
the Blue Banana and the German hump, with the difference that Île de France as well as 
Centre, Upper Normandy and Pays de la Loire can all be classified in this among the 
regions in the best position. These regions are considered central ones only in the European 
Bunch of Grapes model, though many elements of this model are not supported by the 
present analysis. 
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