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Abstract

By constructing mathematical and numerical models in order to describe some
real-life problem, we require that these models have different qualitative properties,
which typically arise from some basic principles of the modelled phenomena. In this
paper we investigate this question for continuous and discrete models. We give the
conditions for the discretization parameters under which the qualitative properties
are preserved.
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1 Introduction

When we construct mathematical and/or numerical models in order to model or
solve a real-life problem, these models should have different qualitative properties,
which typically arise from some basic principles of the modelled phenomena. E.g.,
many processes, varying in time, have such properties as monotonicity, non-negativity
preservation and maximum principles. The discretization can qualitatively deform the
mathematical models: certain qualitative properties which are inherent in the original
real-life process are not preserved. Therefore, our goal is to guarantee quality preser-
vation. It is almost obvious that the complexity of a model defines its tractableness:
for structurally simple models, usually, it is easier to give qualitative characterization
and/or define its solution. (For complex problems, in general, it is even impossible.)
We note that the operator splitting method is a powerful tool to decompose a com-
plex time-dependent problem into a sequence of simpler sub-problems, for which the
required qualitative properties could be checked easier.

For some details and proofs we refer to the references [2] - [5].

2 Qualitative properties of the linear operators for
the continuous models

Let Ω denote a bounded, simply connected domain in IRd (d ∈ IN+) with a Lipschitz-
continuous boundary ∂Ω. We introduce the sets

Qτ = Ω×(0, τ), Q̄τ = Ω̄×[0, τ ], Qτ̄ = Ω×(0, τ ], Γτ = (∂Ω×[0, τ ])∪(Ω×{0})
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for any arbitrary positive number τ . The set Γτ is usually called parabolic boundary.
For some fixed number T > 0, we consider the linear partial differential operator

L ≡ ∂

∂t
−

∑

0≤|ς|≤δ

aς
∂|ς|

∂ς1x1 . . . ∂ςdxd
≡ ∂

∂t
−

∑

0≤|ς|≤δ

aςD
ς , (1)

where δ is the order of the operator, ς1, . . . , ςd denote non-negative integers, |ς| is
defined as |ς| = ς1 + · · · + ςd for the multi-index ς = (ς1, . . . , ςd), and the coefficient
functions aς : QT → IR are bounded and sufficiently smooth in the set QT .

Typically the function v ∈ domL describes the values of a physical quantity in
the domain Q̄T , that is, the dependence of the quantity on place and time. The above
mentioned physical property can be connected by the following definition.

Definition. Operator (1) is said to be monotone if for all t? ∈ (0, T ) and v1, v2 ∈
domL such that v1|Γt? ≥ v2|Γt? and (Lv1)|Qt̄? ≥ (Lv2)|Qt̄? , the relation v1|Qt̄? ≥
v2|Qt̄? holds.

Definition. The operator L is called non-negativity preserving (NP) when for any
v ∈ domL and t? ∈ (0, T ) such that v|Γt? ≥ 0 and (Lv)|Qt̄? ≥ 0, the relation v|Qt̄? ≥ 0
holds.

Clearly, these properties of the linear operator (1) are equivalent.
Often we may need only certain characterization of v, which does not require the

knowledge of v in the whole domain. From a practical point of view, only such esti-
mates are suitable which include only the known input data. This kind of estimations
is called maximum-minimum principles.

For the operators various maximum-minimum principles are defined and used
in the literature, because they well characterize the operator L itself (cf. [1] and
references therein). Now we list four possible variants of them.

We say that the operator L satisfies the weak maximum-minimum principle (WMP)
if for any function v ∈ dom L and any t? ∈ (0, T ) the inequalities

min{0, min
Γt?

v}+ t? min{0, inf
Qt̄?

Lv} ≤ v(x, t) ≤ max{0,max
Γt?

v}+ t? max{0, sup
Qt̄?

Lv}

are valid for all (x, t) ∈ Q̄t? . The operator L satisfies the strong maximum-minimum
principle (SMP) if the inequalities

min
Γt?

v + t? ·min{0, inf
Qt̄?

Lv} ≤ min
Q̄t?

v ≤ max
Q̄t?

v ≤ max
Γt?

v + t? ·max{0, sup
Qt̄?

Lv}

are satisfied.
When the sign of Lv is known, then it is possible that the estimates involve

only the known values of v on the parabolic boundary. These types of maximum-
minimum principles are called boundary maximum-minimum principles, which are
frequently used in proofs of the uniqueness theorems. We say that the operator L
satisfies the weak boundary maximum-minimum principle (WBMP) if the inequalities
min{0,min

Γt?

v} ≤ min
Q̄t?

v ≤ max
Q̄t?

v ≤ max{0, max
Γt?

v} hold. We say that the strong bound-

ary maximum-minimum principle (SBMP) is true if for any function v ∈ domL and
any t? ∈ (0, T ) such that Lv|Qt̄? ≥ 0, the relations min

Γt?

v = min
Q̄t?

v ≤ max
Q̄t?

v = max
Γt?

v

hold.

The implications between the different qualitative properties are shown in Figure
1. (Here cal1 denotes the constant 1 function, and the solid arrows mean unconditional
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implications while the dashed ones are true only under the indicated assumptions.)
As one can easily observe, for a0 = 0 the non-negativity property (NP) implies all the
other properties.
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Рис. 1: Implications between the qualitative properties.

3 Discrete analogues of the qualitative properties -
reliable discrete models

In this part we present the natural discrete analogs of the qualitative properties for-
mulated in the the previous section for the continuous models.

First, we introduce some notations.
Let us assume that the sets P = {x1, . . . ,xN} and P∂ = {xN+1, . . . ,xN+N∂

}
consist of different vertices in Ω and on ∂Ω, respectively. We set N̄ = N + N∂ and
P̄ = P ∪ P∂ . Let T and ∆t < T be two arbitrary positive numbers. Moreover, let
us suppose that the integer M satisfies the condition M∆t ≤ T < (M + 1)∆t and
introduce the set R = {tn = n∆t |n = 0, 1, . . . , M}. For any values τ from the set R
we introduce the notations

Rτ = {t ∈ R | 0 < t < τ}, Rτ̄ = {t ∈ R | 0 < t ≤ τ}, R0
τ̄ = {t ∈ R | 0 ≤ t ≤ τ},

and the sets

Qτ = P ×Rτ , Q̄τ = P̄ ×R0
τ̄ , Qτ̄ = P ×Rτ̄ , Gτ = (P∂ ×R0

τ̄ )∪ (P ×{0}).
Linear mappings that map from the space of real-valued functions defined on Q̄tM

to the space of real-valued functions defined on QtM are called discrete (linear) mesh
operators. We define the qualitative properties of the discrete mesh operators in an
analogous way to those in the linear partial differential operator case. For simplicity,
we will formulate only one of them, which plays central role in our further investiga-
tions. (The ordering relations for vectors and matrices in the sequel are always meant
elementwise.)

Definition. We say that the discrete mesh operator L is discrete non-negativity
preserving (DNP) if for any ν ∈ domL and any t? ∈ RtM

such that minGt? ν ≥ 0 and
Lν|Qt̄? ≥ 0, the relation ν|Qt̄? ≥ 0 holds.

Let us introduce two special mesh functions, 11 and tt, defined on Q̄tM
with the

following equalities: 11(xi, tn) = 1, tt(xi, tn) = n∆t for all (xi, tn) ∈ Q̄tM
. (These

mesh functions are the discrete analogue of the continuous functions v(x, t) = 1 and
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v(x, t) = t, respectively, associated with the mesh Q̄tM
.) We will also use the notation

rn for the mesh function (rn)n
i = n. The implications between the different discrete

qualitative properties are shown in Figure 2.
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Рис. 2: Implications between the discrete qualitative properties.

From the illustrated implications we can directly observe the validity of the fol-
lowing statement.

Theorem 1. Under the conditions L11 = 0 and Ltt = 1 the discrete non-negativity
property (DNP) implies all the other properties.

4 Two-level discrete mesh operators

In the sequel, the values ν(xi, n∆t) of the function ν defined in Q̄tM
will be denoted

by νn
i . Similar notation is applied to the function Lν. We introduce the vectors

νn = [νn
1 , . . . , νn

N̄ ], νn
0 = [νn

1 , . . . , νn
N ], νn

∂ = [νn
N+1, . . . , ν

n
N̄ ].

In many numerical methods, the discrete mesh operators have a special form, namely,
they are defined as

(Lν)n
i = (X(n)

1 νn −X(n)
2 νn−1)i, i = 1, . . . , N, n = 1, . . . ,M, (2)

where X(n)
1 ,X(n)

2 ∈ IRN×N̄ are some given matrices. The term "two-level method"refers
to the fact that two discrete time levels are involved into the definition of the mesh
operator. Sometimes such a method is also called "one-step method". In order to give
the connections between the qualitative properties of such a type of mesh operators,
we reformulate the conditions in Theorem 1, see also Figure 2. We have already in-
troduced the notation e = [1, . . . , 1] ∈ IRN̄ . The N -element and the (N̄ −N)-element
version of this vector will be denoted by e0 and e∂ , respectively, i.e., e = [e0| e∂ ].
Then the condition L11 = 0 reads as

(X(n)
1 −X(n)

2 )e = 0

while the condition Ltt ≥ 1 means that

X(n)
1 (∆tne)−X(n)

2 (∆t(n− 1)e) = ∆t(n(X(n)
1 −X(n)

2 )e + X(n)
2 e) ≥ e0.
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If (X(n)
1 −X(n)

2 )e = 0 (n = 1, . . . , M), then the above condition reduces to ∆tX(n)
2 e ≥

e0. Since X(n)
2 e = X(n)

1 e, we have
Theorem 2. If a non-negativity preserving discrete mesh operator of type (2) has

the properties

(X(n)
1 −X(n)

2 ) e = 0, ∆tX(n)
1 e ≥ e0 or ∆tX(n)

2 e ≥ e0, (3)

then the operator possesses all the discrete qualitative properties.
How to guarantee the DNP property? To this aim, we introduce the following

convenient partition of the matrices X(n)
1 and X(n)

2 :

X(n)
1 = [X(n)

10 |X(n)
1∂ ], X(n)

2 = [X(n)
20 |X(n)

2∂ ], (4)

where X(n)
10 and X(n)

20 are square matrices from IRN×N , and X(n)
1∂ ,X(n)

2∂ ∈ IRN×N∂ .
Then the following statement is valid.

Theorem 3. Let us suppose that the matrices X(n)
10 (n = 1, . . . , M) of the dis-

crete mesh operator L defined in (2) are regular. Then L possesses the discrete non-
negativity preservation property if and only if the following relations hold for all
n = 1, . . . ,M ,

(P1) (X(n)
10 )−1 ≥ 0,

(P2) −(X(n)
10 )−1X(n)

1∂ ≥ 0,
(P3) (X(n)

10 )−1X(n)
2 ≥ 0.

Hence, summarizing the results, we have
Theorem 4. Under the conditions (3) and (P1)-(P3) the mesh operator of type

(2) has all discrete qualitative properties.

5 Qualitative properties of the discrete heat
conduction mesh operator in the 1D

In this section we consider the one-dimensional heat conduction operator with a con-
stant coefficient, which is assumed, for simplicity, to be equal to one, i.e.,

L ≡ ∂

∂t
− ∂2

∂x2
. (5)

On a fixed uniform mesh we consider the one-step discrete mesh operator L ,
obtained by finite difference method and having the form (2)-(4) with N∂ = 2, N̄ =
N + 2 and

X(n)
10 = tridiag

[
− θ

h2
,

1
∆t

+ 2
θ

h2
,− θ

h2

]
∈ IRN×N ,

X(n)
20 = tridiag

[
1− θ

h2
,

1
∆t

− 2
1− θ

h2
,
1− θ

h2

]
∈ IRN×N ,

X(n)
1∂ = − θ

h2
E; X(n)

2∂ =
1− θ

h2
E, where E =

(
1 0 . . . 0 0
0 0 . . . 0 1

)T

∈ IRN×2.

Let us apply Theorem 4. By direct calculation we get that for this discrete mesh
operator the conditions in (3) are satisfied. (In the second inequality we verify the
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condition X(n)
1 e ≥ e0.) Since X(n)

10 is an M-matrix, therefore its inverse is nonnegative.
Therefore, the validity of (P1) and (P2) is straightforward. Since (P3) can be written
as

(X(n)
10 )−1X(n)

2 = (X(n)
10 )−1[X(n)

2,0 ,X(n)
2∂ ] = (X(n)

10 )−1X(n)
2,0 + (X(n)

10 )−1X(n)
2∂ ≥ 0,

due to the obvious relation (X(n)
10 )−1X(n)

2∂ ≥ 0, we get the following statement.
Theorem 5. The finite difference discrete mesh operator has all the discrete

qualitative properties if the condition

(X(n)
10 )−1X(n)

2,0 ≥ 0 (6)

is satisfied.
Clearly, to satisfy (6) the condition X(n)

2,0 ≥ 0 is sufficient. Hence, we get

Theorem 6. Under the condition ∆t/h2 ≤ 0.5 the finite difference discrete mesh
operator has all the discrete qualitative properties.

However, the necessity of this condition is not clear. Due to the special structure
of these matrices (they are uniformly continuant, symmetrical tridiagonal matrices),
they have some special qualitative properties, which will be considered in the sequel.

Hereafter we investigate the real, uniformly continuant, symmetrical tridiagonal
matrices

X10 = tridiag[−z, 2w̃,−z]; X20 = tridiag[s, p̃, s]. (7)

We assume that z > 0 and s > 0. Then, we can consider the equivalent form of the
matrices,

X10 = z · tridiag[−1, 2w,−1]; X20 = s · tridiag[1, p, 1], (8)

where w = w̃/z and p = p̃/s. The inverse of such a matrix can be defined directly,
with the aid of the one-pair matrix G = (Gij), depending on the parameter w as

Gi,j =
{

γi,j , if i ≤ j
γj,i, if j ≤ i

(9)

and for w > 1 we have γi,j =
sh(iϑ)sh(N + 1− j)ϑ

shϑsh(N + 1)ϑ
with ϑ = arch(w). Hence we have

the relation X−1
10 = (1/z)G, thus, for the matrix Xpr = X−1

10 X20 a direct computation
verifies the validity of the relation

Xpr =
s

z
[(2w + p)G− I0] , (10)

where I0 ∈ IRN×N denotes the unit matrix. Using (10), we obtain the following
statement.

Theorem 7. Let us suppose that w > 1. Then Xpr ∈ IRN×N is non-negative for
an arbitrary fixed N if and only if the conditions

2w + p > 0, γi,i ≥ 1
2w + p

, i = 1, 2, . . . , N (11)

are fulfilled.
For the diagonal elements of the matrix Xpr the relation

min {γi,i, i = 1, 2, . . . , N} = γ1,1 = γN,N
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holds. Hence we get that Xpr ∈ IRN×N is non-negative for an arbitrary fixed N if
and only if the conditions (11) and

sh(Nϑ)
sh((N + 1)ϑ)

≥ 1
2w + p

(12)

are satisfied. Obvously the following relations are true:

sup
{

sh(Nϑ)
sh((N + 1)ϑ)

; N ∈ IN
}

= ch(ϑ)− sh(ϑ) = exp(−ϑ),

exp(−ϑ) = exp(−arch(w)) = exp
(

ln
[
w +

√
w2 − 1

]−1
)

=
[
w +

√
w2 − 1

]−1

.

Therefore, from some sufficiently large N0 ∈ IN the relation Xpr ≥ 0 may be true

only if the condition
[
w +

√
w2 − 1

]−1

>
1

2w + p
, i.e., the condition

p > −w +
√

w2 − 1 (13)

is fulfilled. This proves the following
Theorem 8. Assume that z > 0, s > 0 and w > 1. If, for some number N0 ∈ IN,

the conditions (11) and (12) are satisfied, then all matrices Xpr ∈ IRN×N with N ≥ N0

are non-negative. Moreover, there exists such a number N0 if and only if the condition
(11) (13) holds.

Let us analyze the conditions for different values of N0. When N0 = 1, then due

to the relation
shϑ

sh(2ϑ)
=

1
2chϑ

=
1

2w
, (12) results in the condition

p ≥ 0. (14)

Since
sh(2ϑ)
sh(3ϑ)

=
2ch(ϑ)

4ch2(ϑ)− 1
=

2w

4w2 − 1
, for N0 = 2 the condition (12) results in the

assumption

p ≥ − 1
2w

. (15)

Let us apply the above results to the finite difference discrete mesh operator, by
using the notation q = ∆t/h2. In case θ = 0 we have Xpr = tridiag[q, 1− 2q, q], hence
the condition is q ≤ 0.5. In case θ = 1 we have Xpr = (tridiag[−q, 1 + 2q,−q])−1.
Since tridiag[−q, 1 + 2q,−q] is an M-matrix, hence for this case we do not have any
condition for the choice of q. Let us assume that θ ∈ (0, 1).

Then we can use the form (8) with the choice

z =
θq

∆t
, s =

(1− θ)q
∆t

, w =
1 + 2θq

2θq
, p =

1− 2(1− θ)q
(1− θ)q

. (16)

Since for the considered θ we have z > 0, s > and w > 1, Theorem 7 and its
consequences are applicable.
Using (14), we directly get that the condition of the non-negativity preservation for
all N = 1, 2, . . . is the condition

q ≤ 1
2(1− θ)

. (17)
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θ N = 1 N = 2 N = ∞
0 0.5 0.5 0.5

0.5− (12q)−1 0.8333 0.9574 0.9661
0.5 1 2

√
3/3 2(2−√2)

1 ∞ ∞ ∞
Таблица 1: Non-negativity providing upper bounds for q in the different finite differ-
ence mesh operators.

However, the non-negativity preservation for all N = 2, 3, . . . should be guaranteed
by the weaker condition (15), which, in our case, yields the upper bound

q ≤ −1 + 2θ +
√

1− θ(1− θ)
3θ(1− θ)

. (18)

Our aim is to get the largest value for q under which the non-negativity preservation
for sufficiently large values N still holds. The necessary condition (13) results in the
bound

q ≤ 1−√1− θ

θ(1− θ)
. (19)

We can summarize our results as follows.
Theorem 9. The finite difference discrete mesh operator L is non-negativity

preserving (and hence, it has all discrete qualitative properties) for each N ≥ 1 if
and only if the condition (17) holds. It is non-negativity preserving for each N ≥ 2
only under the condition (18). There exists a number N0 ∈ IN such that L is non-
negativity preserving for each N ≥ N0 if and only if the weaker condition (19) is
satisfied.

We demonstrate our results on some special choices of θ. The results are shown in
Table 1.
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